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Abstract: In this paper, the multivariable robust approach is used to obtain simple
controllers for both single and current- sharing (paralleled) DC/DC converters. Linear
time-invariant nominal model of the power stage is derived and asymptotic uncer-
tainty bounds are constructed to cover the parametric uncertainty, nonlinear effects in
control, CMC switching effects and random switching control. Robust model of the
current-sharing converters is developed and joint framework for the frequency domain
robust design is proposed for both single and current-sharing configurations. The fea-
sibility of the approach is demonstrated by two design examples: random control of
the single unit buck converter and deterministic control of the three paralleled buck
units. Several robust controllers are designed and verified for robustness and perfor-
mance in the closed-loop with the Matlab and pSpice models.

Keywords: DC/DC converter, current sharing, pulse width modulation, random
switching, robust modeling, robust control, simple controllers.

1 Introduction

DC/DC converters [1, 2] are standard components in computer and telecom power
supply systems. High power demands, modularity and redundancy reasons bring
out the need of several converter units sharing the current to be supplied to the sys-
tem. From the control point of view, converters in current sharing parallel arrange-
ment make a multivariable plant to be controlled. Classical small-signal analysis

Manuscript received August 29, 2005.

The authors are with Faculty of Electrical Engineering, University of Belgrade, Bulevar
kralja Aleksandra 73, 11120 Belgrade, Serbia and Montenegro (e-mails: [rakic, petro-
vic]@etf.bg.ac.yu

395



396 A. Raki¢ and T. Petrovi¢:

and control design in the frequency domain are discussed in [3]-[10]. Advanced
nonlinear techniques in control are presented in [11, 12].

The robustness of the control is always the main point and major problem due
to fact that a model of a power supply is always an approximation of the real sys-
tem. Furthermore, the dynamics of a power system may change during long-term
operation, mainly because of the power components’ variations. To address the
difference between modeled and true systems, various measures of robustness are
used [13]-[16]. The single DC/DC converter robust analysis and control synthesis
are conducted in [17]-[20]. Robust modeling and control design of random switch-
ing converters are discussed in [21, 22]. The multivariable H. linear robust analysis
of the parallel operating converter units is the subject of the papers [23, 24]. The
analysis of the control system itself is discussed in [25]. Robust design for parallel
operating DC/DC converters is presented in papers [26]-[28]. The main drawback
of the linear robust approach is the high order of the fully multivariable controllers,
often unacceptable for the application both in analog and digital control.

The purpose of this paper is to investigate the possibility to use robust linear
theory to obtain simple controllers for both single and current-sharing DC/DC con-
verters, applicable according to industrial needs along with deterministic (PWM)
and random control. The analysis of the proposed control design will be conducted
within Matlab and Signal Processing Toolbox, The MathWorks Inc, MA-USA. and
pSpice, Cadence Design Systems Inc, CA-USA. The paper is organized in sections.
Sect. 2 describes the robust modeling of the power stage. Sect. 3 considers the
modeling of the current-sharing (paralleled) configuration of converters. Sect. 4
is the place where the framework for robust control of the converters is discussed.
The development and verification of the closed-loop design on nonlinear models of
single buck random controlled and three parallel conventionally (PWM) controlled
buck DC/DC converters is the subject of Sect. 5. The conclusion is presented in
Sect. 6.

2 Power-Stage Modeling

2.1 Nominal model

DC/DC converter consists of nonlinear subsystem, dedicated to fast switching of
unregulated DC input voltage, and linear subsystem for filtering of obtained switched
voltage signal. Fig. 1 represents buck and boost DC/DC converters that will be con-
sidered for analysis and modeling in this section.

Input unregulated voltage is denoted with vy, R is the nominal resistive load of
converter, L and R; represent inductivity and its parasitic series resistance, C and R -
are capacity and its parasitic series resistance. Nonlinear subsystem for switching
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Fig. 1. Power stage a DC/DC converter: (a) Buck topology, (b) Boost topology.
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consists of diode D and switching element Q, which is usually energetic BJT or
MOSFET. Transistor control is done through the driver circuit, according to control
signal ¢(¢), which has discrete values of 0 or 1 (switch on and switch off). ¢(t)
is assembly of rectangular nonoverlapping impulses, result of some modulation
technique over continual control variable of switching D(r) € (0,1). Modulated
control ¢(t) directly influences DC value and frequency response of current and
voltage of DC/DC converter.

Fig. 2 represents typical shape of signal ¢(¢), with characteristic variables of
i-th period of switching: ¢€; - time from the beginning of i-th switching cycle to
the moment of transistor turn-on, D; - duty ratio (relative transistor turn-on time on
cycle- length basis), 7 - period of i-th cycle and &; - start time of i-th cycle.
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Fig. 2. Typical shape of control variable signal ¢(r).

Taking nonlinear element as ideal, equivalent circuit of converter, that uses ¢()
to model nonlinearity effect of the switching, can be developed (Fig. 3).

In the case of deterministic PWM switching, there is no gap between the start of
the cycle and the moment of transistor turn-on (¢; = 0). Also, cycle periods are con-
stant (7; =T ). Higher frequency content is neglected in nominal modeling and only
mean value of signal in the switching period is considered: g(¢ € (t;,¢;,,)) = D;.
As the switching period is significantly smaller than the time-constants of the linear
part of the circuit, discrete array D; describes in full the properties of the continuous
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control signal D(¢) in the bandwidth. D(¢) replaces ¢(¢) in the equivalent circuit in
Fig. 3. By the averaging in the switching period, nonlinearity of PWM switching
is eliminated from further nominal modeling.
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Fig. 3. Equivalent circuit of converter: (a) Buck topology, (b) Boost topology.

Model of the converter for the small signal is obtained from the equivalent cir-
cuit by means of linearization of the state- variables’ (output voltage v, and in-
ductor current i; ) dependencies on the control variable D and disturbance variables
(input voltage deviation v, and load current deviation i;).

In summary, state-space averaging is characterized by following approach and
results:

e operating-point (DC values of output voltage V,;; and inductor current /;) is
obtained, depending on nominal values of control D, , input voltage supply
V,y and parameters of the linear part of the circuit A = {R,L,C,R;,R};

e Laplace-transform of v,;;, and i; linearized dependencies on small changes
of control (d = D — D,)), input voltage (v;, = v;y — V;y) and load current
(iy = i; — I;) represent transfer functions in the small-signal model:

1) transfer from control to output voltage: Pv(s) = Vou (5)/d(s),
ig =v;, =0;

2) transfer from control to inductor current:  P,(s) =i, (s)/d(s),
ig =v;, =0;

3) audio susceptibility: Ag(s) = vou (s)/vin(s),
ip=d=0;

4)  output impedance: Z i (8) = Vo (5) /g (s),
v, =d=0;

5) transfer from the load to inductor current:  T,(s) =i, (s)/ig(s).
v, =d=0;

6) input admittance: Y, (s) =i.(s)/v;,(s),
ig=d=0

In Fig. 4 linear small signal model of DC/DC converter power stage is pre-
sented along with disturbance sources v;, and i, and transfer functions from them
to the state variables.
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Fig. 4. Linear model of DC/DC converter power stage.

For nominal converter modeling, as the primary task of control is the voltage
setpoint tracking and disturbance rejection, functions of interest are P,(s) and Py(s),
as the transfer functions from the control to the state-variables. Those transfer
functions for buck and boost converters are given in Table 1. Background on state-
space averaging and presented nominal model transfer functions can be found in
[1,2].

Table 1. Buck and Boost DC/DC converter linear model transfer function.
VwR(R.Cs+1
BUCK Pv(s) — 5 IN ( s + )
LC(R+R.)s*+ [(RR,+RR-+R,R-)C+L]s+R+R,
P-(S‘) — ‘/}N[(R+RC)CS+1)
! LC(R+R.)s*+ [(RR,+RR-+R,R-)C+L]s+R+R,
k(RCCs+ )[R*(1 —=D,)> —RR, — R, R — (R, +R)Ls]
a,s* +a;s+ag
k2R(1 — DO) +R-— [RZC(I — DO) + RRCC(DO —2)— R%Cs]
a,s* +a;s+ag
= (R+R)RViy
RR; +RRC(1 — DO) +R; R +R2(1 — DO)2 ’
a,=(R+R.)’LC,
a, = (R+ RC)L+ RRC(R + RC)(I - DO)C + R%RLC +2RR;R-C+ RzRLC,
ay=RR, + RR-(1 —Dg) + R, R +R*(1 - Dy)*.

BOOST | P,(s) =

2.2 Uncerainty and Robustness

Linear model is not able to describe the behavior of the inherently nonlinear plant.
Models of the finite order always introduce uncertainty in modeling. The idea of
the robust control is referring control synthesis, its performance and stability, not
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only to the nominal plant model, but also to the whole family of models in the
area of permitted uncertainty of the modeling (perturbations are bounded). So,
as new terms appear robust performance - guarantied performance of the control
system for all systems in the uncertainty region, and robust stability - stability of
all possible systems inside the uncertainty modeling bounds.

In the robustness analysis of the control systems three standard models of un-
structured uncertainty are used: additive uncertainty:

P=P+1,(s)A, (1)
multiplicative input uncertainty:
P=P(1+1y(s)Ay) )
multiplicative output uncertainty:
P=(141,,(s)A,0)P (3)

where P is the real plant, P - its model used in the control synthesis, /,(s), [, (s)
and /,,,,(s) - bounds of allowed uncertainty of the robust modeling, and A ,, A, and
Ao represent unknown, but unity normed values of the unstructured uncertainty
of modeling.

In the context of the robust modeling of DC/DC converter, the most convenient
uncertainty representation is the multiplicative input uncertainty (2), because the
modeling uncertainty is effectively added to uncertainty of modeling in the plant
input, as the uncertainty of the control system, which is really the case when the
modulation is used in control. Furthermore, this choice of uncertainty representa-
tion enables the use of the robust theory in random modulation in control, which is
effectively also the uncertainty in the control system i.e. on the plant input. Multi-
plicative input uncertainty is represented in Fig. 5, where [,,,(s) is the uncertainty
bound and A;;; - unknown normalized (||A,,,|| < 1) perturbation corresponding to
the unstructured uncertainty of the modeling.
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Fig. 5. Robust modeling uncertainty representation.

Bound of the multiplicative input uncertainty is developed to asymptotically
describe the uncertainty: on low frequencies it has the value of the maximal error
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of the transfer function P, DC gain estimation, after the transmission zero rises with
the slope of 20 dB per decade, reaches 0 dB level before the half of the switching
frequency and remains on the constant level after the pole in high frequencies, to
preserve causality of the transfer function [, (s).

Transmission zero, on one hand, is to be selected low enough in frequencies
to start raising of uncertainty bound to cover neglected dynamics of the converter
in high frequencies. On the other hand, even at the stage of modeling, one should
have in mind that the inverse function 1/1,,,(s) represents the worst-case comple-
mentary sensitivity function 7Ty, (s) of the robust control design, so the choice of
the zero position in the transfer function /,,,(s), as a pole of Tj,(s), directly lim-
its the bandwidth of the H../u -optimal control designed later on. Typically, this
choice is the subject of compromise between the antagonistic demands to be solved
separately for each design case. Once the zero is selected, pole is placed on at least
4 - 10 times higher frequency to provide T}, (s) roll-off to values low enough in
high frequencies, enabling good disturbance rejection of high frequency noise and
robustness to unmodeled dynamics.

2.3 Uncertainty Modeling Covering the Nonlinearity of the Converters

All the transfer functions, in the general nonlinear case, are functions of linear
circuit elements A, but also functions of converter operating point i.e. stationary
control value D = D,,. Nominal model of the converter is, therefore, changing if
the excursions of the control variable are considerable, which is the case in the
disturbance rejection actions.

Robust modeling can cover also the effects of the plant model perturbations
caused by the nonlinearity i.e. change of the operation point due to the distur-
bance rejection actions. Namely, one can assume plant model to be changing in
some bounds of the modeling uncertainty, although one knows the uncertainty is
not due to the parameter tolerances, but due to the change of the linear model of
the converter, as the function of the operating point change. Uncertainty bound
is to be chosen to have DC gain greater than maximal change of the DC gain in
the whole family of the transfer functions (in the range of all possible controls
D e (D,,;,,,Dmax)) comparing to DC gain of the nominal transfer function (deter-
mined by the nominal control D). Dynamics of the uncertainty bound transfer
function is designed in the same way as for the uncertainty coverage of the param-
eter tolerances in the previous section.

The problem arising in control design is the plant models often change drasti-
cally i.e. perturbations are, even for DC gain, close to 100 % or even greater. Robust
control theory cannot solve that kind of uncertainty problems: optimal controllers
cannot be found or they are too conservative to be applied. But, the solution lies
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in the proper choice of the nominal model. When the model linearized around the
real operating point of the converter is not able to provide acceptable uncertainty
bounds, then different nominal model is to be chosen. The appropriate model is
the one minimizing uncertainty bounds in the bandwidth for the whole family of
possible plants.

Although control afterward is not to be designed for the plant linearized around
the real operating point, this can be done due to fact the robust stability and robust
performance are to be satisfied in the robust control design for the whole family
of possible plants and therefore also for the “real” nominal model i.e. the one
linearized around the real operating point.

2.4 Uncertainty Modeling of Current Mode Controlled (CMC) Converters

All presented discussion to this point referred the converter modeling in so called
voltage mode control (VMC) i.e. when the control is applied only on the basis of
sensing the output voltage of the converter. Switching effects appear as the special
phenomena of the current mode control i.e. when control is based on sensing both
the output voltage and the output current of the converter. In the well known paper
[3] appropriate model is developed for CMC converters. CMC converter model is
only the extension of the model given in Fig. 4, because the transfer functions of
the nominal CMC converter model are the same as ones developed for the VMC
converter model. Only current feedback loop is to be modeled adequately. CMC
modeling setup is depicted in Fig. 6.
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Fig. 6. CMC modeling setup.

Block K; is the current feedback linear gain and H,(s) is modeling the sampling
effect in CMC. Block H,(s) is found to be [3]:
sT

He(S) = esn _ 17 (4)

or, as very good approximation, up to the half of the switching frequency:
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where T is the sampling period.
Fig. 7 gives the frequency plot of H,(s) up to the half of the switching fre-
quency. In the bandwidth of the regulation its contribution is surely less than 4dB.

00 0,05 0.1 0.15 0.2 025 0.3 0.35 0.4 045 0.5
Fractions of sampling frequency ( 1/Ts)

Fig. 7. Frequency plot of H,(s).

So, reasonable proposition of the modeling of the switching effect in the current
loop is to join this effect to general uncertainty of modeling, neglect the block H,(s)
in the control setup and use the same model as for the voltage mode control but with
the current loop closed by just the linear gain K.

2.5 Random Switching as Uncertainty in Modeling

In the process of random modulation, the switching control variable D(r) = E(g(t))
can be generated in several ways, randomly varying one of three variables of the
modulated control ¢(¢) pulse shape u,(t — ¢;) (depicted in Fig. 2): D, - duty ratio
for the i-th cycle of the switching, €; - position of the start of the impulse in the i-th
cycle, and the period of the switching T;.

Random change of variables ¢;, D, or T; shapes the frequency spectrum of the
output voltage i.e. reduces the discrete component (harmonic) on the frequency of
commutations.

Randomness of €; and D; do not affect the periodicity of the sequence of the
modulated control signal ¢(¢), so Random Pulse Position Modulation (RPPM) and
Random Pulse Width Modulation (RPWM) are periodic modulations, while tech-
niques which include varying of the period of switching are called aperiodic mod-
ulations: DFIX - when D, is kept to deterministic control value D(r), and AFIX -
when on-time of the switch A = DT is kept deterministic. Spectral formulas for
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mentioned random modulation, derived in [21], are:

)2
o) e £ 5 st0i2, 0

st () = U (1 _p )y +

T
SEPWM g — [2(1_9t{P (Tw)}) — |1 - Py(Tw)|*]
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where U, () is the Fourier transform of rectangular pulse with unity intensity (am-
plitude), width D,T; , and start in time zero, P¢(®), Pp(®) and P, (®) are the Fourier
transforms of the applied probability density function (pdf) of random variables &,
D or T, consequently.

In the context of the robust modeling of the random switching DC/DC con-
verter, the most convenient uncertainty representation is the multiplicative input
uncertainty, because neglected continuous modulation noise is effectively added to
uncertainty of modeling in the plant input, i.e. uncertainty of the control system,
which really is the case with the random modulation. Uncertainty due to random
control is represented by its bound Ig,,,(s) and Ag,,, - unknown but unity normed
perturbation of random modeling, containing continuous noise spectrum of the con-
trol g.

Random switching effect in control are to be added to the deterministic uncer-
tainty in modeling of the converter, which is not related to the nature of control,
but with component tolerances of the converter itself. No correlation in these ef-
fects enables simple addition of the modeling uncertainty due to random effects
in control to the parametric uncertainty of the deterministic switching converter
modeling.

Using the same guidelines as for the deterministic modeling, random switching
multiplicative input uncertainty bound [, (s), on low frequencies, has the value of
the maximal excursion of the control variable from its steady state R = max(D(t) —
D) in the process of random switching control. As this value is assumed to be
significantly greater than the frequency peak of the continuous noise spectrum in
the bandwidth of the control, random switching effect in control can be included in
the uncertainty description just by adequate increase of the deterministic switching
uncertainty bound [, (s) DC gain in amount given to the randomization effects.
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Therefore, random effects can be included into the uncertainty bound /,,,(s) of
converter modeling in two ways:

1. keeping the deterministic uncertainty bound /,,,(s) = I,,z1(s), and concern-
ing one part of the modeling uncertainty covers parametric uncertainty, while
the other one covers the random effects, which effectively narrows permitted
tolerance of the linear circuit elements;

2. adding R, as a net effect of random uncertainty modeling on low frequencies,
to the deterministic bound DC gain /,,,(s = 0) = I, (s = 0) + R and keeping
the dynamics that describes asymptotic behavior of the modeling uncertainty
in deterministic case.

It this way, two conditions will be fulfilled:

1. uncertainty bound of random switching converter will cover deterioration
of experimental spectrum from theoretically anticipated, enabling controller
synthesis for existing parametric uncertainty level of deterministic switching
converter with random control uncertainty added,

2. uncertainty bound of deterministic switching modeling will cover in full the
effects of random control, enabling use of existing controllers for determinis-
tic switching converters, with remark that allowed parametric uncertainty of
modeling effectively dropped for the value given to the random uncertainty
covering.

3 Robust Modeling of the Current-Sharing (Paralleled) Converters

The simplified block diagram of n paralleled units and control loops is presented
in Fig. 8. Each unit j has PWM driver, which applies duty-ratio d; from the
control subsystem to power stage switch or switches. Outer voltage-control loop is
managed by the joint voltage controller K, (s), trying to achieve voltage reference
v,.r at the voltage output v,,, of the paralleled converters i.e. at the input of the
load. Each converter j provides measurement of its current i ;, which is driven by
the current controller Kij(s) to attain reference current i, .. Choice of weights o;
determines the paralleling scheme: democratic current sharing is established if all
of a; are equal to 1/n, while master-slave current sharing is obtain with o, = 1,
o, =0;=...=0,=0,and K, (s) = 0.

In the paper [23] multivariable model of the parallel operating converters is
obtained as:

1 nop no
oal) = T L A0 = LW (0
R" El Zui(9)
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Fig. 8. Block diagram of n paralleled DC/DC converters with current sharing loops.

iLi(S) :Pii(s)d[(s) = 1a2a"'ana (11)

where R is the nominal load, P,; is the i-th unit’s transfer function from control to
the output voltage, P; is the i-th unit’s transfer function from control to the unit’s
current and Z .. is the output impedance of i-th unit.

In the form of transfer functions matrix, model of the complete power stage of

parallel operating converters is given by:

Vout Py P, Ps ... P,
l.Ll P, 0 0O ... 0

y= i) | = 0 PiZ 0 0 :P(s)u (12)
i, 0 0 0 .. P,

Since the output vector y is of dimension n+1 and there are only n independent
input switch control signals, the transfer function matrix P is not square. One way
to make it square, in order to obtain a closed-loop control, is to redefine the outputs
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to represent the output voltage and the current distribution between the units [23]:
T n
Y=o Aipy Aipy oo Aip, (), Aip=i— Y o (13)
Jj=1

The transformation matrix

1 0 0O . 0
0 -1 10 . 0
s=10 -1 0 1 . 0 (14)
: : o .0
0O -1 00 0 1

introduces the current difference between the i-th unit and the reference (master)
unit 0, making the redefined outputs of the squared plant P’ = SP fit into the master-
slave (M-S) control configuration.
Multiplicative input uncertainty of the robust modeling is presented by the ma-
trix expression:
P(s) = SP(s)(I +Ly;; (s)A(s)) (15)

where P(s) is the perturbed plant, I is the unity matrix, A(s) is an unknown but
unity-normed diagonal transfer function matrix that represents multiplicative un-
certainty of the modeling and L, (s) is the diagonal multiplicative input uncertainty
bound matrix:

Ly, (s) = diag(lys1 (5), Bara (5), - -5 Loaza () (16)

Transfer function I};(s) is the uncertainty bound for i-th channel of the control.
Uncertainty associated matrices are diagonal because parametric uncertainty of ev-
ery consisting unit is not dependent on the uncertainty of the others.

As for the single unit, bound of the multiplicative input channel uncertainties
for the multivariable model should be developed to asymptotically describe the
parametric uncertainty of the linear part of the circuitry: on low frequencies they
should have the value of the maximal relative error of the model DC gain, then to
rise with 20 dB per decade slope, reach 0 dB level before the half of the switching
frequency and remain on the constant level in high frequencies.

If the output impedance is the same for all consisting units and it is negligible
comparing to the load resistance, eq. (10) simplifies to:

boa(s) % —— ¥ 7 6) = 1 T PN, 1)
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holding for most of the current-sharing applications having the same topology con-
verters with the same parameters. Channel uncertainty is therefore the n-th part of
n transfer functions uncertainties i.e.

ZITJIL(S) :lMI(S)7 l: 1,2,...” (18)

where [,,,(s) is the single unit deterministic (parametric) uncertainty bound, dis-
cussed previously in the power-stage uncertainty modeling. This is an important
result because multivariable uncertainty bound can be constructed directly from
the single unit uncertainty, which is much easier to obtain.

4 Framework for Robust Synthesis in the Closed Loop

The block diagram of control structure is presented in Fig. 9, where r denotes refer-
ence signals, e = r —y is error in reference tracking, €’ is the performance weighted
error, d - plant input disturbance signal, and K is the closed-loop controller to be
designed.

w5 —> ¢

Lui(s) > A(s)
r.o e K(s) UT £ Y ey d y

P(s) T
s

Fig. 9. Block diagram of control setup.

For the single unit design, setup is simplified for L, (s) = [,,,(s) and § = 1.
With the choice of the performance weighting function W ,(s), dependent on the
specific control design, multivariable setup depicted in Fig. 9 is fully defined and
ready for any robust control design procedure.

The objective that represents performance of the nominal closed-loop system is
defined by the upper singular value

NP = [np(@)]|e = [[W 8]l = supT (W ,S) < 1 (19)
(0]

where NP is a measure of the nominal performance and § is sensitivity function.

The robust control theory adopts measures of robust stability (RS) and robust
performance (RP) as a suitable objectives that define performance of the closed
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loop system in the presence of structured uncertainty:

RS:WﬂwwwzWWA@TWMMZ%?MﬂmNWNwD<1 (20)

W,(0)S(w) 0

RP = |rp(®)|. = 0 Ly (0)T ()

= sup [WPS O] <1
W Lo Ly, !

21
where T () is the complementary sensitivity function. The operator i, is struc-
tured singular value (-norm) computed according to the diagonal structure of un-
certainty matrix A = diag(A,,A,) .

Objectives (19), (20) and (21) ensure that the closed-loop system cannot be
destabilized by unknown but unity bounded matrix A,, A, and A, respectively. The
concept of the NP, RS and RP can be understood as the demand that the loop gain
of the corresponding closed-loop system should be less than 1 at any frequency.

The convenient objective for synthesis of robust controller K using p-norm is

mkinRP, with constraintRS < 1. (22)

Optimization can be done with respect to either reference signal r, ensuring op-
timal reference tracking, or input disturbance signal d - ensuring optimal input
disturbance rejection.

Once when control design is obtained, zero-pole cancellation can be applied
and dynamics higher then the half of the switching frequency should be neglected.

5 Design Examples

5.1 Random control of the single unit buck converter

Prototype buck DC/DC converter parameters are: f,, = 50kHz, V;, = 10V, I, =
10A, Vo =5V, R=0.5Q,L = 50uH, R; = 46m&, C = 4700uF, R ~ 24mQ.

Converter nominal model is given by the transfer function from the control
variable d to the output voltage v,,,. According to Table 1, for the buck converter
of interest that is:

N
9.16(=— + 1)
8865
; (23)

s . s i1
21062 2487

Following guidelines given above, uncertainty bound DC value of 0.5 gives
room for parameter variations that change transfer function in bounds of £50%.

P,(s) =
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Nominal model of the converter, along with the measured frequency response of the
prototype (curve interpolated through experimentally obtained data) is presented in
Fig. 10. Difference between the model and experimental data become significant

10
10! prezszmm |
0
w 107 ¢
()
2 -1
S107}
3 102  Lower bound of uncertéinty
e
B
107
1074 1 Nominal model
2 Experimental data
-5
10 ‘ ‘ ‘
10° 10° 10* 10° 10°
o (rad/s)

Fig. 10. Uncertainty bounds of the prototype buck DC/DC converter.

at frequencies above 10* rad/s, demanding increase of modeling uncertainty bound
by positioning transfer zero before 10* rad/s. Control, to be designed later on,
will have typical bandwidth of 1 - 2 kHz (3.14 - 6.28 krad/s), so Ty,(s) should
provide the bandwidth of at least 6.28 krad/s. Transfer zero is placed on frequency
@, =9 krad/s, towards higher bound, providing maximum bandwidth possibilities
for control and uncertainty raise early enough to cover disagreements between the
model and prototype frequency response. Pole of the /,,,(s) is consequently placed
on frequency 4 - @,. Proposed deterministic modeling uncertainty bounds (also
depicted in Fig. 10) are given with:

Lppr(s) = 0.5-2 - @, = 9000rad/s (24)
_|_

4w,

Uniform distribution is selected for randomization of appropriate variables and un-
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certainty bound of the modeling is finally:

S
L (s) = (0.5+R) -2 ©=9000rads (25)

where R is maximal excursion of the control variable due to randomness.

Robust performance specification W), is selected to ensure zero steady-state in
reference tracking, +20 dB per decade growth of sensitivity operator in the low fre-
quency range, regulation bandwidth of 2000 rad/s and worst case robust sensitivity
peak value of 2. Appropriate transfer function for such description is:

S|

1 2000
Wy(s) = 5 2000 (26)
Seven controllers are designed, resulting p-optimal parameter tuning of fixed

structure controllers or synthesized full order controllers [13]-[16]:

1. mulMCrt - IMC p-optimal for reference tracking, fixed structure, one tun-
able parameter @, depicted in Fig. 11 a) for increasing projected random
level R.

2. mulMCdr - IMC p-optimal for input disturbance rejection, fixed structure,
one tunable parameter @, depicted in Fig. 11 b).

4

7200 4210
3
7000 o8
_ 6800 o6
2 @
S =
£ 6500 g 24
> S
s e
6400 05
6200 5
6001
18
8506 07 o8 09 1 T a— 3 f

Random level R R%r?dom IevoélsR
(@) (b)
Fig. 11. Parameter @, of mulMC controllers; (a) mulMCrt, (b) mulMCdr.

3. Isdp - full order H., Loop Shaping Controller [16] is not subject of change
with increase of R because its design is based on nominal performance, and
robust stabilization is in the closed form of Glover-Doyle compensator, again
not dependent on R. Design parameters for /sdp are:

K, =4000, @, =3000rad/s; &uq =0.53 27)
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o 2.089(s +3000) (s> + 51575+ 8.972 x 105)

LSpP s(s+3030) (s +7354)
4. muopt3rt - full order u-suboptimal for reference tracking, second D-K iter-
ation with 3" order D interpolation. For R = 0 it is deterministic controller:

(28)

3.02(s+887.7) (s 4+ 3.6 x 10*) (54 6.42 x 10%)(s? + 25785+ 2.66 x 10°)

Har () = s(s+699.8) (s + 8906) (s +4.75 x 10*) (s + 8.33 x 10%)
(29)
When R is increasing, controller transfer function zeros and poles do change
place, but dominant behavior of the control is due to the velocity constant
change, presented in Fig. 12 a).

muoptd31
800 3000,
£ 700 2800
g IS
s 2 2600
> 600 8
= >
g Z 2400
$ 5
5 500 2 2200
= ()
S ]
£ £ 2000
3§ 400 S
1800
300
0 0.1 0.2 0.3 0.4 05 1600y 01 0.2 0.3 0.4 0.5
Random level R ’ Random level R ’ ’
(a) (b)

Fig. 12. Velocity constant of uopt3 controllers: (a) mu opt rt, (b) mu opt dr.

5. muopt3dr - full order p-suboptimal for input disturbance rejection, second
D — K iteration with 3" order D interpolation. As for the muopt3rt, with
R = 0 controller is deterministic:

_ 7.23(s+3.441 x 10*) (s> + 41605 + 7.174 x 10°)

Mg () = s(s+8865)(s+6.721 x 10*) 0

Velocity constant of the muopt3dr, with R increasing, is depicted in Fig. 12
b).

6. muPIrt - P1 p-optimal for reference tracking, fixed structure, two tunable
parameters: K, = 10* and ®, changing in the manner presented in Fig. 13
a).

7. muPldr - PI p-optimal for input disturbance rejection, fixed structure, two
tunable parameters: K, = 10* and @, changing as depicted in Fig. 13 b).

All control solutions’ RP, RS and NP measures for different random levels R are
given in fig. 14 a), b) and c), consequently.
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Fig. 13. Parameter @, of mu PI controllers: (a) mu PI rt, (b) nu PI dr.

Both PI controllers don’t satisfy robust stability condition RS < 1 at any ran-
domness level, so they are not considered perspective for further discussion. RP
measure is higher for mu IMC dr and Isdp comparing to the rest of the controllers
due to higher values of RS in the whole range of applied R, indicating worse per-
formance of mu IMC dr and Isdp solutions under large scale perturbations of the
plant.

All controllers have RS at level of 1 approximately up to R = 0.2, but only mu
IMC rt and mu opt3 rt have the possibility to go further in increase of R. Random
level R = 0.2 will be taken, therefore, as the fair reference point for further con-
troller analysis. In order to verify control design and spectral formulas, simulation
is performed on nonlinear Matlab/Simulink model of the converter. Dynamic be-
havior of closed loop systems with AFIX modulation and R = 0.2 is presented in
Fig. 15.

Optimal reference tracking is achieved with Isdp. Disturbance rejection is the
best with mu opt3 dr, considering peak response on disturbance, but the quick-
est elimination is with Isdp. Both rt controllers: mu IMC rt and mu opt3 rt are
having unsatisfactory disturbance elimination, essential characteristic for DC/DC
converter control, so they are not acceptable solutions in random switching control.

5.2 Deterministic control of the three paralleled buck units

Parameters of the general power supply setup is: V;y = 10V, V5,0 =5V, 15,0 =
30A. Each of the three buck DC/DC unit has the parameters: fi,, = S0kHz, L =
S0uH, R; ~ 46mQ, C = 4700uF, R, ~ 24mQ.

Maximum allowed uncertainty of the modeling is proposed in the same way as



414 A. Raki¢ and T. Petrovi¢:
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Fig. 14. Performance and stability measures for different random levels R: (a) robust performance
RP, (b) robust stability RS, (c) nominal performance NP.

for the single unit case:

—+1

Ly(s) =05—"—, @, =9000rad/s @31
—+1
4,

so the control in the closed loop will be tested for robustness according to proposed
measure.

Nominal (M-S squared) model of the three parallel operating converters is given
by:

6.15(co— 4 1) 6.15(ce+1)  6.15(oe +1)

8865 8865 8865
2.97 ) )
/(s) = —(— i+ 0
P(s) 2 s (305 TV 405
TA0 T | (S 0 S
405 405

(32)
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Fig. 15. Buck DC/DC converter nonlinear model control with AFIX and R = 0.2: (a) output voltage
response to voltage reference step, (b) output voltage response to input disturbance step (d = 0.4).

Robust performance specification W, is selected to ensure zero steady-state in
reference tracking, +20dB per decade growth of sensitivity operator in the low fre-
quency range, regulation bandwidth of 2000 rad/s and worst case robust sensitivity
peak value of 1.4. Appropriate transfer function for such description is:

N

——+
W,(s) = ﬁ %13 (33)

Three robust controllers are obtained: H.., reference tracking controller (Hert)
[14, 15], pu-optimal IMC reference tracking (muIMCrt) [13, 14] and H. loop-
shaping controller (Isdp) [14, 16]. After zero-pole cancellation and diagonaliza-
tion, voltage-loop and current loop controllers for master-slave control are obtained
and enlisted in Table 2. Final robust controllers are of simple PI/PID type.

Projected uncertainty bound along with the permitted uncertainty achieved with
originally designed and diagonalized controllers are presented in Fig. 16.

It can be observed that the uncertainty level provided by the H.rt is not pre-
served after diagonalization and it is far bellow satisfactory. Controller mulMCrt
has the best robustness properties, while /sd p control in the closed loop violates the
proposed bound (31). However, this happens in the frequency region where more
than 100% uncertainty is demanded, so it doesn’t influence the robustness of the
designed Isdp solution.

In order to verify control design performance and robustness in the time-domain,
simulation is performed on nonlinear Simulink model of the converters with PWM
and M-S control scheme fully implemented. The parameters of the second slave
converter are changed to L' = 0.75L, C' = 0.75C, V},, = 0.9V,,. Load current con-
sumption change of 33% is given (from 30A to 40A) and dynamic behavior of the
perturbed slave current is presented in Fig. 17 a).
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Table 2. Robust controllers for three buck setup

Robust
Design | Voltage and current-loop controllers
Ko(s) = 2.56(s% 473285+ 1.43 x 10°)
A s(s+8046)
0.5 300
Isdp K(s) = L
s
5 s
692.4 1
_ (5.78>< 106+ 3730+ )
K(s) = s 2 s
‘ 1 1
(710 ) (Torxi0 + om0 1)
. 2711
Hort K(s) = 0.33(s +2711)
s
0.31(s? + 19035 + 4.5 x 10°
KV(S) — ( )
s(s+ 8865)
0.0047(s> + 17835+ 4.4 x 10°
IMCrt | K.(s) =
mulMCrt | Ki(s) s(s +405)

The dynamic response quality is mainly kept with all the controllers after diag-
onalization. The best response is with /sdp, while H..rt and IMCrt exhibit current
overshoots and are of lower bandwidth.

As [sdp has shown the best properties in the closed loop, it was implemented

60
50} 1 Isdp rtorig.
2 Isdp diag rt
40 3 hinf rt orig.
o 4 hinf diag rt
T 30fF 5 muimc rtorig.
*E‘ 6 mu imc diag rt
‘T 20f
2
5 10 i
0
_10} Projected unc. bound =~
-20 . . .
10' 10° 10° 10* 10°
f(Hz)

Fig. 16. Projected and achieved uncertainty for designed controllers (three buck setup).
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in analog technique and tested in the same setup within the pSpice circuit-oriented
environment. Dynamic response of the perturbed unit’s current with the pSpice
model is presented in Fig. 17 b).

20

1lIsdp rt
2 Isdp diag rt
3 hinf rt

4 hinf diag rt
5 mu imc rt

6 mu imc dg rt

5 6 7 8 9 10 11 12
t (ms)

(@) (b)
Fig. 17. Current dynamics of the perturbed plant on load consumption step-change (Al ;- = 33%):
(a) all controllers within the nonlinear Simulink model, (b) Isdp within pSpice model.

The pSpice simulation validates the results of /dsp linear design both in per-
formance and robustness aspect.

6 Conclusion

Complex robust control theory was used to obtain simple controllers for both sin-
gle and current-sharing DC/DC converters. Methodology for construction of the
converter’s power stage nominal model is proposed and uncertainty bounds of the
modeling are considered for parametric uncertainty, nonlinear effects in control,
CMC switching effects and random control. Robust model is developed also for the
current-sharing configuration of the converters. Unified approach to the frequency
domain control synthesis is proposed, several robust controllers are designed and
verified in Matlab/Simulink and in pSpice on random single buck unit and deter-
ministic three buck unit setup.

Main drawbacks of linear robust theory are circumvented: linear time invariant
model of wide range single and paralleled converters is posed for both deterministic
and random control, frequency domain weighting functions (as tuning parameters
of the control design) are simple and tightly attached to design requirement and
high order controllers are simplified to the level of standard PI/PID controllers,
making them easy to implement in both analog and digital control systems.
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