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On Regularly Varying Distributions Generated by
Birth-Death Process

Jaakko Astola and Eduard Danielian

Abstract: Skewed distributions generated by birth-death proceds difterent par-
ticular forms of intensivities’ moderate growth are usediomolecular systems and
various non-mathematical fields. Based on datasets of bémular systems such dis-
tributions have to exhibit the power law like behavior atritfy, i.e. regular variation.

In the present paper for the standard birth-death procdssmost general than
before assumptions on moderate growth of intensivitiesdahewing problems are
solved.

1. The stationary distribution varies regularly if the sexqce of intensivities varies
regularly.

2. The slowly varying component and the exponent of regudaiation of stationary
distribution are found.

Keywords: Standard birth-death process, moderate growth, skewtbdison, reg-
ular variation, biomolecular systems.

1 Introduction

1.1 Moderate growth

The standard birth-death process and it's stationary distributionw/elteknown
(see, for instance [1]). In [2] for coefficients of the processrimlerategrowth
assumptions which include earlier known ones have been made. ThentHeo
class ofall stationary distributions a corresponding subclass named a cl&ss-of
tributionswith Moderate SkewnegPMS) has been extracted.
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LetC € R" = (0,+) bea parameter{¢,} and{d,} be sequences of positive
numbers with propertieq:d,} increases,

- _ . Ony1 - _
n'l!nooa’] — +00’ nllg]ooﬁ = 1, I|m - = 1 (11)

DMS are of typeg p:}, {pn}, where:

(oo st ()
p:kt:pEJ)E-C.z_:.l—le(:Lj:%)7 12
Here:

0<6<1,0<b<4wfor{pt};
0<6<10<b<dfor{p,}.

Next, {pn} has the form of pi} with 6 = 1,0 <b < +eoandy . 3 < +o.
The described distributions haveskewto the right.

The mechanism of biomolecular large-scale systems dynamic can be explained
with the help of birth-death models. Their stationary distributions generaieeske
distributions. The number of skewed distributions being used in geneticnsyste
and in other non-mathematical fields (distributions of words in the text, city sizes
in country, citation of an author by other author, etc.), and generatediiyus
birth-death processes has been increased over time.We have to indjpate qia
Yule [3] (1924) and Simon [4] (1955), and some recent ones (semstance,
Granzel and Shubert [5],Bornholdt and Ebel [6], @Rvicovit [7], Kuznetsov [8],
etc.). All distributions suggested in [3]-[8] hameoderategrowth and askewto the
right.

1.2 Regular variation

Based on datasets for various large-scale biomolecular systems saub@s de-
clared that the frequency distributigp, } of events in such systems exhiljtswer
law distribution

ph=c(p) NP l<p<+oon=12..-, (1.3)

where
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The power law distribution is used for estimation of the connectivity number of
metabolic networks [15], of the rates of protein synthesis in protein setokéry-
otic organisms [16], of the number of expressed genes in eukaryoti¢ LEHELS],
of DNA sequencing structures [18]c.

But this distributionnot alwaysmay be used. In log-log plot a power law
asymptotically is represented by a straight line. But (see, [18]) the logpliaty
of the most distributions, even in [9]-[14ystematicallgeviated from the straight
line.Thereforenewstatistical frequency distributions have been proposed (see, [3]-
[4],[16],[19]).Some of them are particular cases of Pareto distribution

pn=c(p,b)- (N+b) P, —1<b< 4o l<p<ton=12"--, (1.4)

where .
c(p,b) = (z (n+ b)‘p) (see[19)),
n>1

which shows power law like behavior for large valuesof

Based on datasets the following conclusion have been made: the frgquenc
distribution{ pn} exhibits power laws-like behavior for large valuesfsee, [9]-
[12],[14]-[15]).

Below, we interpret this empirical fact agegular variationof frequency dis-
tribution.

1.3 The goals

1. To extract from the class of DMS a subclass of distributions which may be
come regularly varying under some additional assumptionsdh

2. To find necessary and sufficient conditions{@n} for the regular variation
of the distributions from extracted subclass.

3. To get the slowly varying component and the exponent of reguléaticar
of distributions from the extracted subclass.

2 Narrowing the Class of DMS

2.1 Definitions

Let us introduce two definitions

Definition 1.(see, [20]). The measurable &1 functionR(t) > 0 varies reg-
ularly (at infinity) with exponentp € R! = (—, +o0) if for any x € R* the limit
exists lim_, 1 (R(xt) /R(t)) = x°.
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If p =0, then we say thdt(t) = R(t),t € R", varies slowly.

Thus, a functiorR > 0, measurable oR", varies regularly with exponept iff
R(t) =tP-L(t),t e R".

The identity
@:i, —1l<p<+40,5=23-, Nn=212--- (2.1)
Ph &
is acharacteristicproperty of power law (1.3). Therefore, the limit relation
im Pn_ 1 _ —23...
Jim o 1<p<+e,5=23, -, (2.2)

represents in mathematical sense the "power law like behavior” of fregLdis-
tribution { p,} for large values of,which is the definition of regular variation.

For the regular variation of distributions (1.2) additional assumption&sph
and{d,} are needed. Indeed,puttibg= 0 and6 = 1 in (1.2) we obtain

&

Psn _ 80 g 93... n=12... (2.3)
Pn &n

Thus, the assumption of regular variatior{@f,} is necessary.

Definition 2. Functionsf > 0,g > 0 defined orR" areasymptotically equiva-

lent (at infinity) if lim_ % = 1. Then, we writef (t) ~ g(t),t — +oo.

Due to (1.1) sequencés, } and{d,} are asymptotically equivalent. Therefore,
they vary regularly or not simultaneously and conditions may be put onfydeh

2.2 The Result

Denote

- ——nN
A= Tim . (2.4)

Theorem 1 Distributions { p=} with 0 < 8 < 1, and {p,} with A = +e cannot
vary regularly.

In proof of Theorem 1we use

Lemmal Let us denote fors 2,3, ---

Then:A < +w impliesB(s) < +w foralls=2,3,--;
B(s) < +oo for some s= 2,3, --- impliesA < +co.
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Proof. Since 0< B(2) < B(3) < ---, therefore, ifB(s) < + for some sthen
B(l) < 4,1 =2,3,--- s
Let us assume th# < +o. Fors= 2,3,---andn=1,2,--- we have

s—1n sxl1 s—1)n
(s—1) < _<( )

& 2 & (26)

becausd 3.} increases.From the second inequality (2.6) we ot&#h < +oo for
alls=23,---.

Reverse, leB(2) < +e. From the first inequality (2.6), we géh/dn) <

y2-1551, or lettingn — 400

Tim 2 o 2B(2) < +oo. (2.7)

n—-oo n

Since{d,} increases and lim, ;. &, L = 0, so, from (2.7) we obtain

——2n+1 __ — N
lim =2 lim <2 lim — < +oo,
n—+e dppy1 n—-+ Opn i1 N—+0 Opp

which together with (2.7) lead ta < +oo.

If B(S) < +o for some sthenB(2) < +, and we come to the previous case.

2.3 The Proof of Theorem 1

1. For integers > 1,n > 1 and for 0< 8 < 1 we have

B g2 T (1-2) 0<bes
pl’T 5sn m=n 5m ’

Since
liMp 100 80N = 0, (1—
o)
(&)
(the last equality implies together with (1.1) that for- 0 starting from some
indexng we have

) <lform=nn+1,.. & = (%)(%)

e

§
I <1+4en=ngno+1,---), (2.8)

SN

therefore,
im P _gs—23.... (2.9)

Nn— oo pﬁ
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2. Forintegers > 1,n > 1 and for 0< 6 < 1 we have

Pen _ 9<S*1>“ﬁs|r:|1 <1+ 3) 0<b< o
pPlL gsn m=n 5m 7

For e > 0 satisfying conditiorf - (1+ €) < 1 starting from some index (2.8)
holds and% < eform=ng,ng+1,--- simultaneously. Therefore, for=ng, Ny +
1---ands=23,--- we have

+
0< P (9.146) V" (1+6) =0 as n— +ow.

Pn

3. Let® =1 andA = +w (for {p, } and{p,}). Due toLemma 1, for s =
2,3,
sn—1 1 1

+00 = liMp_ 1o z 5 =B(s) < Zlav

which excludes the case ¢f,} from further consideration. So, we deal with
{Pn}

For integers > 2,n > ng we have

(2.10)

0<p_§”—isml(l—£><(l—|—£)exp erlIn(l—£> O<b<d
prT gsn m=n 5[T1 ran 5[“ 7 7
~ (2.11)

where the inequality (2.8) was used. Sincellbynma 1, B(2) = «, therefore there
is a sequencény} of integers, O< Ny < np < ---, such that

2n—1

lim — = Ho00, 2.12
3 s (212)

By (2.11)-(2.12),

pgnk 2nc—1
0< Iim =< (1+¢) lim exp< —b- — »=0.
k—o Pn, ( )k_’+°° P man Om

2.4 Narrowing the Class of DMS

Let us exclude DMS mentioned ifiheorem 1. The remainder is aubclassof
DMS,which is described as follows.
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Let C € R be aparametey {&e,} and{d,} be sequences of positive numbers
such that

{&} increases, M. o0 =+, lim, . o % =1,
(2.13)

. —def—
liMp— e % =LA =1lMp oz < +o.

The remaining DMY pn} = {pn(C,b)} take the forms

Po= <1—|—C.z —1%. |—|n—1 (1_£>>717

{ Po= (1+C Tna 2 s (1+2)) -1 <b< o (2.15

C a
=P M (148) k=120 Fuad <te

Putting without loss of generalityy = 1 we may include the part of DMS of
form (2.15) with—1 < b < 4+ in (2.14).

Po = <1+C‘Zn215—1n -t <1— %>>_1,
0<|b<1 (2.14)

C — b|
pk:g—EO'rllr(n:]i(l_L_SnI])’ k:l727'”7-

DMS described above aseispectedo vary regularly fosome{d,}.

3 Regularly Varying DMS. 1

3.1 The Result

LetC € R be aparameter {&,} and{d,} be sequences of positive numbers sat-
isfying (2.13). Anycollection(C,{&y},{dn}) generates ane-parametridamily
(with parameteb) of DMS of type (2.14) ifl =+ and of type (2.15) if < +oo,

where
1

= ngla.
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Ourgoal consists in discovering conditions ¢f,} which lead to regular variation
of {pn}.

In the presenBSectionwe solve the problem witladditional assumption: the

limit exists d ¢
n—+o &, < ( )

The result is as follows.

Theorem 2 1. {p,} varies regularly iff{ &,} varies regularly.
2.If (—p) anda are exponents dfp,}’'s and{d,}'s regular variation, respectively,
then

p=a+(b)-Ape[L+w),a e [l +m). (32)

Note that the relatio € [1,+) (see,(3.2)) is @onsequencef (3.1).

Indeed, let us assume the opposite,a € [0,1). Then,5, =1+n-L(n),n=
0,1,2,--- and, by known property on regular variation [20], fo€ (0,1— o) start-
ing from some index

1+n?L(n) < n9tE,
Therefore A > limp_, 1 = = -+, which contradicts (3.1).

Remark 1.For regularly varyingd,with exponenta the relationa € [1, +)
holds even if (3.1) doesn't take place and only (2.13) holds.

The proof is similar to above given.
Theorem 2is based on followinguxiliary

Lemma 2 If (3.1)holds, then for s= 2,3, - - - the limit exits

sn—-1

nI—I!I-‘oo z — _A Ins. (3.3)

Proof. LetA= 0. By (3.1),

orfors=2,3,---

Since fors=2,3,---

z %: Ins, (3.4)
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therefore,fos= 2,3, - --

sn-1 1
— =0(1),n— +oo.
2.5

Let0< A< +o. Fore € (0,1) starting from some index > 1 the inequalities hold
A-(1-g) 1 A (1+e¢)
“m &S T m
By (3.5) we obtain (3.3).

Theorem 2has dfinal form if A= 0.ThenA = A(=0).
Corollary 1. LetA= 0. Then:

,m=nn+1--.. (3.5)

1'. {pn} varies regularly iff{ &,} varies regularly.

2. p=ac[l+w).

3.2 Proof of Theorem 2

Note that fors= 2,3, - --

im £ = im 2 it limits exist, (3.6)
Nn— -0 SSn N— 00 65”
Indeed,
lim ﬁ: lim — Ilim % lim ﬁ: lim o ,$=2,3,-

N—+0 £,  N—+® 5n N—+o g N—+0 Ogq  N—+o 5sn

where (2.13) is used.
For {pn} of type (2.14) and=2,3,- - -, due toLemma 2 and (3.6),

(o)
N—+ =

. Psn . &n At A R ¥ _
lim — = lim —exp{ b- lim z a}_nlﬁlrﬂmg1-exp{—b-A-Ins}_

SbA ”ILT‘” gsnn
if limits exist. From (3.7) we conclude thdp,} varies regularly iff{&,} varies
regularly andp = a +b-A.

For {pn} of type (2.15) ands = 2,3,---, similarly to the previous case, we
obtain

O0<b<1, (3.7)

Psn 1 . n
nI—I>+oo Pn S—bA n|—|>r—T¢]oo 6sn —1<b< B (38)
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if limits exist. Sincel < + in this case, soh = 0, and in (3.8) we may replace the
multiplier & at the right-hand-side (3.8) bygx. Now, as in (3.7), formula (3.8)
provesTheorem 2in this case.

3.3 On one regularity

Let us introduce amewapproach to the problem. We want in future to weaken the
assumptions iTheorem 2, based on thiapproach

Forn=1,2,--- denote

! gk !
h=> =P D=0, h=) p (3.9)
" k>n 6K ! " kgn

Let us show that
0< D < Hoo. (3.10)

Indeed, fore € (0,1) starting from some indew > 1 the inequalities hold

&
1—£<—k<1+£, k=nn+1.--.

(o
Therefore, fom=n,n+1,---
(1= €)0m < G < (14 €)am (3.12)

which, due toy o pk = 1, proves (3.10).
Theapproachconsists in the existence of reverse to (2.14)-(2.15) equalities.
From (2.14) we have

e L (1—3>,n=1,2,-.., and P _c
Pn Ent+1 n Po

where without loss of generality we peg = 1, or, if we define

8n+1= &1 Py and ag = py,
then:

&p —...—a;—b- c
5n n 1 kzl

Therefore, fon=2,3,--- we have

ok =Cpo—b- apk-

1|2
=~

]

o

@1 =an—b

Cpo—b-y0 , & _b-D+b-d
g™ pz“@p":CpO pr+b % o<b<l (3.12)
n n
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Similarly, from (2.15) fom=1,2,--- we obtain

&n N & -
ani=antb=ph=-=a+b- ) Spk=Cp+b- 5 —p«
5n k;@ kzld‘
Therefore, fon = 2,3, - -- the equality holds
Cpo+b-yp_, & .D—-b-d
£ = P+D 3k15P«_ Cpo+b-D bqn,—1<b<—|—oo. (3.13)

Pn Pn

The formulas (3.12)-(3.13) represeaverseequalities.

Let us exclude the cade= 0 in (2.15). The following result isinexpected
because in particular casg= &,,n=1,2,---, for DMS it gives simple expression
for po:

b b
Po = 6(1— Po), Or po= biC
Theorem 3 (a) For DMS of type (2.14)
po:%,0<b<1. (3.14)

(b) For DMS of type (2.15) with & 0

b\ def (0,1) if —1<b<0,
n';ll(lJra)_fe{ (1,40) if 0<b< 4o,

and
bD

Po =

Proof.(a) Forming the rati@pn/pn), wherep, is taken from (3.12) and (2.14),
respectively, fon= 1,2, --- we obtain
_ Cpo—b 3 &

" om i (i-g)

0<b<1l (3.16)

Let us show that

. b b
”LIT%Dl (1—5—m) ol <1_&) =f=0. (3.17)
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Indeed, fom=1,2,--- we proceed

o< [l 2) —ewf-$ (- 2) )<

n 10 /b)\? b2 _ 1 np
ol A5 ) wlt) o 22
(3.18

1 1 1 1
=<y ——+1=1+ <———> 2,
ngl 5% n; n(n_ 1) nZl n+ 1

andl = +oo, therefore, lettingn — + in (3.18) we prove (3.17).

Letting n — + in (3.16) we conclude: since the limit of denominator at the
right-hand-side of (3.16) as— -+ equals to zero and the left-hand-side of (3.16)
is a finite positive number, therefore, necessarily numerator in the rigti-siae
of (3.16) tends to zero as— +.Thus,

Cpo

b nﬂw Z 5 px = D, which coincides with (3.14).

(b) From (3.13) and (2.15) fon = 1,2,--- andb # 0 we get the following
equality

n b n &
Cpo- (1+—>:Cpo+b- =P, —1< b < +oo,
[\, 2.5,
or tendingn — 4

po-(f—1)=b-

D{>O if 0<b< +oo, (3.19)

c)l <0 if —1<b<oO.

Since bD
0<p<l0< |E\ < oo,

so, from (3.19) we come to statement (b).

4 Regularly Varying DMS. 2

In the presenBectionby using the new approactheorem 2is improved. The
improvement, obviously, has to be made for the case

0<A% nllrpwa < 0o, (4.1)
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4.1 The Example

First of all, we must be convinced thiéiere isa sequencéd, } satisfying conditions
(2.13) (and (4.1)) such that

. n — n —
“—mﬂ—>+°°a < I|mn_,+ooa(: A) < +°° (42)

Let us construct the requirekample

Let us draw a "broken” line whose pieces of straight lines are of twostype
with slope 1- € and with slope - ¢, wheree € (0, 1) is somefixednumber. The
pieces of two types alternate each other. The curve begins from the(pginton
the plane.

Denote by
(to,yo) = (0,1), (t1,y1), (t2,¥2),+ » (ta, Yn), -+

the successive points of the curve’s non-differentiability on(thg) plane.

Thus,the pieces of this curye= 4(t) (broken line) in intervals

(tan,ton+1),n=0,1,2,- -,
have a slope % ¢, and in intervals
(ton-1,ton),Nn=121,2,---,

have a slope % ¢.

We choose numbergy} satisfying conditions

1—1 -1
Yon-1 —1-¢ Yon
t t

It is clear that the functiory = d(t) defined onR" is positive,d(0) = 1,d(t) in-
creases asincreases,

=14+¢e,n=12---.

_t~>+005(t) - 1+£7 I*>+°°5(t) - 1—5
and
im ot+1)
t—+o0 6(t> -

The same properties has the sequef&¢ of positive numbers, where we put
51: 5(“),”20,1,2,"' .

Note that in our construction necessatyly; —tn — 40 asn — 4o,
Thus, we built a sequend@, } satisfying conditions (2.13) and (4.2).
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4.2 The Result

The improvement of heorem 2 uses théorward andreverseequalities (2.14) and
(3.12), respectively. Let us mak®@mments.The remaining case iftheorem 2,
which requires an improvement, is related with DMS of type (2.14) WithR™.
For this case theeverseequalities take the form (3.12).

The result is as follows.
Theorem 4 Let us consider DMS of tyg@.14)with Ac R™. Then:

1. {pn} varies regularly iff the limit(3.1) exists;
2. The exponert-p) of {pn} equalsto ¢ (1+b-A)).
Proof. First of all we have to note that the existence of limit (3.1) with R"

implies the regular variation of sequeni® } with exponent 1.
Indeed, fors=2,3,--- from (3.1) we obtain

. . . n A
lim %n _ lim %n. lim —-s=-s=s.
h—+o &, noto SN n—+wo Oy, A

Fors=2,3,--- andn=1,2,--- from (3.12) we obtain (see, notations (3.9))

Pon_ &0 Cpo—b-Dib-ay_ & Gy (4.3)
Pn  &nCpo—b-D+b-q, &nd,’ '

where the equality (3.14) is used.

¢From (3.11) it follows that the sequendep} and {q'n} are asymptotically
equivalent. Since, at the same time, the sequefiggsand{d,} also are asymp-
totically equivalent, therefore, (4.3) may be written in the form of asymptotical
equivalence
@%i%,nﬂ+m,522,3,m. (4.4)
Pn dsn On
Theforward equalities (2.14) fos=2,3,--- andn=1,2,--- give

sn-1
Psn _ &exp Z In (1—£> ,
Pn Esn =n Om
which, due to asymptotical equivalence of sequedegsand{dy}, in accordance
with (3.7), implies

psn d’] sn—1 1
— ~ —exps —b- — p,N— 40,5=23,---. 4.5
pl"l n p{ n'an’h ( )
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The preparatory work is over.
Let us proveTheorem 4.

1. The necessityLet {p,} varies regularly and, as we already know, it's ex-
ponent(—p) satisfies conditiop € [1,+). By Theorem 1(a), p.281 [21], the
sequencé,} varies regularly with exponetit-p + 1). Therefore, by (4.4),

Sﬁp = |im &] = |im ﬁ lim % — S*( ) lim i
n—+e Py no+e dgn N+ Oy n—to Ogn’
or 55
n
nl_lmma =55=2,3,-

which means tha{d, } varies regularly with exponemt = 1.
Next, from (4.5) fors=2,3,--- we obtain

sl 1 . psn . 5sn —(p—
} — \ -~ > — (p—1)
r]|IIII exp{ b - } lim lim S

orfors=2,3,--- the limit (3.3) exists

sn-1
1 1
B9 = Jim_ 5 5 =5 Ins

Herep > 1, otherwise, byemma 1, if p = 1, thenA = 0, which contradicts the
assumptiorA € R™ of Theorem 4
Denote
p

-1
A= 5 so, B(s)=A-:Ins

Further, the following inequalities f@=2,3,--- andn=1,2,--- hold

&n (S+1)n71i n 5(s+1)n (s+1)n—-1 1

> — =, 4.6
P S S S T & (9
Fore € (0,1) starting from some indelk > 1 the inequalities holds:
S+1 (S+1)n71 1
(1—¢)Aln = =(1-¢)(B(s+1)—-B(s)) < 5 <(14+¢€)(B(s+1)—B(9) =
m=sn
s+1

(1+s)AInTs 2,3,---,n=kk+1,---. Here k=Kk(s).
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Then, for a fixeds=2,3,--- and givene the inequalities (4.6) may be rewritten
in the form

s+1 &, n s+1 Ost1n
1-¢g)Aln— =< — < (1+¢)Aln——-
HoeAn= 5 <5 “UrOANT TS

In the last inequalities letting — +c we get the following inequalities

n=kkt1,-.

1\° . n n 1\°
(1-e)Amn (14 <limy oz <M oz < (Lre)Adn(1+]) 5=23.

Lettings — +c0 and after that | O we obtain thanecessityf statement 1.

2. The sufficiencySince, the existence of limit (3.1) implies the regular varia-
tion of {d,}, therefore, we are in conditions of statement 1Th&orem 2, which
implies the{ p,}’s regular variation. Now, statement 2. Bfieorem 4follows from
statement 2. ofheorem 2.

Theorem 4is proved.

5 On the Slowly Varying Component

5.1 The Regular Class

In accordance witffheorem 2andTheorem 4in order to describe regularly vary-
ing DMS we have to change conditions ¢&,}, i.e. conditions (2.13). Namely,
now we assume thady = 1,{d,} increases and varies regularly.

The limit exists n

n— o0

The condition for positive sequenge, } is conserved
lim =1 (5.2)

Then, DMS of types (2.14)-(2.15) together fosameclass of regularly varying
distributions which we call &egular Classand DMS from this class we cdfleg-
ular DistributiongRD).

RD are presented in the form
pn A2 N PL1(N),N— +o0,p € [1,+00), (5.3)

where(—p) is the exponent of p,}’s regular variation, anglL1(n) } is someslowly
varyingsequence, which we call fdip, } a slowly varying componerf§VC).
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Knowledge of{L1(n)} is needed for applications to the large-scale biomolecu-
lar systems.

The form of presentation (5.3) gives possibility to chogkg(n)} suitablefor
us and havingimpleexpressiongsymptotocally.

Below, some preliminary information on SVC ¢p,} is given.
We assume that

51:1+naL(n),n:O,1,2,---,ae[1,—|—00), (54)
wherea is the exponent of &,}'’s regular variation{L(n)} is explicit SVC of

{dn}, and consider three possible case$ldf)}'s behavior.
The most simple is a case of RD of type (2.15).Indeed, due to (5.4),

&~ n“L(n),n — oo,
and because of (3.13) we have

—a Cpo+bD

Cpo+bD—bd) ~n L)

Pn ,N— +oo (5.5)

1
~ noL(n) (

with —1 < b < +. Here we use

) ;o
Jm ¢ =0
and, due torheorem 3
Cpo+bD#0.

Thus, in accordance with (5.3) and (5.5), in this case the SVC may berchothe

form
~ Cpo+bD

RRNTOR

Nn=12.--. (5.6)

5.2 SVC for{pn} of Type (2.14)
For RD of type (2.14) witlA = 0, as we know fronTheorem 2 p = a = 1. Due

to (2.14), we have
bD "1 b
P~ i [ <1‘ mL(m)) '

m=1

Here alsoTheorem 3is used Cpp = bD).
Itis clear that in this case the SVC may be taken in the form

n-1
Ll(n):b-D-nDl(l—%>,0<b<l. (5.7)
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It leads toa newconclusion.

Corollary 2. If {L(n)} varies slowly and lim L(n) = +oo, then for anyb €
(0,1) {L1(n)} given by (5.7) varies slowly.

Let us show that it is possible to choaa®other may be, more "pleasant” form
of SVC.

Denote

An = - D.exp?E;n—l - } = exp{:gl [In (1— %) - %] } : (5.8)

m=1 o,

For 0< b < 1 the function
f(x)=1In (1— 9) +9,xe [1, +00),
X X

is positive and increases &sncreases. The positivity follows from the inequality
f(x) > ()—E)2 (it is the second term in [ — x)'s expansion).

Further,
df(x)  d by 1 1 b b/ 1 1
dx _&{In(x_b>_lnx+§}_x—b X x2_x<x—b x>>o'
Next,
nt by bl /b))’ 1
In<1——>+—}< (—) <1+ —— | =2v°
2n(a)al<2(a Z,mm=—1)
Therefore,

. n b b b b def
0< lim n(l1-—|+—|= nll-—|+—=| =R < +oo.
—nﬂw%“ 6m> 6m] ZJ( 6n> 50} s
It means that,due to (5.8),
Ah=exp{R+6,},n=21,2---,

where lim,_, . 6, = 0. Therefore, by (5.8){L1(n)} may be chosen as follows

b-D-exp{R}expib- gt Lt
La(r) = o L({n) SAram) 1o e
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Note that in (5.9)
1

1+ mL(m)

= 00,
m>1

For RD of type (2.14) with O< A < +o, operating by the same manner, we may
only claim in general that, ad.1(n)} may be chosen the sequence

n-1 b
L1(n) = ACppnPA- M (1——) n=12--, (5.10)
m=1 5m
where[1®_; = 1.
With regard to (5.10) below we consider an important particular case.

5.3 The Linear {&,}
Let us assume thd®,} is linear, i.e.
6n:1+£,n:0,1,2,-~,A€R+. (5.11)

This case includes the well-knowamily of Waring Distributions (WD) with the
following traditional form

-1
Po = <1+ P-Sne1gm ﬂﬂ;%) ;
0<p<g< +oo. (5.12)

— PoP k—1 p+m —
pk_qﬁ(.nmzlq_i_—ma k_1727

The family (5.12) is equivalent to the generated by (2.14) family W&} of form
(5.7),én=,,C = (1—-Db)A.

There is a correspondence among parameters, which leads to the families’
equivalence:

Due to (5.11),(5.2),and (2.14), in accordance with (5.10), we have

bA o bA
Li(n)=ACp-n ~n|;|1<l—m),n_l,2,---. (5.13)
Now, we are going to show that there is sop@sitive constantP,, such that
{L1(n)} may be chosen ds;(n) = Pap.
Since A
def
A= 2 nAtm < T

n>1
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therefore

s 1 1t g 1,2 (5.14)
~ = — — IA— nvn: &y "ty -
rerA+m rerm

where lim_, ;. {n = 0. At the same time (see,[22]),

n

=Inn+E+ xn,n=1212,---, (5.15)

Slr

m=1

whereE is thefamousEuler’s constant and lim. .« xn = 0. From (5.14)-(5.15) we
obtain

n
nA = exp{bAlnn} = exp{bA- > %— bA-E — X - bA} =
m=1
n-1 1 1
c n—-1 1
=€er-Th-expsb-A-y —— > n=12---, (5.16)
rrglA"‘m

whereCy is some constant and lim ..., 7, = 1.
With the help of (5.16)we transform (5.13)

m=1

nt bA bA
Li(n) ~ rA-exp{ Z [In <1— AL m> + A+m] } ,N— oo, (5.17)

wherer is some positive constant.

Now, we may do the same with the expression at the right-hand-side in (5.17),a
it was done to{A,} and was shown that, ~ constn — +oo.

Thus, ad_;(n) may be chosesomepositive constant.
More precisely,

L(n) =ACp-exp{bA- (TA—E—Ma)}n=1,2,---,

whereE is Eiler's constant, and

A bA bA
Ta = —— Ma= In{1-— .
A n;m(erA)’ A n;{”( m+A>+m+A}
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6 Appendix

In [2] a special birth-death model, being a particular case of our model, for
biomolecular applications has been presented. pelreof stationary distributions
of the specialmodel, which are of interest, takes the form

po:(1+<1 b)- Z>151|_|m:1<1__)> ,

(6.1)
= (1-b)po- £ (1——), k=12,
with 1
O<b<l, — = +0oo,
;2;3%

where{d,} satisfiesll conditions presented at the beginningSefction 5.
For regularly varying distributions (6.lheorem 3has a very simple form.
Corollary 3.
Po = b. (62)
Indeed, since (compare to (2.14)) in case (6.1) we have
C=1-b and D= zlanpn— > Pn=1-po,

n> n>1
therefore, from (3.14) we obtain

bD b
=c - m(l— Po),

which implies (6.2).
The class of distributions (6.1) includes a family of WD in particular case

&:1+£m:QLZ~WAeWi

Itis clear that (6.2) is true also for WD.
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