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Al-Alaoui Operator and the ααα-Approximation for
Discretization of Analog Systems

Mohamad Adnan Al-Alaoui

Abstract: Theα-approximation for discretization of analog systems was recently in-
troduced. In this paper it is shown that theα-approximation is exactly the same as the
parameterized Al-Alaoui operator.
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1 Introduction

A popular method for designing IIR digital filters is to map the transfer functionof
a corresponding analog filter using ans-to-z transformation [1]-[6]. It is desirable
that the mapping procedures have the following two properties: 1) they should map
the left half of thes-plane to the interior of the unit circle in thez-plane which
would insure that stable analog filters map into stable digital filters, and 2) the
imaginary axis of thes-plane should be mapped onto the unit circle circumference
in thez-plane.

The bilinear transform meets the above requirements. However, it introduces a
warping effect due to its nonlinearity, albeit it can be ameliorated somewhat by a
pre-warping technique. The backward difference transform satisfies the first con-
dition, but the second condition is not completely satisfied, since the imaginary
axis of the s-plane maps onto the circumference in the z- plane centered atz =1 /2

and having a radius of1/2. The mapping meets condition 2 rather closely for low
frequencies [1]-[3], [4]-[6].

Other transforms were introduced in attempts to obtain better approximations
[7]-[10]. In particular, in [7, 8] the approach interpolates the rectangular integration
rules and the trapezoidal integration rule. The resulting digital integrator transfer
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function in the z-domain was equated to the analog ideal integrator, 1/s, in thes-
domain to obtain thes-to-z transformation. In [7] a fixed weighting of 0.75 was
assigned to the rectangular rule and 0.25 for the trapezoidal rule, while in [8] the
interpolation was parameterized with an a-parameter. The resulting operatorin [7]
was designated Al-Alaoui operator and applied in fractional order discretization
schemes by Chen and Moore in [11]. The operator developed in [8] may be des-
ignated as the parameterized Al-Alaoui operator. However for brevity Al-Alaoui
operator is used to refer to either of them. In [10] theα- approximation is proposed.

The paper is divided into 5 sections including the introduction and conclusion.
The second section presents theα-approximation, the third section introduces Al-
Alaoui operator, and the fourth section shows that theα-approximation and the
Al-Alaoui operator are the same operator.

2 The ααα-Approximation

Theα-approximation for discretization of analog systems was recently introduced
in [10]. The approximation starts from the well known mapping of the s-to-z do-
mains shown in equation (1)

z = esT (1)

whereT is the sampling period.
Starting from equation (1), the following equivalent relation can be formulated

z = esT =es((1−α)T+αT )

=
e(1−α)Ts

e−αT s , for α ∈ [0,1]
(2)

After the numerator and denominator on the right hand side of equation (2) have
been expanded in series and all member of the second and higher ordersneglected,
expression (2) becomes

z =

∞
∑

n=0

[(1−α)T ]n

n!
∞
∑

k=0
(−1)k (αT s)k

k!

≃
1+(1−α)Ts

1−αT s
(3)

Solving equation (3) for the complex variables yields

s = f (z,α) =
1
T

z−1
1+α(z−1)

(4)

Equation (4) defines thes-to-z α-approximation.
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3 Al-Alaoui Operator

Al-Alaoui operator is obtained by interpolating the trapezoidal and the rectangular
integration rules to obtain the following class of integrators [8]

H(z) = aHRect(z)+(1−a)HTrap(z) (5)

Using the backward rectangular rule for the rectangular integration rule yields

H(z) = a
T z

z−1
+(1−α)

T
2

z+1
z−1

, for 0≤ a ≤ 1 (6)

whereT is the sampling period.
EquatingH(z), the transfer function of the resulting IIR digital integrator as

expressed in (6) to the transfer function 1/s of an ideal analog integrator, yields the
parameterizeds-to-z transformation shown in equation (7)

s =
2(z−1)

T [(1−a)+(1+a)z]
(7)

In [7] a fixed value of a was used,a =3 /4, and thes-to-z transformation of
equation (8) is obtained

s =
8(z−1)

7T (z+
1
7
)

(8)

It is to be noted that the forward rectangular rule,HForwardRect(z) = T/(z−1),
is used in [7] which results in a non-minimum phase transfer functionH(z) and a
stabilizing approach is used [7], [12]. The same results are obtained, without the
need for stabilization, by using the backward rectangular rule. The above proce-
dure is equivalent to interpolating directly the bilinear operator (Tustin), and the
backward difference operator.

4 Al-Alaoui Operator and the ααα-Approximation

In this section it will be shown that Al-Alaoui Operator, equation (7), and the α-
approximation, equation (4) are one and the same. Equation (7) may be reformu-
lated as follows by lettingα = (1+a)/2, and thus 1−α = (1−a)/2

s =
2(z−1)

T [(1−a)+(1+a)z]
=

z−1

T
[1−a

2
+

(1+a)z
2

]

=
z−1

T [(1−α)+αz]
=

1
T

z−1
1+α(z−1)

(9)

Thus Al-Alaoui operator and theα-approximation are one and the same.
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5 Conclusion

It was shown that Al-Alaoui operator and theα -approximation are one and the
same. Al-Alaoui operator is a credible alternative to other discretization methods
with wide range of applications in integer and fractional order discretization.
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