On Regularly Varying Distributions Generated by Birth-Death Process

Jaakko Astola and Eduard Danielian

Abstract: Skewed distributions generated by birth-death process with different particular forms of intensivities' moderate growth are used in biomolecular systems and various non-mathematical fields. Based on datasets of biomolecular systems such distributions have to exhibit the power law like behavior at infinity, *i.e.* regular variation.

In the present paper for the standard birth-death process with most general than before assumptions on moderate growth of intensivities the following problems are solved.

- 1. The stationary distribution varies regularly if the sequence of intensivities varies regularly.
- 2. The slowly varying component and the exponent of regular variation of stationary distribution are found.

Keywords: Standard birth-death process, moderate growth, skewed distribution, regular variation, biomolecular systems.

1 Introduction

1.1 Moderate growth

The standard birth-death process and it's stationary distributions are *well-known* (see, for instance [1]). In [2] for coefficients of the process the *moderate* growth assumptions which include earlier known ones have been made. Then, from the class of *all* stationary distributions a corresponding subclass named a class of *Distributions* with *Moderate Skewness* (DMS) has been extracted.

Manuscript received April 12, 2005.

J. Astola is with Institute of Signal Processing, Tampere University od Technology, Tampere, Finland (e-mail: jaakko.astola@tut.fi). E. Danielian is with Dept. of Mathematics, Yerevan State University, Yerevan, Armenia.

Let $C \in \mathbb{R}^+ = (0, +\infty)$ be *a* parameter, $\{\varepsilon_n\}$ and $\{\delta_n\}$ be sequences of positive numbers with properties: $\{\delta_n\}$ increases,

$$\lim_{n \to +\infty} \delta_n = +\infty, \quad \lim_{n \to +\infty} \frac{\delta_{n+1}}{\delta_n} = 1, \quad \lim_{n \to +\infty} \frac{\varepsilon_n}{\delta_n} = 1.$$
(1.1)

DMS are of types $\{p_n^{\pm}\}, \{p_n\}$, where:

$$\begin{cases} p_0^{\pm} = \left(1 + C \cdot \sum_{n \ge 1} \frac{\theta^n}{\varepsilon_n} \prod_{m=1}^{n-1} \left(1 \pm \frac{b}{\delta_m}\right)\right)^{-1}, \\ p_k^{\pm} = p_0^{\pm} \cdot C \cdot \frac{\theta^k}{\varepsilon_k} \cdot \prod_{m=1}^{k-1} \left(1 \pm \frac{b}{\delta_m}\right), \qquad k = 1, 2, \cdots. \end{cases}$$
(1.2)

Here:

$$0 < \theta < 1, 0 \le b < +\infty \text{ for } \{p_n^+\};$$

$$0 < \theta \le 1, 0 < b < \delta_1 \text{ for } \{p_n^-\}.$$

Next, $\{p_n\}$ has the form of $\{p_n^+\}$ with $\theta = 1, 0 \le b < +\infty$ and $\sum_{n \ge 1} \frac{1}{\delta_n} < +\infty$.

The described distributions have a *skew* to the right.

The mechanism of biomolecular large-scale systems dynamic can be explained with the help of birth-death models. Their stationary distributions generate skewed distributions. The number of skewed distributions being used in genetic systems and in other non-mathematical fields (distributions of words in the text, city sizes in country, citation of an author by other author, etc.), and generated by various birth-death processes has been increased over time.We have to indicate papers of Yule [3] (1924) and Simon [4] (1955), and some recent ones (see,for instance, Granzel and Shubert [5],Bornholdt and Ebel [6], Oluić-Vicović [7], Kuznetsov [8], etc.). All distributions suggested in [3]-[8] have *moderate* growth and a *skew* to the right.

1.2 Regular variation

Based on datasets for various large-scale biomolecular systems several authors declared that the frequency distribution $\{p_n\}$ of events in such systems exhibits *power* law distribution

$$p_n = c(\rho) \cdot n^{-\rho}, 1 < \rho < +\infty, n = 1, 2, \cdots,$$
 (1.3)

where

$$c(\rho) = \left(\sum_{n \ge 1} n^{-\rho}\right)^{-1} (see, [9] - [14]).$$

The power law distribution is used for estimation of the connectivity number of metabolic networks [15], of the rates of protein synthesis in protein sets of prokaryotic organisms [16], of the number of expressed genes in eukaryotic cells [17]-[18], of DNA sequencing structures [18] *etc*.

But this distribution *not always* may be used. In log-log plot a power law asymptotically is represented by a straight line. But (see, [18]) the log-log plot of the most distributions, even in [9]-[14], *systematically* deviated from the straight line. Therefore, *new* statistical frequency distributions have been proposed (see, [3]-[4],[16],[19]). Some of them are particular cases of Pareto distribution

$$p_n = c(\rho, b) \cdot (n+b)^{-\rho}, -1 < b < +\infty, 1 < \rho < +\infty, n = 1, 2, \cdots,$$
(1.4)

where

$$c(\rho,b) = \left(\sum_{n\geq 1} (n+b)^{-\rho}\right)^{-1} (\text{ see}, [19]),$$

which shows power law like behavior for large values of n.

Based on datasets the following conclusion have been made: the frequency distribution $\{p_n\}$ exhibits power laws-like behavior for large values of *n* (see, [9]-[12],[14]-[15]).

Below, we interpret this empirical fact as a *regular variation* of frequency distribution.

1.3 The goals

- 1. To extract from the class of DMS a subclass of distributions which may become regularly varying under some additional assumptions on $\{\delta_n\}$.
- 2. To find necessary and sufficient conditions on $\{\delta_n\}$ for the regular variation of the distributions from extracted subclass.
- 3. To get the slowly varying component and the exponent of regular variation of distributions from the extracted subclass.

2 Narrowing the Class of DMS

2.1 Definitions

Let us introduce two definitions

Definition 1.(see, [20]). The measurable on R^+ function R(t) > 0 varies regularly (at infinity) with exponent $\rho \in R^1 = (-\infty, +\infty)$ if for any $x \in R^+$ the limit exists $\lim_{t\to+\infty} (R(xt)/R(t)) = x^{\rho}$.

If $\rho = 0$, then we say that $L(t) = R(t), t \in R^+$, varies slowly.

Thus, a function R > 0, measurable on R^+ , varies regularly with exponent ρ iff $R(t) = t^{\rho} \cdot L(t), t \in R^+$.

The identity

$$\frac{p_{sn}}{p_n} = \frac{1}{s^{\rho}}, \quad -1 < \rho < +\infty, s = 2, 3, \cdots, \quad n = 1, 2, \cdots$$
(2.1)

is a characteristic property of power law (1.3). Therefore, the limit relation

$$\lim_{n \to +\infty} \frac{p_{sn}}{p_n} = \frac{1}{s^{\rho}}, \quad -1 < \rho < +\infty, s = 2, 3, \cdots,$$
(2.2)

represents in mathematical sense the "power law like behavior" of frequency distribution $\{p_n\}$ for large values of *n*, which is the definition of regular variation.

For the regular variation of distributions (1.2) additional assumptions on $\{\varepsilon_n\}$ and $\{\delta_n\}$ are needed. Indeed, putting b = 0 and $\theta = 1$ in (1.2) we obtain

$$\frac{p_{sn}}{p_n} = \frac{\varepsilon_n}{\varepsilon_{sn}}, \quad s = 2, 3, \cdots, \quad n = 1, 2, \cdots.$$
(2.3)

Thus, the assumption of regular variation of $\{\varepsilon_n\}$ is necessary.

Definition 2. Functions f > 0, g > 0 defined on R^+ are *asymptotically equivalent* (at infinity) if $\lim_{t \to +\infty} \frac{f(t)}{g(t)} = 1$. Then, we write $f(t) \approx g(t), t \to +\infty$.

Due to (1.1) sequences $\{\varepsilon_n\}$ and $\{\delta_n\}$ are asymptotically equivalent. Therefore, they vary regularly or not simultaneously and conditions may be put only on $\{\delta_n\}$.

2.2 The Result

Denote

$$\bar{A} = \overline{\lim_{n \to +\infty} \frac{n}{\delta_n}}.$$
(2.4)

Theorem 1 Distributions $\{p_n^{\pm}\}$ with $0 < \theta < 1$, and $\{p_n\}$ with $\overline{A} = +\infty$ cannot vary regularly.

In proof of **Theorem 1** we use

Lemma 1 Let us denote for $s = 2, 3, \cdots$

$$\bar{B}(s) = \overline{\lim_{n \to +\infty}} \sum_{m=n}^{sn-1} \frac{1}{\delta_m}.$$
(2.5)

Then: $\bar{A} < +\infty$ implies $\bar{B}(s) < +\infty$ for all $s = 2, 3, \cdots$; $\bar{B}(s) < +\infty$ for some $s = 2, 3, \cdots$ implies $\bar{A} < +\infty$. **Proof.** Since $0 < \overline{B}(2) \le \overline{B}(3) \le \cdots$, therefore, if $\overline{B}(s) < +\infty$ for some *s*, then $\overline{B}(l) < +\infty, l = 2, 3, \cdots, s$.

Let us assume that $\bar{A} < +\infty$. For $s = 2, 3, \cdots$ and $n = 1, 2, \cdots$ we have

$$\frac{(s-1)n}{\delta_{sn}} < \sum_{m=n}^{sn-1} \frac{1}{\delta_m} < \frac{(s-1)n}{\delta_n}$$
(2.6)

because $\{\delta_m\}$ increases. From the second inequality (2.6) we obtain $\overline{B}(s) < +\infty$ for all $s = 2, 3, \cdots$.

Reverse, let $\overline{B}(2) < +\infty$. From the first inequality (2.6), we get $(n/\delta_{2n}) < \sum_{m=n}^{2n-1} \delta_m^{-1}$, or letting $n \to +\infty$

$$\overline{\lim_{n \to +\infty} \frac{2n}{\delta_{2n}}} < 2\bar{B}(2) < +\infty.$$
(2.7)

Since $\{\delta_n\}$ increases and $\lim_{n\to+\infty} \delta_n^{-1} = 0$, so, from (2.7) we obtain

$$\overline{\lim_{n \to +\infty} \frac{2n+1}{\delta_{2n+1}}} = 2\overline{\lim_{n \to +\infty} \frac{n}{\delta_{2n+1}}} \leq 2\overline{\lim_{n \to +\infty} \frac{n}{\delta_{2n}}} < +\infty,$$

which together with (2.7) lead to $\bar{A} < +\infty$.

If $\overline{B}(s) < +\infty$ for some s, then $\overline{B}(2) < +\infty$, and we come to the previous case.

2.3 The Proof of Theorem 1

1. For integers $s > 1, n \ge 1$ and for $0 < \theta < 1$ we have

$$\frac{p_{sn}}{p_n} = \theta^{(s-1)n} \frac{\varepsilon_n}{\varepsilon_{sn}} \prod_{m=n}^{sn-1} \left(1 - \frac{b}{\delta_m}\right), 0 < b < \delta_1.$$

Since

$$\lim_{n \to +\infty} \theta^{(s-1)n} = 0, \left(1 - \frac{b}{\delta_m}\right) < 1 \text{ for } m = n, n+1, \cdots, \frac{\varepsilon_n}{\varepsilon_{sn}} = \left(\frac{\varepsilon_n}{\delta_n}\right) \cdot \left(\frac{\delta_{sn}}{\varepsilon_{sn}}\right) \cdot \left(\frac{\delta_n}{\delta_m}\right)$$

(the last equality implies together with (1.1) that for $\varepsilon > 0$ starting from some index n_0 we have

$$\frac{\varepsilon_n}{\varepsilon_{sn}} < 1 + \varepsilon, n = n_0, n_0 + 1, \cdots), \qquad (2.8)$$

therefore,

$$\lim_{n \to +\infty} \frac{p_{sn}}{p_n} = 0, s = 2, 3 \cdots .$$
 (2.9)

2. For integers $s > 1, n \ge 1$ and for $0 < \theta < 1$ we have

$$\frac{p_{sn}^+}{p_n^+} = \theta^{(s-1)n} \frac{\varepsilon_n}{\varepsilon_{sn}} \prod_{m=n}^{sn-1} \left(1 + \frac{b}{\delta_m}\right), \quad 0 < b < +\infty.$$

For $\varepsilon > 0$ satisfying condition $\theta \cdot (1 + \varepsilon) < 1$ starting from some index n_0 (2.8) holds and $\frac{b}{\delta_m} < \varepsilon$ for $m = n_0, n_0 + 1, \cdots$ simultaneously. Therefore, for $n = n_0, n_0 + 1, \cdots$ and $s = 2, 3, \cdots$ we have

$$0 \le \frac{p_{sn}^+}{p_n^+} < (\theta \cdot (1+\varepsilon))^{(s-1)n} \cdot (1+\varepsilon) \to 0 \quad \text{as} \quad n \to +\infty$$

3. Let $\theta = 1$ and $\overline{A} = +\infty$ (for $\{p_n^-\}$ and $\{p_n\}$). Due to Lemma 1, for $s = 2, 3, \cdots$

$$+\infty = \overline{\lim}_{n \to +\infty} \sum_{m=n}^{sn-1} \frac{1}{\delta_m} = \overline{B}(s) < \sum_{n \ge 1} \frac{1}{\delta_n}, \qquad (2.10)$$

which excludes the case of $\{p_n\}$ from further consideration. So, we deal with $\{p_n^-\}$.

For integers $s \ge 2, n \ge n_0$ we have

$$0 < \frac{p_{sn}^-}{p_n^-} = \frac{\varepsilon_n}{\varepsilon_{sn}} \prod_{m=n}^{sn-1} \left(1 - \frac{b}{\delta_m} \right) < (1 + \varepsilon) exp \left\{ \sum_{m=n}^{sn-1} \ln\left(1 - \frac{b}{\delta_m} \right) \right\}, 0 < b < \delta_1,$$
(2.11)

where the inequality (2.8) was used. Since, by **Lemma 1**, $\overline{B}(2) = \infty$, therefore there is a sequence $\{n_k\}$ of integers, $0 < n_1 < n_2 < \cdots$, such that

$$\lim_{k \to +\infty} \sum_{m=n_k}^{2n_k-1} \frac{1}{\delta_m} = +\infty.$$
(2.12)

By (2.11)-(2.12),

$$0 \leq \lim_{k \to +\infty} \frac{p_{2n_k}}{p_{n_k}} \leq (1+\varepsilon) \lim_{k \to +\infty} \exp\left\{-b \cdot \sum_{m=n_k}^{2n_k-1} \frac{1}{\delta_m}\right\} = 0.$$

2.4 Narrowing the Class of DMS

Let us exclude DMS mentioned in **Theorem 1.** The remainder is a *subclass* of DMS, which is described as follows.

Let $C \in \mathbb{R}^+$ be a *parameter*, $\{\varepsilon_n\}$ and $\{\delta_n\}$ be sequences of positive numbers such that

$$\begin{cases} \{\delta_n\} & \text{increases,} \quad \lim_{n \to +\infty} \delta_n = +\infty, \lim_{n \to +\infty} \frac{\delta_{n+1}}{\delta_n} = 1, \\ \lim_{n \to +\infty} \frac{\varepsilon_n}{\delta_n} = 1, \overline{A} \stackrel{def}{=} \overline{\lim}_{n \to +\infty} \frac{n}{\delta_n} < +\infty. \end{cases}$$
(2.13)

The remaining DMS $\{p_n\} = \{p_n(C, b)\}$ take the forms

$$\begin{cases} p_0 = \left(1 + C \cdot \sum_{n \ge 1} \frac{1}{\varepsilon_n} \prod_{m=1}^{n-1} \left(1 - \frac{b}{\delta_m}\right)\right)^{-1}, \\ p_k = \frac{Cp_0}{\varepsilon_k} \cdot \prod_{m=1}^{k-1} \left(1 - \frac{b}{\delta_m}\right), \quad k = 1, 2, \cdots, \end{cases} \quad (2.14)$$

with $\sum_{n\geq 1} \frac{1}{\delta_n} = +\infty$.

$$\begin{cases} p_0 = \left(1 + C \cdot \sum_{n \ge 1} \frac{1}{\varepsilon_n} \prod_{m=1}^{n-1} \left(1 + \frac{b}{\delta_m}\right)\right)^{-1}, -1 < b < +\infty, \\ p_k = \frac{Cp_0}{\varepsilon_k} \cdot \prod_{m=1}^{k-1} \left(1 + \frac{b}{\delta_m}\right), \quad k = 1, 2, \cdots, \sum_{n \ge 1} \frac{1}{\delta_n} < +\infty. \end{cases}$$
(2.15)

Putting without loss of generality $\delta_1 = 1$ we may include the part of DMS of form (2.15) with $-1 < b < +\infty$ in (2.14).

$$\begin{cases} p_0 = \left(1 + C \cdot \sum_{n \ge 1} \frac{1}{\varepsilon_n} \prod_{m=1}^{n-1} \left(1 - \frac{|b|}{\delta_m}\right)\right)^{-1}, \\ 0 < |b| < 1 \end{cases}$$

$$p_k = \frac{Cp_0}{\varepsilon_k} \cdot \prod_{m=1}^{k-1} \left(1 - \frac{|b|}{\delta_m}\right), \quad k = 1, 2, \cdots, .$$

$$(2.14')$$

DMS described above are *suspected* to vary regularly for *some* $\{\delta_n\}$.

3 Regularly Varying DMS. 1

3.1 The Result

Let $C \in \mathbb{R}^+$ be a *parameter*, $\{\varepsilon_n\}$ and $\{\delta_n\}$ be sequences of positive numbers satisfying (2.13). Any *collection* $(C, \{\varepsilon_n\}, \{\delta_n\})$ generates a *one-parametric* family (with parameter *b*) of DMS of type (2.14) if $I = +\infty$ and of type (2.15) if $I < +\infty$, where

$$I=\sum_{n\geq 1}\frac{1}{\delta_n}.$$

Our *goal* consists in discovering conditions on $\{\delta_n\}$ which lead to regular variation of $\{p_n\}$.

In the present *Section* we solve the problem with *additional* assumption: the limit exists

$$0 \le \lim_{n \to +\infty} \frac{n}{\delta_n} \stackrel{def}{=} A < +\infty.$$
(3.1)

The result is as follows.

Theorem 2 1. $\{p_n\}$ varies regularly iff $\{\delta_n\}$ varies regularly. 2. If $(-\rho)$ and α are exponents of $\{p_n\}$'s and $\{\delta_n\}$'s regular variation, respectively, then

$$\rho = \alpha + (|b|) \cdot A, \rho \in [1, +\infty), \alpha \in [1, +\infty).$$
(3.2)

Note that the relation $\alpha \in [1, +\infty)$ (see,(3.2)) is a *consequence* of (3.1).

Indeed, let us assume the opposite, *i.e.* $\alpha \in [0, 1)$. Then, $\delta_n = 1 + n^{\alpha} \cdot L(n), n = 0, 1, 2, \cdots$ and, by known property on regular variation [20], for $\varepsilon \in (0, 1 - \alpha)$ starting from some index

$$1 + n^{\alpha} L(n) < n^{\alpha + \varepsilon}.$$

Therefore, $A > \lim_{n \to +\infty} \frac{n}{n^{\alpha + \varepsilon}} = +\infty$, which contradicts (3.1).

Remark 1. For regularly varying δ_n with exponent α the relation $\alpha \in [1, +\infty)$ holds even if (3.1) doesn't take place and only (2.13) holds.

The proof is similar to above given.

Theorem 2 is based on following *auxiliary*

Lemma 2 If (3.1) holds, then for $s = 2, 3, \dots$ the limit exits

$$B(s) \stackrel{def}{=} \lim_{n \to +\infty} \sum_{m=n}^{sn-1} \frac{1}{\delta_m} = A \cdot \ln s.$$
(3.3)

Proof. Let A = 0. By (3.1),

$$\frac{1}{\delta_n} = o\left(\frac{1}{n}\right), n \to +\infty,$$

or for $s = 2, 3, \cdots$

$$\sum_{m=n}^{sn-1}rac{1}{\delta_m}=o\left(\sum_{m=n}^{sn-1}rac{1}{m}
ight),n
ightarrow+\infty.$$

Since for $s = 2, 3, \cdots$

$$\sum_{m=n}^{sn-1} \frac{1}{m} = \ln s, \tag{3.4}$$

therefore, for $s = 2, 3, \cdots$

$$\sum_{m=n}^{sn-1}\frac{1}{\delta_m}=o\left(1\right), n\to+\infty.$$

Let $0 < A < +\infty$. For $\varepsilon \in (0, 1)$ starting from some index $n \ge 1$ the inequalities hold

$$\frac{A \cdot (1-\varepsilon)}{m} < \frac{1}{\delta_m} < \frac{A \cdot (1+\varepsilon)}{m}, m = n, n+1, \cdots.$$
(3.5)

By (3.5) we obtain (3.3).

Theorem 2 has a *final* form if $\overline{A} = 0$. Then $\overline{A} = A(=0)$. **Corollary 1.** Let $\overline{A} = 0$. Then:

- 1'. $\{p_n\}$ varies regularly iff $\{\delta_n\}$ varies regularly.
- 2'. $\rho = \alpha \in [1, +\infty).$

3.2 **Proof of Theorem 2**

Note that for $s = 2, 3, \cdots$

$$\lim_{n \to +\infty} \frac{\varepsilon_n}{\varepsilon_{sn}} = \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}} \quad \text{if limits exist.}$$
(3.6)

Indeed,

$$\lim_{n \to +\infty} \frac{\varepsilon_n}{\varepsilon_{sn}} = \lim_{n \to +\infty} \frac{\varepsilon_n}{\delta_n} \lim_{n \to +\infty} \frac{\delta_{sn}}{\varepsilon_{sn}} \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}} = \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}}, s = 2, 3, \cdots,$$

where (2.13) is used.

For $\{p_n\}$ of type (2.14) and $s = 2, 3, \dots$, due to **Lemma 2** and (3.6),

$$\lim_{n \to +\infty} \frac{p_{sn}}{p_n} = \lim_{n \to +\infty} \frac{\varepsilon_n}{\varepsilon_{sn}} \exp\left\{-b \cdot \lim_{n \to +\infty} \sum_{m=n}^{sn-1} \frac{1}{\delta_m}\right\} = \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}} \cdot \exp\left\{-b \cdot A \cdot \ln s\right\} =$$
$$= \frac{1}{s^{bA}} \cdot \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}}, 0 < b < 1, \tag{3.7}$$

if limits exist. From (3.7) we conclude that $\{p_n\}$ varies regularly iff $\{\delta_n\}$ varies regularly and $\rho = \alpha + b \cdot A$.

For $\{p_n\}$ of type (2.15) and $s = 2, 3, \dots$, similarly to the previous case, we obtain

$$\lim_{n \to +\infty} \frac{p_{sn}}{p_n} = \frac{1}{s^{-bA}} \cdot \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}}, -1 < b < +\infty,$$
(3.8)

if limits exist. Since $I < +\infty$ in this case, so, A = 0, and in (3.8) we may replace the multiplier $\frac{1}{s^{-bA}}$ at the right-hand-side (3.8) by $\frac{1}{s^{|b|A}}$. Now, as in (3.7), formula (3.8) proves **Theorem 2** in this case.

3.3 On one regularity

Let us introduce a *new* approach to the problem. We want in future to weaken the assumptions in **Theorem 2**, based on this *approach*.

For $n = 1, 2, \cdots$ denote

$$q'_{n} = \sum_{k \ge n} \frac{\varepsilon_{k}}{\delta_{k}} p_{k}, \quad D = q'_{1}, \quad q_{n} = \sum_{k \ge n} p_{k}.$$
(3.9)

Let us show that

$$0 < D < +\infty. \tag{3.10}$$

Indeed, for $\varepsilon \in (0,1)$ starting from some index $n \ge 1$ the inequalities hold

$$1-\varepsilon < \frac{\varepsilon_k}{\delta_k} < 1+\varepsilon, \quad k=n,n+1,\cdots,$$

Therefore, for $m = n, n+1, \cdots$

$$(1-\varepsilon)q_m < q'_m < (1+\varepsilon)q_m \tag{3.11}$$

which, due to $\sum_{k\geq 0} p_k = 1$, proves (3.10).

The *approach* consists in the existence of reverse to (2.14)-(2.15) equalities. From (2.14) we have

$$\frac{p_{n+1}}{p_n} = \frac{\varepsilon_n}{\varepsilon_{n+1}} \left(1 - \frac{b}{\delta_n} \right), n = 1, 2, \cdots, \text{ and } \frac{p_1}{p_0} = C,$$

where without loss of generality we put $\varepsilon_0 = 1$, or, if we define

$$a_{n+1} = \varepsilon_{n+1} \cdot p_{n+1}$$
 and $a_1 = p_1$

then:

$$a_{n+1} = a_n - b \frac{\varepsilon_n}{\delta_n} p_n = \dots = a_1 - b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k} p_k = Cp_0 - b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k} p_k.$$

Therefore, for $n = 2, 3, \cdots$ we have

$$\varepsilon_n = \frac{Cp_0 - b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k} p_k}{p_n} = \frac{Cp_0 - b \cdot D + b \cdot q'_n}{p_n}, \quad 0 < b < 1.$$
(3.12)

Similarly, from (2.15) for $n = 1, 2, \cdots$ we obtain

$$a_{n+1} = a_n + b\frac{\varepsilon_n}{\delta_n}p_n = \dots = a_1 + b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k}p_k = Cp_0 + b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k}p_k$$

Therefore, for $n = 2, 3, \cdots$ the equality holds

$$\varepsilon_{n} = \frac{Cp_{0} + b \cdot \sum_{k=1}^{n} \frac{\varepsilon_{k}}{\delta_{k}} p_{k}}{p_{n}} = \frac{Cp_{0} + b \cdot D - b \cdot q_{n}'}{p_{n}}, -1 < b < +\infty.$$
(3.13)

The formulas (3.12)-(3.13) represent reverse equalities.

Let us exclude the case b = 0 in (2.15). The following result is *unexpected* because in particular case $\varepsilon_n = \delta_n, n = 1, 2, \cdots$, for DMS it gives simple expression for p_0 :

$$p_0 = \frac{b}{C}(1 - p_0), \text{ or } p_0 = \frac{b}{b + C}.$$

Theorem 3 (a) For DMS of type (2.14)

$$p_0 = \frac{bD}{C}, 0 < b < 1. \tag{3.14}$$

(b) For DMS of type (2.15) with $b \neq 0$

$$\prod_{n \ge 1} \left(1 + \frac{b}{\delta_n} \right) \stackrel{def}{=} f \in \begin{cases} (0,1) & \text{if } -1 < b < 0, \\ (1,+\infty) & \text{if } 0 < b < +\infty, \end{cases}$$

and

$$p_0 = \frac{bD}{C \cdot (f-1)}, -1 < b < +\infty, b \neq 0.$$
(3.15)

Proof.(a) Forming the ratio (p_n/p_n) , where p_n is taken from (3.12) and (2.14), respectively, for $n = 1, 2, \cdots$ we obtain

$$1 = \frac{Cp_0 - b \cdot \sum_{k=1}^{n-1} \frac{\varepsilon_k}{\delta_k} p_k}{Cp_0 \cdot \prod_{m=1}^{n-1} \left(1 - \frac{b}{\delta_m}\right)}, 0 < b < 1.$$
(3.16)

Let us show that

$$\lim_{n \to +\infty} \prod_{m=1}^{n} \left(1 - \frac{b}{\delta_m} \right) = \prod_{n \ge 1} \left(1 - \frac{b}{\delta_n} \right) = f = 0.$$
(3.17)

Indeed, for $n = 1, 2, \cdots$ we proceed

$$0 < \prod_{m=1}^{n} \left(1 - \frac{b}{\delta_m} \right) = \exp\left\{ -\sum_{m=1}^{n} \left| \ln\left(1 - \frac{b}{\delta_m} \right) \right| \right\} < \\ < \exp\left\{ -\sum_{m=1}^{n} \frac{b}{\delta_m} + \frac{1}{2} \sum_{m=1}^{n} \left(\frac{b}{\delta_m} \right)^2 \right\} < \exp\left\{ \frac{b^2}{2} \sum_{n \ge 1} \frac{1}{\delta_n^2} \right\} \cdot \exp\left\{ -\sum_{m=1}^{n} \frac{b}{\delta_m} \right\}.$$
(3.18)

Since

$$\sum_{n\geq 1} \frac{1}{\delta_n^2} < \sum_{n\geq 2} \frac{1}{n(n-1)} + 1 = 1 + \sum_{n\geq 1} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 2,$$

and $I = +\infty$, therefore, letting $n \to +\infty$ in (3.18) we prove (3.17).

Letting $n \to +\infty$ in (3.16) we conclude: since the limit of denominator at the right-hand-side of (3.16) as $n \to +\infty$ equals to zero and the left-hand-side of (3.16) is a finite positive number, therefore, necessarily numerator in the right-hand-side of (3.16) tends to zero as $n \to +\infty$. Thus,

$$\frac{Cp_0}{b} = \lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{\varepsilon_k}{\delta_k} p_k = D, \text{ which coincides with (3.14).}$$

(b) From (3.13) and (2.15) for $n = 1, 2, \cdots$ and $b \neq 0$ we get the following equality

$$Cp_0 \cdot \prod_{m=1}^n \left(1 + \frac{b}{\delta_m}\right) = Cp_0 + b \cdot \sum_{k=1}^n \frac{\varepsilon_k}{\delta_k} p_k, -1 < b < +\infty,$$

or tending $n \to +\infty$

$$p_0 \cdot (f-1) = b \cdot \frac{D}{C} \begin{cases} > 0 & \text{if } 0 < b < +\infty, \\ < 0 & \text{if } -1 < b < 0. \end{cases}$$
(3.19)

Since

$$0$$

so, from (3.19) we come to statement (b).

4 Regularly Varying DMS. 2

In the present *Section* by using the new approach **Theorem 2** is improved. The improvement, obviously, has to be made for the case

$$0 < \overline{A} \stackrel{def}{=} \frac{\lim_{n \to +\infty} n}{\delta_n} < +\infty.$$
(4.1)

4.1 The Example

First of all, we must be convinced that *there is* a sequence $\{\delta_n\}$ satisfying conditions (2.13) (and (4.1)) such that

$$\underline{\lim}_{n \to +\infty} \frac{n}{\delta_n} < \overline{\lim}_{n \to +\infty} \frac{n}{\delta_n} (= \overline{A}) < +\infty.$$
(4.2)

Let us construct the required *example*.

Let us draw a "broken" line whose pieces of straight lines are of two types: with slope $1 - \varepsilon$ and with slope $1 + \varepsilon$, where $\varepsilon \in (0, 1)$ is some *fixed* number. The pieces of two types alternate each other. The curve begins from the point (0, 1) on the plane.

Denote by

$$(t_0, y_0) = (0, 1), (t_1, y_1), (t_2, y_2), \cdots, (t_n, y_n), \cdots$$

the successive points of the curve's non-differentiability on the (t, y) plane.

Thus, the pieces of this curve $y = \delta(t)$ (broken line) in intervals

$$(t_{2n}, t_{2n+1}), n = 0, 1, 2, \cdots,$$

have a slope $1 - \varepsilon$, and in intervals

$$(t_{2n-1}, t_{2n}), n = 1, 2, \cdots,$$

have a slope $1 + \varepsilon$.

We choose numbers $\{t_k\}$ satisfying conditions

$$\frac{y_{2n-1}-1}{t} = 1-\varepsilon, \quad \frac{y_{2n}-1}{t} = 1+\varepsilon, n = 1, 2, \cdots.$$

It is clear that the function $y = \delta(t)$ defined on R^+ is positive, $\delta(0) = 1, \delta(t)$ increases as t increases,

$$\underline{\lim}_{t \to +\infty} \frac{t}{\delta(t)} = \frac{1}{1 + \varepsilon}, \quad \overline{\lim}_{t \to +\infty} \frac{1}{\delta(t)} = \frac{1}{1 - \varepsilon}$$

and

$$\lim_{t \to +\infty} \frac{\delta(t+1)}{\delta(t)} = 1.$$

The same properties has the sequence $\{\delta_n\}$ of positive numbers, where we put

$$\delta_n = \delta(n), n = 0, 1, 2, \cdots$$

Note that in our construction necessarily $t_{n+1} - t_n \rightarrow +\infty$ as $n \rightarrow +\infty$.

Thus, we built a sequence $\{\delta_n\}$ satisfying conditions (2.13) and (4.2).

4.2 The Result

The improvement of **Theorem 2**, uses the *forward* and *reverse* equalities (2.14) and (3.12), respectively. Let us make *comments*. The remaining case in **Theorem 2**, which requires an improvement, is related with DMS of type (2.14) with $\overline{A} \in \mathbb{R}^+$. For this case the *reverse* equalities take the form (3.12).

The result is as follows.

Theorem 4 Let us consider DMS of type (2.14) with $\overline{A} \in \mathbb{R}^+$. Then:

- 1. $\{p_n\}$ varies regularly iff the limit (3.1) exists;
- 2. The exponent $(-\rho)$ of $\{p_n\}$ equals to $(-(1+b\cdot A))$.

Proof. First of all we have to note that the existence of limit (3.1) with $A \in R^+$ implies the regular variation of sequence $\{\delta_n\}$ with exponent 1.

Indeed, for $s = 2, 3, \cdots$ from (3.1) we obtain

$$\lim_{n \to +\infty} \frac{\delta_{sn}}{\delta_n} = \lim_{n \to +\infty} \frac{\delta_{sn}}{sn} \cdot \lim_{n \to +\infty} \frac{n}{\delta_n} \cdot s = \frac{A}{A}s = s$$

For $s = 2, 3, \dots$ and $n = 1, 2, \dots$ from (3.12) we obtain (see, notations (3.9))

$$\frac{p_{sn}}{p_n} = \frac{\varepsilon_n}{\varepsilon_{sn}} \frac{Cp_0 - b \cdot D + b \cdot q'_{sn}}{Cp_0 - b \cdot D + b \cdot q'_n} = \frac{\varepsilon_n}{\varepsilon_{sn}} \frac{q'_{sn}}{q'_n},$$
(4.3)

where the equality (3.14) is used.

¿From (3.11) it follows that the sequences $\{q_n\}$ and $\{q'_n\}$ are asymptotically equivalent. Since, at the same time, the sequences $\{\varepsilon_n\}$ and $\{\delta_n\}$ also are asymptotically equivalent, therefore, (4.3) may be written in the form of asymptotical equivalence

$$\frac{p_{sn}}{p_n} \approx \frac{\delta_n}{\delta_{sn}} \frac{q_{sn}}{q_n}, n \to +\infty, s = 2, 3, \cdots.$$
(4.4)

The *forward* equalities (2.14) for $s = 2, 3, \dots$ and $n = 1, 2, \dots$ give

$$\frac{p_{sn}}{p_n} = \frac{\varepsilon_n}{\varepsilon_{sn}} \exp\left\{\sum_{m=n}^{sn-1} \ln\left(1-\frac{b}{\delta_m}\right)\right\},\,$$

which, due to asymptotical equivalence of sequences $\{\varepsilon_n\}$ and $\{\delta_n\}$, in accordance with (3.7), implies

$$\frac{p_{sn}}{p_n} \approx \frac{\delta_n}{\delta_{sn}} \exp\left\{-b \cdot \sum_{m=n}^{sn-1} \frac{1}{\delta_m}\right\}, n \to +\infty, s = 2, 3, \cdots.$$
(4.5)

The preparatory work is over.

Let us prove Theorem 4.

1. *The necessity.* Let $\{p_n\}$ varies regularly and, as we already know, it's exponent $(-\rho)$ satisfies condition $\rho \in [1, +\infty)$. By **Theorem 1** (a), p.281 [21], the sequence $\{q_n\}$ varies regularly with exponent $(-\rho + 1)$. Therefore, by (4.4),

$$s^{-\rho} = \lim_{n \to +\infty} \frac{p_{sn}}{p_n} = \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}} \cdot \lim_{n \to +\infty} \frac{q_{sn}}{q_n} = s^{-(\rho-1)} \cdot \lim_{n \to +\infty} \frac{\delta_n}{\delta_{sn}},$$

or

$$\lim_{n\to+\infty}\frac{\delta_{sn}}{\delta_n}=s,s=2,3,\cdots,$$

which means that $\{\delta_n\}$ varies regularly with exponent $\alpha = 1$.

Next, from (4.5) for $s = 2, 3, \cdots$ we obtain

$$\lim_{n \to +\infty} \exp\left\{-b \cdot \sum_{m=n}^{sn-1} \frac{1}{\delta_m}\right\} = \lim_{t \to +\infty} \frac{p_{sn}}{p_n} \cdot \lim_{t \to +\infty} \frac{\delta_{sn}}{\delta_n} = s^{-(\rho-1)},$$

or for $s = 2, 3, \cdots$ the limit (3.3) exists

$$B(s) = \lim_{n \to +\infty} \sum_{m=n}^{sn-1} \frac{1}{\delta_m} = \frac{\rho - 1}{b} \ln s.$$

Here $\rho > 1$, otherwise, by Lemma 1, if $\rho = 1$, then $\overline{A} = 0$, which contradicts the assumption $\overline{A} \in R^+$ of Theorem 4

Denote

$$A = \frac{\rho - 1}{b}$$
, so, $B(s) = A \cdot \ln s$.

Further, the following inequalities for $s = 2, 3, \cdots$ and $n = 1, 2, \cdots$ hold

$$\frac{\delta_{sn}}{\delta_n} \sum_{m=sn}^{(s+1)n-1} \frac{1}{\delta_m} < \frac{n}{\delta_n} < \frac{\delta_{(s+1)n}}{\delta_n} \sum_{m=sn}^{(s+1)n-1} \frac{1}{\delta_m}.$$
(4.6)

For $\varepsilon \in (0,1)$ starting from some index $k \ge 1$ the inequalities holds:

$$(1-\varepsilon)A\ln\frac{s+1}{s} = (1-\varepsilon)(B(s+1) - B(s)) < \sum_{m=sn}^{(s+1)n-1} \frac{1}{\delta_m} < (1+\varepsilon)(B(s+1) - B(s)) = (1+\varepsilon)A\ln\frac{s+1}{s}, s = 2, 3, \dots, n = k, k+1, \dots.$$
 Here $k = k(s)$.

Then, for a fixed $s = 2, 3, \cdots$ and given ε the inequalities (4.6) may be rewritten in the form

$$(1-\varepsilon)A\ln\frac{s+1}{s}\cdot\frac{\delta_{sn}}{\delta_n}<\frac{n}{\delta_n}<(1+\varepsilon)A\ln\frac{s+1}{s}\cdot\frac{\delta_{(s+1)n}}{\delta_n},n=k,k+1,\cdots.$$

In the last inequalities letting $n \to +\infty$ we get the following inequalities

$$(1-\varepsilon)A \cdot \ln\left(1+\frac{1}{s}\right)^s \leq \underline{\lim}_{n \to +\infty} \frac{n}{\delta_n} \leq \overline{\lim}_{n \to +\infty} \frac{n}{\delta_n} \leq (1+\varepsilon)A \cdot \ln\left(1+\frac{1}{s}\right)^s, s=2,3,\cdots.$$

Letting $s \to +\infty$ and after that $\varepsilon \downarrow 0$ we obtain the *necessity* of statement 1.

2. *The sufficiency*. Since, the existence of limit (3.1) implies the regular variation of $\{\delta_n\}$, therefore, we are in conditions of statement 1. of **Theorem 2**, which implies the $\{p_n\}$'s regular variation. Now, statement 2. of **Theorem 4** follows from statement 2. of **Theorem 2**.

Theorem 4 is proved.

5 On the Slowly Varying Component

5.1 The Regular Class

In accordance with **Theorem 2** and **Theorem 4** in order to describe regularly varying DMS we have to change conditions on $\{\delta_n\}$, *i.e.* conditions (2.13). Namely, now we assume that: $\delta_0 = 1, \{\delta_n\}$ increases and varies regularly.

The limit exists

$$0 \le \lim_{n \to +\infty} \frac{n}{\delta_n} = A < +\infty.$$
(5.1)

The condition for positive sequence $\{\varepsilon_n\}$ is conserved

$$\lim_{n \to +\infty} \frac{\varepsilon_n}{\delta_n} = 1.$$
(5.2)

Then, DMS of types (2.14)-(2.15) together form *some* class of regularly varying distributions which we call a *Regular Class*, and DMS from this class we call *Regular Distributions*(RD).

RD are presented in the form

$$p_n \approx n^{-\rho} L_1(n), n \to +\infty, \rho \in [1, +\infty), \tag{5.3}$$

where $(-\rho)$ is the exponent of $\{p_n\}$'s regular variation, and $\{L_1(n)\}$ is some *slowly varying* sequence, which we call for $\{p_n\}$ a *slowly varying component* (SVC).

Knowledge of $\{L_1(n)\}$ is needed for applications to the large-scale biomolecular systems.

The form of presentation (5.3) gives possibility to choose $\{L_1(n)\}$ suitable for us and having simple expression (asymptotocally).

Below, some preliminary information on SVC of $\{p_n\}$ is given.

We assume that

$$\delta_n = 1 + n^{\alpha} L(n), n = 0, 1, 2, \cdots, \alpha \in [1, +\infty),$$
(5.4)

where α is the exponent of $\{\delta_n\}$'s regular variation, $\{L(n)\}$ is *explicit* SVC of $\{\delta_n\}$, and consider three possible cases of $\{L(n)\}$'s behavior.

The most simple is a case of RD of type (2.15). Indeed, due to (5.4),

$$\delta_n \approx n^{\alpha} L(n), n \to +\infty,$$

and because of (3.13) we have

$$p_n \approx \frac{1}{n^{\alpha} L(n)} \left(C p_0 + b D - b q'_n \right) \approx n^{-\alpha} \cdot \frac{C p_0 + b D}{L(n)}, n \to +\infty$$
(5.5)

with $-1 < b < +\infty$. Here we use

$$\lim_{n\to+\infty}q_n'=0,$$

and, due to Theorem 3,

$$Cp_0 + bD \neq 0.$$

Thus, in accordance with (5.3) and (5.5), in this case the SVC may be chosen in the form

$$L_1(n) = \frac{Cp_0 + bD}{L(n)}, n = 1, 2, \cdots$$
 (5.6)

5.2 SVC for $\{p_n\}$ of Type (2.14)

For RD of type (2.14) with A = 0, as we know from **Theorem 2**, $\rho = \alpha = 1$. Due to (2.14), we have

$$p_n \approx \frac{bD}{nL(n)} \prod_{m=1}^{n-1} \left(1 - \frac{b}{mL(m)} \right).$$

Here also **Theorem 3** is used ($Cp_0 = bD$).

It is clear that in this case the SVC may be taken in the form

$$L_1(n) = b \cdot D \cdot \prod_{m=1}^{n-1} \left(1 - \frac{b}{mL(m)} \right), 0 < b < 1.$$
(5.7)

It leads to a new conclusion.

Corollary 2. If $\{L(n)\}$ varies slowly and $\lim_{n+\infty} L(n) = +\infty$, then for any $b \in (0,1)$ $\{L_1(n)\}$ given by (5.7) varies slowly.

Let us show that it is possible to choose *another*, may be, more "pleasant" form of SVC.

Denote

$$\lambda_n = \frac{\varepsilon_n p_n}{b \cdot D \cdot \exp\left\{b \sum_{m=1}^{n-1} \frac{1}{\delta_m}\right\}} = \exp\left\{\sum_{m=1}^{n-1} \left[\ln\left(1 - \frac{b}{\delta_m}\right) + \frac{b}{\delta_m}\right]\right\}.$$
 (5.8)

For 0 < b < 1 the function

$$f(x) = \ln\left(1 - \frac{b}{x}\right) + \frac{b}{x}, x \in [1, +\infty),$$

is positive and increases as x increases. The positivity follows from the inequality $f(x) \ge \left(\frac{b}{x}\right)^2$ (it is the second term in $\ln(1-x)$'s expansion).

Further,

$$\frac{df(x)}{dx} = \frac{d}{dx} \left\{ \ln(x-b) - \ln x + \frac{b}{x} \right\} = \frac{1}{x-b} - \frac{1}{x} - \frac{b}{x^2} = \frac{b}{x} \left(\frac{1}{x-b} - \frac{1}{x} \right) > 0.$$

Next,

$$\sum_{m=1}^{n-1} \left[\ln\left(1 - \frac{b}{\delta_m}\right) + \frac{b}{\delta_m} \right] < \sum_{m=1}^{n-1} \left(\frac{b}{\delta_m}\right)^2 < b^2 \left(1 + \sum_{m \ge 2} \frac{1}{m(m-1)}\right) = 2b^2.$$

Therefore,

$$0 \leq \lim_{n \to +\infty} \sum_{m=1}^{n} \left[\ln \left(1 - \frac{b}{\delta_m} \right) + \frac{b}{\delta_m} \right] = \sum_{n \geq 1} \left[\ln \left(1 - \frac{b}{\delta_n} \right) + \frac{b}{\delta_n} \right] \stackrel{def}{=} P_b < +\infty.$$

It means that, due to (5.8),

$$\lambda_n = \exp\left\{P_b + \theta_n\right\}, n = 1, 2, \cdots,$$

where $\lim_{n\to+\infty} \theta_n = 0$. Therefore, by (5.8), $\{L_1(n)\}$ may be chosen as follows

$$L_1(n) = \frac{b \cdot D \cdot \exp\{P_b\} \exp\{b \cdot \sum_{m=1}^{n-1} \frac{1}{1+mL(m)}\}}{L(n)}, n = 1, 2, \cdots.$$
(5.9)

Note that in (5.9)

$$\sum_{m\geq 1}\frac{1}{1+mL(m)}=+\infty$$

For RD of type (2.14) with $0 < A < +\infty$, operating by the same manner, we may only claim in general that, as $\{L_1(n)\}$ may be chosen the sequence

$$L_1(n) = ACp_0 n^{bA} \cdot \prod_{m=1}^{n-1} \left(1 - \frac{b}{\delta_m}\right), n = 1, 2, \cdots,$$
 (5.10)

where $\prod_{m=1}^{0} = 1$.

With regard to (5.10) below we consider an important particular case.

5.3 The Linear $\{\delta_n\}$

Let us assume that $\{\delta_n\}$ is *linear*, *i.e.*

$$\delta_n = 1 + \frac{n}{A}, n = 0, 1, 2, \cdots, A \in \mathbb{R}^+.$$
 (5.11)

This case includes the well-known *family* of Waring Distributions (WD) with the following *traditional* form

$$\begin{cases} p_0 = \left(1 + p \cdot \sum_{n \ge 1} \frac{1}{q+n} \prod_{m=1}^{n-1} \frac{p+m}{q+m}\right)^{-1}, \\ p_k = \frac{p_0 p}{q+k} \cdot \prod_{m=1}^{k-1} \frac{p+m}{q+m}, \quad k = 1, 2, \cdots. \end{cases}$$
(5.12)

The family (5.12) is equivalent to the generated by (2.14) family with $\{\delta_n\}$ of form (5.7), $\varepsilon_n = \delta_n, C = (1 - b)A$.

There is a correspondence among parameters, which leads to the families' equivalence:

$$p = (1 - b)A, \quad q = A.$$

Due to (5.11),(5.2),and (2.14), in accordance with (5.10), we have

$$L_1(n) = ACp_0 \cdot n^{bA} \cdot \prod_{m=1}^{n-1} \left(1 - \frac{bA}{A+m} \right), n = 1, 2, \cdots.$$
 (5.13)

Now, we are going to show that there is some *positive* constant $P_{A,b}$ such that $\{L_1(n)\}$ may be chosen as $L_1(n) = P_{A,b}$.

Since

$$T_A \stackrel{def}{=} \sum_{n \ge 1} \frac{A}{n(A+n)} < +\infty,$$

therefore

$$\sum_{m=1}^{n} \frac{1}{A+m} = \sum_{m=1}^{n} \frac{1}{m} - T_A - \zeta_n, n = 1, 2, \cdots,$$
(5.14)

where $\lim_{n\to+\infty} \zeta_n = 0$. At the same time (see,[22]),

$$\sum_{m=1}^{n} \frac{1}{m} = \ln n + E + \chi_n, n = 1, 2, \cdots,$$
 (5.15)

where *E* is the *famous* Euler's constant and $\lim_{n\to+\infty} \chi_n = 0$. From (5.14)-(5.15) we obtain

$$n^{bA} = \exp\{bA\ln n\} = \exp\{bA \cdot \sum_{m=1}^{n} \frac{1}{m} - bA \cdot E - \chi_n \cdot bA\} =$$
$$= \exp\{bA \cdot \sum_{m=1}^{n-1} \frac{1}{A+m} - bA \cdot E + \frac{1}{A+n} + T_A bA + \delta_n - \chi_n \cdot bA\} =$$
$$= e^{C_A} \cdot \pi_n \cdot \exp\{b \cdot A \cdot \sum_{m=1}^{n-1} \frac{1}{A+m}\}, n = 1, 2, \cdots,$$
(5.16)

where C_A is some constant and $\lim_{n\to+\infty} \pi_n = 1$.

With the help of (5.16) we transform (5.13)

$$L_1(n) \approx r_A \cdot \exp\left\{\sum_{m=1}^{n-1} \left[\ln\left(1 - \frac{bA}{A+m}\right) + \frac{bA}{A+m}\right]\right\}, n \to +\infty,$$
(5.17)

where r_A is some positive constant.

Now, we may do the same with the expression at the right-hand-side in (5.17), as it was done to $\{\lambda_n\}$ and was shown that $\lambda_n \approx const, n \to +\infty$.

Thus, as $L_1(n)$ may be chosen *some* positive constant.

More precisely,

$$L(n) = ACp_0 \cdot \exp\left\{bA \cdot (T_A - E - M_A)\right\} n = 1, 2, \cdots,$$

where E is Eiler's constant, and

$$T_A = \sum_{n \ge 1} \frac{A}{m(m+A)}, M_A = \sum_{n \ge 1} \left\{ \ln \left(1 - \frac{bA}{m+A} \right) + \frac{bA}{m+A} \right\}.$$

6 Appendix

In [2] a *special* birth-death model, being a particular case of our model, for biomolecular applications has been presented. The *part* of stationary distributions of the *special* model, which are of interest, takes the form

$$\begin{cases} p_0 = \left(1 + (1-b) \cdot \sum_{n \ge 1} \frac{1}{\delta_n} \prod_{m=1}^{n-1} \left(1 - \frac{b}{\delta_m}\right)\right)^{-1}, \\ p_k = (1-b) p_0 \cdot \frac{1}{\delta_k} \cdot \prod_{m=1}^{k-1} \left(1 - \frac{b}{\delta_m}\right), \quad k = 1, 2, \cdots, \end{cases}$$
(6.1)

with

$$0 < b < 1, \quad \sum_{n \ge 1} \frac{1}{\delta_n} = +\infty,$$

where $\{\delta_n\}$ satisfies *all* conditions presented at the beginning of *Section 5*.

For regularly varying distributions (6.1) **Theorem 3** has a very simple form. *Corollary 3.*

$$p_0 = b. \tag{6.2}$$

Indeed, since (compare to (2.14)) in case (6.1) we have

$$C = 1 - b$$
 and $D = \sum_{n \ge 1} \frac{\varepsilon_n}{\delta_n} p_n = \sum_{n \ge 1} p_n = 1 - p_0$

therefore, from (3.14) we obtain

$$p_0 = \frac{bD}{C} = \frac{b}{1-b}(1-p_0),$$

which implies (6.2).

The class of distributions (6.1) includes a family of WD in particular case

$$\delta_n=1+\frac{n}{A}, n=0,1,2,\cdots,A\in R^+.$$

It is clear that (6.2) is true also for WD.

References

- [1] T. Saaty, *Elements of Queueing Theory*. Dower Publications, 1983.
- [2] E. Danielian and J. Astola, "On the steady-state of birth-death process with coefficients of moderate growth," *Facta Universitatis: Ser. Elec. & Energ*, vol. 17, no. 3, pp. 405–419, Dec. 2004. [Online]. Available: http://factaee.elfak.ni.ac.yu /fu2k43/Astola.pdf

- [3] J. U. Yule, "A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F. R.S. Philos." *Trans. Roy. Soc. London Ser. B*, vol. 213, pp. 21–87, 1924.
- [4] H. A. Simon, "On a class of skew distribution functions," *Biometrica*, pp. 425–440, 1955.
- [5] W. Glanzel and A. Schubert, "Predictive aspects of stochastic-model for citation proceses," *Inform. Process. Manager*, vol. 31, no. 1, pp. 69–80, 1995.
- [6] S. Bornholdt and H. Ebel, "World Web scaling exponent from Simon's 1955 model," *Phys. Rev. E*, vol. 64, no. 3-2, 2001.
- [7] V. Oluić-Vucović, "Simon's generating mechanism: consequences and their correspondence to empirical data," J. Am. Soc. Inform. Sci., vol. 49, no. 10, pp. 867–880, 1998.
- [8] V. A. Kuznetsov, "Family of skewed distributions associated with the gene expression and proteome evolution," *Signal Process.*, vol. 83, no. 4, pp. 889–910, 2003.
- [9] G. Apic, J. Gough, and S. A. Teichmann, "Domain combinations in archaeal eubacterial and eukaryotic proteomes," J. Mol. Biol., vol. 310, no. 2, pp. 311–325, 2001.
- [10] H. Jeong, B. Tombor, R. Albert, and Z. N. O. and A.-L.Barabasi, "The large-scale organization of metabolic networks," *Nature*, vol. 407, no. 6804, pp. 651–654, 2000.
- [11] A. Rzhetsky and S. M. Gomez, "Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome," *Bioinformatics*, vol. 17, no. 10, pp. 988–996, 2001.
- [12] A. Wagner and D. A. Fell, "The small world inside large metabolic networks," *Proc. Roy. Soc. London*, vol. B268, no. 1478, pp. 1803–1810, 2001.
- [13] Y. I. Wolf, G. Kalev, and E. V. Koonin, "Scale-free network in biology:new insights into the fundamentals of evolution?" *BioEssays*, vol. 24, no. 2, pp. 105–109, 2002.
- [14] S. Wuchty, "Scale-free behavior in protein domain networks," Mol. Biol. Evol., vol. 18, no. 9, pp. 1694–1702, 2001.
- [15] C. Bergman and M. Kreitman, "Analysis of conserved noncoding DNA in drosophila reveals similar constraints in integenic and intronic sequences," *Genome Res.*, vol. 11, no. 8, pp. 1335–1345, 2001.
- [16] J. O. Irwin, "The place of mathematics in the medical and biological statistics," J. Roy. Stat. Soc., vol. A, no. 126, pp. 1–45, 1963.
- [17] V. A. Kuznetsov, "Distribution associated with stochastic processes of gene expression in a single eukaryotic cell," *EURASIP J. Appl. Signal Process.*, no. 4, pp. 285– 296, 2001.
- [18] —, "Statistics of the number of transcripts and protein sequences encoded in the genome," in *Computational and Statistical Methods to Genomics*, W. Zhang and I. Shmulevich, Ed. Boston: Kluwer, 2002, pp. 125–171.
- [19] D. A. Jackson, A. Pombo, and F. Iborra, "The balance sheet for transcription an analysis of nuclear RNA metabolizm in mammalian cells," *FASEB J.*, vol. 14, pp. 242–254, 2000.

131

- [20] E. Seneta, *Regularly Varying Functions. Lecture Notes in Mathematics.* Berlin: Springer-Verlag, 1976.
- [21] W. Feller, *An Introduction to Probability Theory and its Applications*, 2nd ed. New York: John Wiley, 1971, vol. 2.
- [22] G. M. Fikhtengoltz, *Course on Differential and Integral Calculus*. Moscow: Nauka Press, 1969, vol. 2, (in Russian).