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On Regularly Varying Distributions Generated by
Birth-Death Process

Jaakko Astola and Eduard Danielian

Abstract: Skewed distributions generated by birth-death process with different par-
ticular forms of intensivities’ moderate growth are used inbiomolecular systems and
various non-mathematical fields. Based on datasets of biomolecular systems such dis-
tributions have to exhibit the power law like behavior at infinity, i.e. regular variation.

In the present paper for the standard birth-death process with most general than
before assumptions on moderate growth of intensivities thefollowing problems are
solved.

1. The stationary distribution varies regularly if the sequence of intensivities varies
regularly.

2. The slowly varying component and the exponent of regular variation of stationary
distribution are found.

Keywords: Standard birth-death process, moderate growth, skewed distribution, reg-
ular variation, biomolecular systems.

1 Introduction

1.1 Moderate growth

The standard birth-death process and it’s stationary distributions arewell-known
(see, for instance [1]). In [2] for coefficients of the process themoderategrowth
assumptions which include earlier known ones have been made. Then, from the
class ofall stationary distributions a corresponding subclass named a class ofDis-
tributionswith Moderate Skewness(DMS) has been extracted.
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Let C ∈ R+ = (0,+∞) bea parameter,{εn} and{δn} be sequences of positive
numbers with properties:{δn} increases,

lim
n→+∞

δn = +∞, lim
n→+∞

δn+1

δn
= 1, lim

n→+∞

εn

δn
= 1. (1.1)

DMS are of types{p±n }, {pn}, where:







p±0 =
(

1+C ·∑n≥1
θ n

εn
∏n−1

m=1

(

1± b
δm

))−1
,

p±k = p±0 ·C · θ k

εk
·∏k−1

m=1

(

1± b
δm

)

, k = 1,2, · · · .
(1.2)

Here:

0 < θ < 1,0≤ b < +∞ for {p+
n };

0 < θ ≤ 1,0 < b < δ1 for {p−n }.

Next,{pn} has the form of{p+
n } with θ = 1,0≤ b < +∞ and∑n≥1

1
δn

< +∞.

The described distributions have askewto the right.

The mechanism of biomolecular large-scale systems dynamic can be explained
with the help of birth-death models. Their stationary distributions generate skewed
distributions. The number of skewed distributions being used in genetic systems
and in other non-mathematical fields (distributions of words in the text, city sizes
in country, citation of an author by other author, etc.), and generated by various
birth-death processes has been increased over time.We have to indicate papers of
Yule [3] (1924) and Simon [4] (1955), and some recent ones (see,forinstance,
Granzel and Shubert [5],Bornholdt and Ebel [6], Oluić-Vicović [7], Kuznetsov [8],
etc.). All distributions suggested in [3]-[8] havemoderategrowth and askewto the
right.

1.2 Regular variation

Based on datasets for various large-scale biomolecular systems severalauthors de-
clared that the frequency distribution{pn} of events in such systems exhibitspower
law distribution

pn = c(ρ) ·n−ρ ,1 < ρ < +∞,n = 1,2, · · · , (1.3)

where

c(ρ) =

(

∑
n≥1

n−ρ

)−1

(see, [9]− [14]).
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The power law distribution is used for estimation of the connectivity number of
metabolic networks [15], of the rates of protein synthesis in protein sets of prokary-
otic organisms [16], of the number of expressed genes in eukaryotic cells[17]-[18],
of DNA sequencing structures [18]etc.

But this distributionnot alwaysmay be used. In log-log plot a power law
asymptotically is represented by a straight line. But (see, [18]) the log-logplot
of the most distributions, even in [9]-[14],systematicallydeviated from the straight
line.Therefore,newstatistical frequency distributions have been proposed (see, [3]-
[4],[16],[19]).Some of them are particular cases of Pareto distribution

pn = c(ρ,b) · (n+b)−ρ ,−1 < b < +∞,1 < ρ < +∞,n = 1,2, · · · , (1.4)

where

c(ρ,b) =

(

∑
n≥1

(n+b)−ρ

)−1

( see, [19]),

which shows power law like behavior for large values ofn.

Based on datasets the following conclusion have been made: the frequency
distribution{pn} exhibits power laws-like behavior for large values ofn (see, [9]-
[12],[14]-[15]).

Below, we interpret this empirical fact as aregular variationof frequency dis-
tribution.

1.3 The goals

1. To extract from the class of DMS a subclass of distributions which may be-
come regularly varying under some additional assumptions on{δn}.

2. To find necessary and sufficient conditions on{δn} for the regular variation
of the distributions from extracted subclass.

3. To get the slowly varying component and the exponent of regular variation
of distributions from the extracted subclass.

2 Narrowing the Class of DMS

2.1 Definitions

Let us introduce two definitions

Definition 1.(see, [20]). The measurable onR+ functionR(t) > 0 varies reg-
ularly (at infinity) with exponentρ ∈ R1 = (−∞,+∞) if for any x ∈ R+ the limit
exists limt→+∞(R(xt)/R(t)) = xρ .
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If ρ = 0, then we say thatL(t) = R(t), t ∈ R+, varies slowly.

Thus, a functionR> 0, measurable onR+, varies regularly with exponentρ iff
R(t) = tρ ·L(t), t ∈ R+.

The identity

psn

pn
=

1
sρ , −1 < ρ < +∞,s= 2,3, · · · , n = 1,2, · · · (2.1)

is acharacteristicproperty of power law (1.3). Therefore, the limit relation

lim
n→+∞

psn

pn
=

1
sρ , −1 < ρ < +∞,s= 2,3, · · · , (2.2)

represents in mathematical sense the ”power law like behavior” of frequency dis-
tribution{pn} for large values ofn,which is the definition of regular variation.

For the regular variation of distributions (1.2) additional assumptions on{εn}
and{δn} are needed. Indeed,puttingb = 0 andθ = 1 in (1.2) we obtain

psn

pn
=

εn

εsn
, s= 2,3, · · · , n = 1,2, · · · . (2.3)

Thus, the assumption of regular variation of{εn} is necessary.

Definition 2. Functionsf > 0,g > 0 defined onR+ areasymptotically equiva-
lent (at infinity) if lim t→+∞

f (t)
g(t) = 1. Then, we writef (t) ≈ g(t), t → +∞.

Due to (1.1) sequences{εn} and{δn} are asymptotically equivalent. Therefore,
they vary regularly or not simultaneously and conditions may be put only on{δn} .

2.2 The Result

Denote
Ā = lim

n→+∞

n
δn

. (2.4)

Theorem 1 Distributions{p±n } with 0 < θ < 1, and {pn} with Ā = +∞ cannot
vary regularly.

In proof ofTheorem 1we use

Lemma 1 Let us denote for s= 2,3, · · ·

B̄(s) = lim
n→+∞

sn−1

∑
m=n

1
δm

. (2.5)

Then:Ā < +∞ impliesB̄(s) < +∞ for all s = 2,3, · · · ;

B̄(s) < +∞ for some s= 2,3, · · · impliesĀ < +∞.
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Proof. Since 0< B̄(2) ≤ B̄(3) ≤ ·· · , therefore, ifB̄(s) < +∞ for some s, then
B̄(l) < +∞, l = 2,3, · · · ,s.

Let us assume that̄A < +∞. Fors= 2,3, · · · andn = 1,2, · · · we have

(s−1)n
δsn

<
sn−1

∑
m=n

1
δm

<
(s−1)n

δn
(2.6)

because{δm} increases.From the second inequality (2.6) we obtainB̄(s) < +∞ for
all s = 2,3, · · · .

Reverse, letB̄(2) < +∞. From the first inequality (2.6), we get(n/δ2n) <

∑2n−1
m=n δ−1

m , or lettingn→ +∞

lim
n→+∞

2n
δ2n

< 2B̄(2) < +∞. (2.7)

Since{δn} increases and limn→+∞ δ−1
n = 0, so, from (2.7) we obtain

lim
n→+∞

2n+1
δ2n+1

= 2 lim
n→+∞

n
δ2n+1

≤ 2 lim
n→+∞

n
δ2n

< +∞,

which together with (2.7) lead tōA < +∞.

If B̄(s) < +∞ for some s, thenB̄(2) < +∞, and we come to the previous case.

2.3 The Proof of Theorem 1

1. For integerss> 1,n≥ 1 and for 0< θ < 1 we have

p−sn

p−n
= θ (s−1)n εn

εsn

sn−1

∏
m=n

(

1−
b

δm

)

,0 < b < δ1.

Since

limn→+∞ θ (s−1)n = 0,
(

1− b
δm

)

< 1 for m = n,n+ 1, · · · , εn
εsn

=
(

εn
δn

)

·
(

δsn
εsn

)

·
(

δn
δsn

)

(the last equality implies together with (1.1) that forε > 0 starting from some
indexn0 we have

εn

εsn
< 1+ ε,n = n0,n0 +1, · · ·), (2.8)

therefore,

lim
n→+∞

p−sn

p−n
= 0,s= 2,3· · · . (2.9)
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2. For integerss> 1,n≥ 1 and for 0< θ < 1 we have

p+
sn

p+
n

= θ (s−1)n εn

εsn

sn−1

∏
m=n

(

1+
b

δm

)

, 0 < b < +∞.

Forε > 0 satisfying conditionθ · (1+ε) < 1 starting from some indexn0 (2.8)
holds andb

δm
< ε for m= n0,n0+1, · · · simultaneously. Therefore, forn= n0,n0+

1, · · · ands= 2,3, · · · we have

0≤
p+

sn

p+
n

< (θ · (1+ ε))(s−1)n · (1+ ε) → 0 as n→ +∞.

3. Let θ = 1 andĀ = +∞ (for {p−n } and{pn}). Due toLemma 1, for s =
2,3, · · ·

+∞ = limn→+∞

sn−1

∑
m=n

1
δm

= B(s) < ∑
n≥1

1
δn

, (2.10)

which excludes the case of{pn} from further consideration. So, we deal with
{p−n } .

For integerss≥ 2,n≥ n0 we have

0 <
p−sn

p−n
=

εn

εsn

sn−1

∏
m=n

(

1−
b

δm

)

< (1+ ε)exp

{

sn−1

∑
m=n

ln

(

1−
b

δm

)

}

,0 < b < δ1,

(2.11)
where the inequality (2.8) was used. Since, byLemma 1, B̄(2) = ∞, therefore there
is a sequence{nk} of integers, 0< n1 < n2 < · · · , such that

lim
k→+∞

2nk−1

∑
m=nk

1
δm

= +∞. (2.12)

By (2.11)-(2.12),

0≤ lim
k→+∞

p−2nk

p−nk

≤ (1+ ε) lim
k→+∞

exp

{

−b·
2nk−1

∑
m=nk

1
δm

}

= 0.

2.4 Narrowing the Class of DMS

Let us exclude DMS mentioned inTheorem 1. The remainder is asubclassof
DMS,which is described as follows.
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Let C ∈ R+ be aparameter, {εn} and{δn} be sequences of positive numbers
such that











{δn} increases, limn→+∞ δn = +∞, limn→+∞
δn+1
δn

= 1,

limn→+∞
εn
δn

= 1,A
de f
= limn→+∞

n
δn

< +∞.

(2.13)

The remaining DMS{pn} = {pn(C,b)} take the forms







p0 =
(

1+C ·∑n≥1
1
εn

∏n−1
m=1

(

1− b
δm

))−1
,

pk = Cp0
εk

·∏k−1
m=1

(

1− b
δm

)

, k = 1,2, · · · ,
0 < b < δ1 (2.14)

with ∑n≥1
1
δn

= +∞.







p0 =
(

1+C ·∑n≥1
1
εn

∏n−1
m=1

(

1+ b
δm

))−1
,−1 < b < +∞,

pk = Cp0
εk

·∏k−1
m=1

(

1+ b
δm

)

, k = 1,2, · · · ,∑n≥1
1
δn

< +∞.
(2.15)

Putting without loss of generalityδ1 = 1 we may include the part of DMS of
form (2.15) with−1 < b < +∞ in (2.14).















p0 =
(

1+C ·∑n≥1
1
εn

∏n−1
m=1

(

1− |b|
δm

))−1
,

pk = Cp0
εk

·∏k−1
m=1

(

1− |b|
δm

)

, k = 1,2, · · · , .

0 < |b| < 1 (2.14′)

DMS described above aresuspectedto vary regularly forsome{δn}.

3 Regularly Varying DMS. 1

3.1 The Result

Let C ∈ R+ be aparameter, {εn} and{δn} be sequences of positive numbers sat-
isfying (2.13). Anycollection(C,{εn} ,{δn}) generates aone-parametricfamily
(with parameterb) of DMS of type (2.14) ifI = +∞ and of type (2.15) ifI < +∞,
where

I = ∑
n≥1

1
δn

.
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Ourgoalconsists in discovering conditions on{δn} which lead to regular variation
of {pn}.

In the presentSectionwe solve the problem withadditional assumption: the
limit exists

0≤ lim
n→+∞

n
δn

de f
= A < +∞. (3.1)

The result is as follows.

Theorem 2 1. {pn} varies regularly iff{δn} varies regularly.
2.If (−ρ) andα are exponents of{pn}’s and{δn}’s regular variation, respectively,
then

ρ = α +(|b|) ·A,ρ ∈ [1,+∞),α ∈ [1,+∞). (3.2)

Note that the relationα ∈ [1,+∞) (see,(3.2)) is aconsequenceof (3.1).

Indeed, let us assume the opposite,i.e. α ∈ [0,1). Then,δn = 1+nα ·L(n),n=
0,1,2, · · · and, by known property on regular variation [20], forε ∈ (0,1−α) start-
ing from some index

1+nαL(n) < nα+ε .

Therefore,A > limn→+∞
n

nα+ε = +∞, which contradicts (3.1).

Remark 1.For regularly varyingδnwith exponentα the relationα ∈ [1,+∞)
holds even if (3.1) doesn’t take place and only (2.13) holds.

The proof is similar to above given.

Theorem 2 is based on followingauxiliary

Lemma 2 If (3.1)holds, then for s= 2,3, · · · the limit exits

B(s)
de f
= lim

n→+∞

sn−1

∑
m=n

1
δm

= A· lns. (3.3)

Proof. Let A = 0. By (3.1),

1
δn

= o

(

1
n

)

,n→ +∞,

or for s= 2,3, · · ·
sn−1

∑
m=n

1
δm

= o

(

sn−1

∑
m=n

1
m

)

,n→ +∞.

Since fors= 2,3, · · ·
sn−1

∑
m=n

1
m

= lns, (3.4)
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therefore,fors= 2,3, · · ·

sn−1

∑
m=n

1
δm

= o(1) ,n→ +∞.

Let 0< A< +∞. Forε ∈ (0,1) starting from some indexn≥ 1 the inequalities hold

A· (1− ε)

m
<

1
δm

<
A· (1+ ε)

m
,m= n,n+1, · · · . (3.5)

By (3.5) we obtain (3.3).

Theorem 2has afinal form if A = 0.ThenA = A(= 0).

Corollary 1. Let A = 0. Then:

1’. {pn} varies regularly iff{δn} varies regularly.

2’. ρ = α ∈ [1,+∞).

3.2 Proof of Theorem 2

Note that fors= 2,3, · · ·

lim
n→+∞

εn

εsn
= lim

n→+∞

δn

δsn
if limits exist. (3.6)

Indeed,

lim
n→+∞

εn

εsn
= lim

n→+∞

εn

δn
lim

n→+∞

δsn

εsn
lim

n→+∞

δn

δsn
= lim

n→+∞

δn

δsn
,s= 2,3, · · · ,

where (2.13) is used.

For{pn} of type (2.14) ands= 2,3, · · · , due toLemma 2and (3.6),

lim
n→+∞

psn

pn
= lim

n→+∞

εn

εsn
exp

{

−b· lim
n→+∞

sn−1

∑
m=n

1
δm

}

= lim
n→+∞

δn

δsn
·exp{−b·A· lns} =

=
1

sbA · lim
n→+∞

δn

δsn
,0 < b < 1, (3.7)

if limits exist. From (3.7) we conclude that{pn} varies regularly iff{δn} varies
regularly andρ = α +b·A.

For {pn} of type (2.15) ands = 2,3, · · · , similarly to the previous case, we
obtain

lim
n→+∞

psn

pn
=

1
s−bA · lim

n→+∞

δn

δsn
,−1 < b < +∞, (3.8)



118 J. Astola and E. Danielian:

if limits exist. SinceI < +∞ in this case, so,A= 0, and in (3.8) we may replace the
multiplier 1

s−bA at the right-hand-side (3.8) by1
s|b|A

. Now, as in (3.7), formula (3.8)
provesTheorem 2 in this case.

3.3 On one regularity

Let us introduce anewapproach to the problem. We want in future to weaken the
assumptions inTheorem 2, based on thisapproach.

Forn = 1,2, · · · denote

q
′

n = ∑
k≥n

εk

δk
pk, D = q

′

1, qn = ∑
k≥n

pk. (3.9)

Let us show that
0 < D < +∞. (3.10)

Indeed, forε ∈ (0,1) starting from some indexn≥ 1 the inequalities hold

1− ε <
εk

δk
< 1+ ε, k = n,n+1, · · · .

Therefore, form= n,n+1, · · ·

(1− ε)qm < q
′

m < (1+ ε)qm (3.11)

which, due to∑k≥0 pk = 1, proves (3.10).

Theapproachconsists in the existence of reverse to (2.14)-(2.15) equalities.

From (2.14) we have

pn+1

pn
=

εn

εn+1

(

1−
b
δn

)

,n = 1,2, · · · , and
p1

p0
= C,

where without loss of generality we putε0 = 1, or, if we define

an+1 = εn+1 · pn+1 and a1 = p1,

then:

an+1 = an−b
εn

δn
pn = · · · = a1−b·

n

∑
k=1

εk

δk
pk = Cp0−b·

n

∑
k=1

εk

δk
pk.

Therefore, forn = 2,3, · · · we have

εn =
Cp0−b·∑n

k=1
εk
δk

pk

pn
=

Cp0−b·D+b·q
′

n

pn
, 0 < b < 1. (3.12)
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Similarly, from (2.15) forn = 1,2, · · · we obtain

an+1 = an +b
εn

δn
pn = · · · = a1 +b·

n

∑
k=1

εk

δk
pk = Cp0 +b·

n

∑
k=1

εk

δk
pk.

Therefore, forn = 2,3, · · · the equality holds

εn =
Cp0 +b·∑n

k=1
εk
δk

pk

pn
=

Cp0 +b·D−b·q
′

n

pn
,−1 < b < +∞. (3.13)

The formulas (3.12)-(3.13) representreverseequalities.

Let us exclude the caseb = 0 in (2.15). The following result isunexpected
because in particular caseεn = δn,n= 1,2, · · · , for DMS it gives simple expression
for p0:

p0 =
b
C

(1− p0), or p0 =
b

b+C
.

Theorem 3 (a) For DMS of type (2.14)

p0 =
bD
C

,0 < b < 1. (3.14)

(b) For DMS of type (2.15) with b6= 0

∏
n≥1

(

1+
b
δn

)

de f
= f ∈

{

(0,1) if −1 < b < 0,
(1,+∞) if 0 < b < +∞,

and

p0 =
bD

C · ( f −1)
,−1 < b < +∞,b 6= 0. (3.15)

Proof.(a) Forming the ratio(pn/pn), wherepn is taken from (3.12) and (2.14),
respectively, forn = 1,2, · · · we obtain

1 =
Cp0−b·∑n−1

k=1
εk
δk

pk

Cp0 ·∏n−1
m=1

(

1− b
δm

) ,0 < b < 1. (3.16)

Let us show that

lim
n→+∞

n

∏
m=1

(

1−
b

δm

)

= ∏
n≥1

(

1−
b
δn

)

= f = 0. (3.17)
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Indeed, forn = 1,2, · · · we proceed

0 <
n

∏
m=1

(

1−
b

δm

)

= exp

{

−
n

∑
m=1

| ln

(

1−
b

δm

)

|

}

<

< exp

{

−
n

∑
m=1

b
δm

+
1
2

n

∑
m=1

(

b
δm

)2
}

< exp

{

b2

2 ∑
n≥1

1
δ 2

n

}

·exp

{

−
n

∑
m=1

b
δm

}

.

(3.18)

Since

∑
n≥1

1
δ 2

n
< ∑

n≥2

1
n(n−1)

+1 = 1+ ∑
n≥1

(

1
n
−

1
n+1

)

= 2,

andI = +∞, therefore, lettingn→ +∞ in (3.18) we prove (3.17).

Letting n → +∞ in (3.16) we conclude: since the limit of denominator at the
right-hand-side of (3.16) asn→ +∞ equals to zero and the left-hand-side of (3.16)
is a finite positive number, therefore, necessarily numerator in the right-hand-side
of (3.16) tends to zero asn→ +∞.Thus,

Cp0

b
= lim

n→+∞

n−1

∑
k=1

εk

δk
pk = D,which coincides with (3.14).

(b) From (3.13) and (2.15) forn = 1,2, · · · and b 6= 0 we get the following
equality

Cp0 ·
n

∏
m=1

(

1+
b

δm

)

= Cp0 +b·
n

∑
k=1

εk

δk
pk,−1 < b < +∞,

or tendingn→ +∞

p0 · ( f −1) = b·
D
C

{

> 0 if 0 < b < +∞,
< 0 if −1 < b < 0.

(3.19)

Since

0 < p < 1,0 < |
bD
C

| < +∞,

so, from (3.19) we come to statement (b).

4 Regularly Varying DMS. 2

In the presentSectionby using the new approachTheorem 2 is improved. The
improvement, obviously, has to be made for the case

0 < A
de f
= lim

n→+∞

n
δn

< +∞. (4.1)
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4.1 The Example

First of all, we must be convinced thatthere isa sequence{δn} satisfying conditions
(2.13) (and (4.1)) such that

limn→+∞
n
δn

< limn→+∞
n
δn

(= A) < +∞. (4.2)

Let us construct the requiredexample.

Let us draw a ”broken” line whose pieces of straight lines are of two types:
with slope 1− ε and with slope 1+ ε, whereε ∈ (0,1) is somefixednumber. The
pieces of two types alternate each other. The curve begins from the point(0,1) on
the plane.

Denote by

(t0,y0) = (0,1),(t1,y1),(t2,y2), · · · ,(tn,yn), · · ·

the successive points of the curve’s non-differentiability on the(t,y) plane.

Thus,the pieces of this curvey = δ (t) (broken line) in intervals

(t2n, t2n+1),n = 0,1,2, · · · ,

have a slope 1− ε, and in intervals

(t2n−1, t2n),n = 1,2, · · · ,

have a slope 1+ ε.

We choose numbers{tk} satisfying conditions

y2n−1−1
t

= 1− ε,
y2n−1

t
= 1+ ε,n = 1,2, · · · .

It is clear that the functiony = δ (t) defined onR+ is positive,δ (0) = 1,δ (t) in-
creases ast increases,

limt→+∞
t

δ (t)
=

1
1+ ε

, limt→+∞
1

δ (t)
=

1
1− ε

and

lim
t→+∞

δ (t +1)

δ (t)
= 1.

The same properties has the sequence{δn} of positive numbers, where we put

δn = δ (n),n = 0,1,2, · · · .

Note that in our construction necessarilytn+1− tn → +∞ asn→ +∞.

Thus, we built a sequence{δn} satisfying conditions (2.13) and (4.2).
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4.2 The Result

The improvement ofTheorem 2, uses theforwardandreverseequalities (2.14) and
(3.12), respectively. Let us makecomments.The remaining case inTheorem 2,
which requires an improvement, is related with DMS of type (2.14) withA∈ R+.
For this case thereverseequalities take the form (3.12).

The result is as follows.

Theorem 4 Let us consider DMS of type(2.14)with A∈ R+. Then:

1. {pn} varies regularly iff the limit(3.1)exists;

2. The exponent(−ρ) of {pn} equals to (−(1+b·A)).

Proof. First of all we have to note that the existence of limit (3.1) withA∈ R+

implies the regular variation of sequence{δn} with exponent 1.

Indeed, fors= 2,3, · · · from (3.1) we obtain

lim
n→+∞

δsn

δn
= lim

n→+∞

δsn

sn
· lim

n→+∞

n
δn

·s=
A
A

s= s.

Fors= 2,3, · · · andn = 1,2, · · · from (3.12) we obtain (see, notations (3.9))

psn

pn
=

εn

εsn

Cp0−b·D+b·q
′

sn

Cp0−b·D+b·q′

n
=

εn

εsn

q
′

sn

q′

n
, (4.3)

where the equality (3.14) is used.

¿From (3.11) it follows that the sequences{qn} and{q
′

n} are asymptotically
equivalent. Since, at the same time, the sequences{εn} and{δn} also are asymp-
totically equivalent, therefore, (4.3) may be written in the form of asymptotical
equivalence

psn

pn
≈

δn

δsn

qsn

qn
,n→ +∞,s= 2,3, · · · . (4.4)

Theforwardequalities (2.14) fors= 2,3, · · · andn = 1,2, · · · give

psn

pn
=

εn

εsn
exp

{

sn−1

∑
m=n

ln

(

1−
b

δm

)

}

,

which, due to asymptotical equivalence of sequences{εn} and{δn}, in accordance
with (3.7), implies

psn

pn
≈

δn

δsn
exp

{

−b·
sn−1

∑
m=n

1
δm

}

,n→ +∞,s= 2,3, · · · . (4.5)
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The preparatory work is over.

Let us proveTheorem 4.

1. The necessity.Let {pn} varies regularly and, as we already know, it’s ex-
ponent(−ρ) satisfies conditionρ ∈ [1,+∞). By Theorem 1 (a), p.281 [21], the
sequence{qn} varies regularly with exponent(−ρ +1). Therefore, by (4.4),

s−ρ = lim
n→+∞

psn

pn
= lim

n→+∞

δn

δsn
· lim

n→+∞

qsn

qn
= s−(ρ−1) · lim

n→+∞

δn

δsn
,

or

lim
n→+∞

δsn

δn
= s,s= 2,3, · · · ,

which means that{δn} varies regularly with exponentα = 1.

Next, from (4.5) fors= 2,3, · · · we obtain

lim
n→+∞

exp

{

−b·
sn−1

∑
m=n

1
δm

}

= lim
t→+∞

psn

pn
· lim
t→+∞

δsn

δn
= s−(ρ−1),

or for s= 2,3, · · · the limit (3.3) exists

B(s) = lim
n→+∞

sn−1

∑
m=n

1
δm

=
ρ −1

b
lns.

Hereρ > 1, otherwise, byLemma 1, if ρ = 1, thenA = 0, which contradicts the
assumptionA∈ R+ of Theorem 4

Denote

A =
ρ −1

b
, so, B(s) = A· lns.

Further, the following inequalities fors= 2,3, · · · andn = 1,2, · · · hold

δsn

δn

(s+1)n−1

∑
m=sn

1
δm

<
n
δn

<
δ(s+1)n

δn

(s+1)n−1

∑
m=sn

1
δm

. (4.6)

For ε ∈ (0,1) starting from some indexk≥ 1 the inequalities holds:

(1−ε)Aln
s+1

s
= (1−ε)(B(s+1)−B(s))<

(s+1)n−1

∑
m=sn

1
δm

< (1+ε)(B(s+1)−B(s))=

= (1+ ε)Aln
s+1

s
,s= 2,3, · · · ,n = k,k+1, · · · . Here k = k(s).
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Then, for a fixeds= 2,3, · · · and givenε the inequalities (4.6) may be rewritten
in the form

(1− ε)Aln
s+1

s
·

δsn

δn
<

n
δn

< (1+ ε)Aln
s+1

s
·

δ(s+1)n

δn
,n = k,k+1, · · · .

In the last inequalities lettingn→ +∞ we get the following inequalities

(1−ε)A· ln

(

1+
1
s

)s

≤ limn→+∞
n
δn

≤ limn→+∞
n
δn

≤ (1+ε)A· ln

(

1+
1
s

)s

,s= 2,3, · · · .

Lettings→ +∞ and after thatε ↓ 0 we obtain thenecessityof statement 1.

2. The sufficiency.Since, the existence of limit (3.1) implies the regular varia-
tion of {δn}, therefore, we are in conditions of statement 1. ofTheorem 2, which
implies the{pn}’s regular variation. Now, statement 2. ofTheorem 4follows from
statement 2. ofTheorem 2.

Theorem 4 is proved.

5 On the Slowly Varying Component

5.1 The Regular Class

In accordance withTheorem 2andTheorem 4in order to describe regularly vary-
ing DMS we have to change conditions on{δn}, i.e. conditions (2.13). Namely,
now we assume that:δ0 = 1,{δn} increases and varies regularly.

The limit exists
0≤ lim

n→+∞

n
δn

= A < +∞. (5.1)

The condition for positive sequence{εn} is conserved

lim
n→+∞

εn

δn
= 1. (5.2)

Then, DMS of types (2.14)-(2.15) together formsomeclass of regularly varying
distributions which we call aRegular Class, and DMS from this class we callReg-
ular Distributions(RD).

RD are presented in the form

pn ≈ n−ρL1(n),n→ +∞,ρ ∈ [1,+∞), (5.3)

where(−ρ) is the exponent of{pn}’s regular variation, and{L1(n)} is someslowly
varyingsequence, which we call for{pn} aslowly varying component(SVC).
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Knowledge of{L1(n)} is needed for applications to the large-scale biomolecu-
lar systems.

The form of presentation (5.3) gives possibility to choose{L1(n)} suitablefor
us and havingsimpleexpression (asymptotocally).

Below, some preliminary information on SVC of{pn} is given.

We assume that

δn = 1+nαL(n),n = 0,1,2, · · · ,α ∈ [1,+∞), (5.4)

whereα is the exponent of{δn}’s regular variation,{L(n)} is explicit SVC of
{δn}, and consider three possible cases of{L(n)}’s behavior.

The most simple is a case of RD of type (2.15).Indeed, due to (5.4),

δn ≈ nαL(n),n→ +∞,

and because of (3.13) we have

pn ≈
1

nαL(n)

(

Cp0 +bD−bq′n
)

≈ n−α ·
Cp0 +bD

L(n)
,n→ +∞ (5.5)

with −1 < b < +∞. Here we use

lim
n→+∞

q′n = 0,

and, due toTheorem 3,
Cp0 +bD 6= 0.

Thus, in accordance with (5.3) and (5.5), in this case the SVC may be chosen in the
form

L1(n) =
Cp0 +bD

L(n)
,n = 1,2, · · · . (5.6)

5.2 SVC for {pn} of Type (2.14)

For RD of type (2.14) withA = 0, as we know fromTheorem 2, ρ = α = 1. Due
to (2.14), we have

pn ≈
bD

nL(n)

n−1

∏
m=1

(

1−
b

mL(m)

)

.

Here alsoTheorem 3 is used (Cp0 = bD).

It is clear that in this case the SVC may be taken in the form

L1(n) = b·D ·
n−1

∏
m=1

(

1−
b

mL(m)

)

,0 < b < 1. (5.7)
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It leads toa newconclusion.

Corollary 2. If {L(n)} varies slowly and limn+∞ L(n) = +∞, then for anyb∈
(0,1) {L1(n)} given by (5.7) varies slowly.

Let us show that it is possible to chooseanother, may be, more ”pleasant” form
of SVC.

Denote

λn =
εnpn

b·D ·exp
{

b∑n−1
m=1

1
δm

} = exp

{

n−1

∑
m=1

[

ln

(

1−
b

δm

)

+
b

δm

]

}

. (5.8)

For 0< b < 1 the function

f (x) = ln

(

1−
b
x

)

+
b
x
,x∈ [1,+∞),

is positive and increases asx increases. The positivity follows from the inequality

f (x) ≥
(

b
x

)2
(it is the second term in ln(1−x)’s expansion).

Further,

d f(x)
dx

=
d
dx

{

ln(x−b)− lnx+
b
x

}

=
1

x−b
−

1
x
−

b
x2 =

b
x

(

1
x−b

−
1
x

)

> 0.

Next,

n−1

∑
m=1

[

ln

(

1−
b

δm

)

+
b

δm

]

<
n−1

∑
m=1

(

b
δm

)2

< b2

(

1+ ∑
m≥2

1
m(m−1)

)

= 2b2.

Therefore,

0≤ lim
n→+∞

n

∑
m=1

[

ln

(

1−
b

δm

)

+
b

δm

]

= ∑
n≥1

[

ln

(

1−
b
δn

)

+
b
δn

]

de f
= Pb < +∞.

It means that,due to (5.8),

λn = exp{Pb +θn} ,n = 1,2, · · · ,

where limn→+∞ θn = 0. Therefore, by (5.8),{L1(n)} may be chosen as follows

L1(n) =
b·D ·exp{Pb}exp

{

b·∑n−1
m=1

1
1+mL(m)

}

L(n)
,n = 1,2, · · · . (5.9)
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Note that in (5.9)

∑
m≥1

1
1+mL(m)

= +∞.

For RD of type (2.14) with 0< A < +∞, operating by the same manner, we may
only claim in general that, as{L1(n)} may be chosen the sequence

L1(n) = ACp0nbA ·
n−1

∏
m=1

(

1−
b

δm

)

,n = 1,2, · · · , (5.10)

where∏0
m=1 = 1.

With regard to (5.10) below we consider an important particular case.

5.3 The Linear {δn}

Let us assume that{δn} is linear, i.e.

δn = 1+
n
A

,n = 0,1,2, · · · ,A∈ R+. (5.11)

This case includes the well-knownfamily of Waring Distributions (WD) with the
following traditional form











p0 =
(

1+ p·∑n≥1
1

q+n ∏n−1
m=1

p+m
q+m

)−1
,

pk = p0p
q+k ·∏

k−1
m=1

p+m
q+m, k = 1,2, · · · .

0 < p < q < +∞. (5.12)

The family (5.12) is equivalent to the generated by (2.14) family with{δn} of form
(5.7),εn = δn,C = (1−b)A.

There is a correspondence among parameters, which leads to the families’
equivalence:

p = (1−b)A, q = A.

Due to (5.11),(5.2),and (2.14), in accordance with (5.10), we have

L1(n) = ACp0 ·n
bA ·

n−1

∏
m=1

(

1−
bA

A+m

)

,n = 1,2, · · · . (5.13)

Now, we are going to show that there is somepositiveconstantPA,b such that
{L1(n)} may be chosen asL1(n) = PA,b.

Since

TA
de f
= ∑

n≥1

A
n(A+n)

< +∞,
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therefore
n

∑
m=1

1
A+m

=
n

∑
m=1

1
m
−TA−ζn,n = 1,2, · · · , (5.14)

where limn→+∞ ζn = 0. At the same time (see,[22]),

n

∑
m=1

1
m

= lnn+E + χn,n = 1,2, · · · , (5.15)

whereE is thefamousEuler’s constant and limn→+∞ χn = 0. From (5.14)-(5.15) we
obtain

nbA = exp{bAlnn} = exp

{

bA·
n

∑
m=1

1
m
−bA·E−χn ·bA

}

=

= exp

{

bA·
n−1

∑
m=1

1
A+m

−bA·E +
1

A+n
+TAbA+δn−χn ·bA

}

=

= eCA ·πn ·exp

{

b·A·
n−1

∑
m=1

1
A+m

}

,n = 1,2, · · · , (5.16)

whereCA is some constant and limn→+∞ πn = 1.

With the help of (5.16)we transform (5.13)

L1(n) ≈ rA ·exp

{

n−1

∑
m=1

[

ln

(

1−
bA

A+m

)

+
bA

A+m

]

}

,n→ +∞, (5.17)

whererA is some positive constant.

Now, we may do the same with the expression at the right-hand-side in (5.17),as
it was done to{λn} and was shown thatλn ≈ const,n→ +∞.

Thus, asL1(n) may be chosensomepositive constant.

More precisely,

L(n) = ACp0 ·exp{bA· (TA−E−MA)}n = 1,2, · · · ,

whereE is Eiler’s constant, and

TA = ∑
n≥1

A
m(m+A)

,MA = ∑
n≥1

{

ln

(

1−
bA

m+A

)

+
bA

m+A

}

.
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6 Appendix

In [2] a special birth-death model, being a particular case of our model, for
biomolecular applications has been presented. Thepart of stationary distributions
of thespecialmodel, which are of interest, takes the form







p0 =
(

1+(1−b) ·∑n≥1
1
δn

∏n−1
m=1

(

1− b
δm

))−1
,

pk = (1−b)p0 ·
1
δk
·∏k−1

m=1

(

1− b
δm

)

, k = 1,2, · · · ,
(6.1)

with

0 < b < 1, ∑
n≥1

1
δn

= +∞,

where{δn} satisfiesall conditions presented at the beginning ofSection 5.

For regularly varying distributions (6.1)Theorem 3has a very simple form.

Corollary 3.
p0 = b. (6.2)

Indeed, since (compare to (2.14)) in case (6.1) we have

C = 1−b and D = ∑
n≥1

εn

δn
pn = ∑

n≥1

pn = 1− p0,

therefore, from (3.14) we obtain

p0 =
bD
C

=
b

1−b
(1− p0),

which implies (6.2).

The class of distributions (6.1) includes a family of WD in particular case

δn = 1+
n
A

,n = 0,1,2, · · · ,A∈ R+.

It is clear that (6.2) is true also for WD.
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