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Design of the IMPACT Controlling Structure Applying
Conventional Digital Control Laws

Milić R. Stojić and Milan S. Matijević

Abstract: The design of a simplified IMPACT (Internal Model Principle and Control
Together) structure comprising conventional digital control laws is presented. The
design procedure is accomplished to enable the extraction of a known class of im-
measurable external disturbances and easy setting of the controller parameters. In the
proposed controlling structure, the set point transient response and speed of distur-
bance rejection can be adjusted independently. The efficiency and robustness of the
proposed controlling structure are verified and tested by the simulation and experi-
mental setup.

Keywords: IMPACT controlling structure, conventional digital control laws, distur-
bance extraction.

1 Introduction

The concept of internal models implies the inclusion of the nominal plant model
and/or model of immeasurable external disturbance into the control portion of the
system. In the IMC (Internal Model Control) approach, the internal plant model
is used to achieve a high system performance [1]-[3]. In the IMP (Internal Model
Principle) approach, the model of external disturbance is incorporated into the mi-
nor local loop of control system in order to suppress or to reject completely the
influence of disturbance on the steady-state value of the system controlled variable
[2, 4]. Since a real plant differs from its nominal model, in all the approaches
IMC, IMP, and IMPACT, the system robustness with respect to the uncertainties

Manuscript received May 25, 2005.
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and variations of plant parameters must be provided [1]. The IMPACT conrolling
structure incorporates both the internal nominal plant model explicitly and inter-
nal model of disturbance implicitly. The structure has been developed by Ya.Z.
Tsypkin [4] independently of the IMC and IMP. The IMPACT structure enables an
easy achievement of the desired set-point transient response, rejection of the known
class of disturbances, and high degree of robustness of the system with respect to
interval changes of plant parameters [5]. Unlike the classical IMC, which is appli-
cable only for stable plants, the IMPACT structure may be applied for all kinds of
control plants including unstable plants and plants of nonminimal phase [6].

In many control applications, particularly in the control of slow varying indus-
trial processes, the conventional P, PI, and PID control laws are applied [7]-[10].
In designing a single-loop control system applying the conventional control laws,
the control plant is approximated by typical, relatively simple, nominal plant model
developed in a low frequency range. This paper shows the design of IMPACT struc-
ture of the system having a PI controller in the main control loop and the internal
models of the nominal plant and disturbance in the local minor loop. The structure
enables the set-point transient response and speed of disturbance rejection to be ad-
justed independently by setting a small number of parameters having clear physical
meanings.

2 Principle of Absorption

Suppose that kth sample of external disturbance f
�
t � may be determined by finite

number m0 of previous samples. Then, the disturbance is regular and may be de-
scribed by extrapolation equation [6]

f
�
kt ��� D f

�
z � 1 � f

���
k � 1 � T � (1)

where D f
�
z � 1 � is the prediction polynomial of order m0 � 1. Relation (1) is called

the equation of extrapolation or prediction and it may be rewritten as

�
1 � z � 1D f

�
z � 1 ��� f

�
z � 1 ��� 0 (2)

where f
�
z � 1 � denotes the z-transform of disturbance. Relation (2) is called

the compensation equation and the FIR filter having pulse transfer function 1 �
z � 1D f

�
z � 1 � is the absorption filter or the compensation polynomial.

Absorption filter Φ f
�
z � 1 ��� 1 � z � 1D f

�
z � 1 � is designed for a known class of

disturbances and its impulse response becomes identically equal to zero after n
sampling instants, where n 	 m0. Hence, compensation Eq. (2) may be considered
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as the absorption condition of a given class of disturbances. The condition can be
expressed as

Φ f
�
z � 1 � f

�
z � 1 �
� 0 � for t � kT 	 �

degΦ f � T � (3)

Extrapolation polynomial D f
�
z � 1 � is determined by an apriori information

about disturbance f
�
t � [3, 6]; nevertheless, it is simply resolved as

Φ
�
z � 1 ��� wden

�
z � 1 �
� from f

�
z � 1 ��� wnum

�
z � 1 �

wden
�
z � 1 � � (4)

In the case of stochastic disturbance s
�
t � , absorption filter (4) should suppress

all possible effects of disturbance on the system output. Thus, for a low frequency
disturbance s

�
t � , which can be generated by double integration of white noise, an

appropriate choice of absorption filter is Φ f
�
z � 1 �
� �

1 � z � 1 � 2, which corresponds
to absorption of linear (ramp) disturbance. Namely, in majority of practical ap-
plications an appropriate choice might be D

�
z � 1 ��� 2 � z � 1. According to (4),

prediction polynomial D
�
z � 1 ��� 2 � z � 1 rejects ramp disturbances; but, it enables

also the extraction of slow varying disturbances and it even suppresses the effects
of low frequency stochastic disturbances.

3 IMPACT Controlling Structure

In the IMPACT controlling structure shown in Fig. 1, the controlling process is
given by its pulse transfer function or by polynomials Pu

�
z � 1 � and Q

�
z � 1 � , and the

process dead-time is given by integer k. Within the control portion of the structure

Fig. 1. Modified controlling structure with conventional digital controller.

of Fig. 1 (shaded part) two internal models are included: the two-input nominal
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plant model

W 0 � z � 1 ��� z � 1 � kP0
u
�
z � 1 �

Q0
�
z � 1 � (5)

explicitly and model of immeasurable external disturbance embedded into discrete
filter A

�
z � 1 ��� C � z � 1 � . The internal nominal plant model and disturbance model

is treated together as a disturbance estimator. The portion has two control loops
which can be designed independently. The minor local control loop is designed by
the proper choice of polynomials A

�
z � 1 � and C

�
z � 1 � , while polynomials Pr

�
z � 1 �

and Py
�
z � 1 � in the main control loop are determined to achieve the desired system

set point response. For a minimal phase plant, the proper choice of polynomial
R
�
z � 1 � is R

�
z � 1 ��� P0

u
�
z � 1 � [2, 3].

Under the nominal case Pu
�
z � 1 ��� P0

u
�
z � 1 � , Q

�
z � 1 ��� Q0 � z � 1 � and for R

�
z � 1 ���

P0
u
�
z � 1 � , closed-loop transfer functions y

�
z � 1 ��� r � z � 1 � and y

�
z � 1 ��� w � z � 1 � are easily

derived from Fig. 1 as

y
�
z � 1 �

w
�
z � 1 � �

Q0 � z � 1 ���C � z � 1 ��� z � 1 � kA
�
z � 1 ���

C
�
z � 1 ���Q0

�
z � 1 ��� z � 1 � kPy

�
z � 1 ��� (6)

and
y
�
z � 1 �

r
�
z � 1 � �

z � 1 � kPr
�
z � 1 �

Q0
�
z � 1 ��� z � 1 � kPy

�
z � 1 � � (7)

In virtue of Eq. (7), the system set-point response can be adjusted by determin-
ing appropriate polynomials Pr

�
z � 1 � and Py

�
z � 1 � according to the desired system

closed loop transfer function y
�
z � 1 ��� r � z � 1 ��� Gde

�
z � 1 � . Then, the absorption of

an external disturbance, speed of disturbance transient response, and system ro-
bustness with respect to uncertainties and interval variations of plant parameters
are adjusted by choosing the structure and parameters of the disturbance estimator.

3.1 Rejection of disturbance

From Eq. (6), the steady-state error in the presence of a known class of external
disturbances will become zero if

lim
z � 1

�
1 � z � 1 � Q0 � z � 1 ���C � z � 1 ��� z � 1 � kA

�
z � 1 ���

C
�
z � 1 ���Q0

�
z � 1 ��� z � 1 � kPy

�
z � 1 ��� w

�
z � 1 ��� 0 (8)

In the case of a stable polynomial C
�
z � 1 � and a plant of nonminimal phase

lim
z � 1

Q0 � z � 1 �
C
�
z � 1 ���Q0

�
z � 1 ��� z � 1 � kPy

�
z � 1 ��� w

�
z � 1 ���� 0 (9)



Design of the IMPACT Controlling Structure Applying Conventional ... 365

Eq. (8) is reduced to

lim
z � 1

�
1 � z � 1 ���C � z � 1 ��� z � 1 � kA

�
z � 1 ��� w � z � 1 �
� 0 � (10)

As shown later, a stable polynomial C
�
z � 1 � is to be chosen according to the

desired speed of disturbance rejection and degree of system robustness and then
polynomial A

�
z � 1 � is determined to satisfy Eq. (10).

According to the principle of absorption, it is possible to design the observer
estimator that rejects any kind of expected disturbances. To this end, suppose the
class of disturbances having z-transform w

�
z � 1 ��� N

�
z � 1 ��� D � z � 1 � . Then, Eq. (10)

is satisfied if the following Diophantine equation holds

z � 1 � kA
�
z � 1 ��� B1

�
z � 1 � Φ �

z � 1 ��� C
�
z � 1 � (11)

where Φ
�
z � 1 � represents the absorbtion polynomial determined by Φ

�
z � 1 ���

D
�
z � 1 � . For example, to the polynomial and sinusoidal disturbances (w

�
t ���

∑m
i � 1 dit

i � 1 and w
�
t ��� sinωt ) correspond respectively Φ

�
z � 1 ��� �

1 � z � 1 � m  1 and
Φ
�
z � 1 ��� 1 � 2z � 1 cos ωTs � z � 2, where Ts is the sampling period.
A unique solution of the Diophantine equation, which plays a crucial role in

the design procedure of the disturbance estimator, does not exist [11]. Eq. (11)
is a linear equation of polynomials A

�
z � 1 � and B1

�
z � 1 � . Generally, the existence

of the solution of the Diophantine equation is given in [7]. According to Åström,
there exists always the solution of Eq. (11) for A

�
z � 1 � and B1

�
z � 1 � if the greatest

common factor of polynomials z � 1 � k and Φ
�
z � 1 � divides polynomial C

�
z � 1 � ; then,

the equation has many solutions. The particular solution of Eq. (11) is constrained
by the fact that the control law must be causal, i.e., degA

�
z � 1 ��! degC

�
z � 1 � . Hence,

after choosing a stable polynomial C
�
z � 1 � and degrees of polynomials A

�
z � 1 � and

B1
�
z � 1 � , and inserting the absorption polynomial Φ

�
z � 1 � which corresponds to an

expected external disturbance, polynomials A
�
z � 1 � and B � 1

�
z � 1 � are calculated

by equating coefficients of equal order from the left- and right-hand sides of Eq.
(11).

Polynomial A
�
z � 1 � obtained by solving (11) guarantees the absorption of the

expected class of disturbances, while the choice of C
�
z � 1 � affects the speed of dis-

turbance rejection, system robustness, and sensitivity with respect to the measure-
ment noise. Good filtering properties and system efficiency in disturbance rejection
are mutually opposite requirements. Therefore, to reduce the noise contamination,
the low-pass digital filter may be introduces to modify the internal model of distur-
bance into

A
�
z � 1 �

C
�
z � 1 � �

A f
�
z � 1 � A1

�
z � 1 �

C
�
z � 1 � (12)
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where A f
�
z � 1 ��� C � z � 1 � represents pulse transfer function of the low-pass filter and

A1
�
z � 1 � is polynomial which satisfies (11) and thus includes the internal model

of disturbance, implicitly. The lower bandwidth of the low-pass filter corresponds
to higher degree of system robustness and vice versa [2, 3]. Moreover, complex
disturbances require higher order of polynomial A

�
z � 1 � which will further reduce

system robustness with respect to mismatches of plant parameters.

3.2 Parameter setting

The main control loop of the system of Fig. 1 is designed to achieve a desired
set-point response determined by the system closed-loop transfer function

Gde
�
z � 1 �
� z � 1 � kHde

�
z � 1 �

Kde
�
z � 1 � (13)

According to (7), the desired closed-loop transfer function is achieved if the
following identity holds

z � 1 � kPr
�
z � 1 �

Q0
�
z � 1 ��� z � 1 � kPy

�
z � 1 �#"

z � 1 � kHde
�
z � 1 �

Kde
�
z � 1 � (14)

To satisfy (14), it is necessary to solve the Diophantine equation

Q0 � z � 1 ��� z � 1 � kPy
�
z � 1 ��� T

�
z � 1 � Kde

�
z � 1 � (15)

for polynomials Py
�
z � 1 � and T

�
z � 1 � and then to determine polynomial Pr

�
z � 1 � in

the main control loop of the system of Fig. 1 as

Pr
�
z � 1 ��� T

�
z � 1 � Hd f

�
z � 1 � (16)

where T
�
z � 1 � in (15) is previously chosen as a stable polynomial. Recall that, for

a minimal phase plant, R
�
z � 1 �
� P0

u
�
z � 1 � .

Characteristic polynomial Kde
�
z � 1 � is read from (13) or it may be determined

by the desired closed-loop system pole spectrum. To improve the system robust-
ness with respect to uncertainties of plant parameters, polynomial Kde

�
z � 1 � may be

extended by factors
n

∏
i � 1

�
1 � biz � 1 � i � 0 ! bi ! 0 � 9 � (17)

At the beginning, the values of bi and integer n are to be chosen as small as
possible and then they can be increased gradually until the required criterion of
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robust stability is satisfied. At the same time, calculated polynomial Pr
�
z � 1 � should

be modified into

Pr
�
z � 1 ��� ∏n

i � 1
�
1 � b � 1

i � i
∏n

i � 1
�
1 � b1 � i

(18)

in order to save the achieved set-point response and to keep unchanged the steady-
state value of system output.

4 IMPACT Structure with Conventional Controller and Internal
Models

As it is shown in the previous section, the main control loop and disturbance esti-
mator of the IMPACT structure may be designed independently. Hence, the control
structure with conventional digital PI or PID controllers, often used in control of
slow varying industrial processes, may be modified by including a local control
loop with internal models in order to improve the robustness of system perfor-
mance and to reject an expected class of immeasurable external disturbances. In
doing so, the IMPACT structure of Fig. 1 is redrawn into the controlling structure
with PI controller, shown in Fig. 2.

Fig. 2. Modified controlling structure with conventional digital controller.

The design procedure of the structure of Fig. 2 will be illustrated by the exam-
ple of control system having the control plant described by

W
�
s �
� e � 10s

�
1 � s � � 1 � 0 � 6s � � 1 � 0 � 15s � � 1 � 0 � 1s � � (19)

In the low frequency band, the nominal plant model is identified as [12, 13]

W 0 � s �
� e � 10 $ 5s
�
1 � 1 � 5s � (20)
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The zero-hold equivalence pulse transfer function of the nominal plant, with
sampling time Ts � 0 � 1875 s, is calculated as

W 0 � z � 1 ��� z � 1 � kP0
u
�
z � 1 �

Q0
�
z � 1 � � 0 � 1175z � 57

1 � 0 � 8825z � 1 (21)

The sampling time is chosen to be Ts � τ � 56 where τ is the process dead-time.
Since the control plant is of minimal phase, R

�
z � 1 �%� P0

u
�
z � 1 �%� 0 � 1175 is to be

selected.
In the main control loop of the system of Fig. 2, the conventional digital PI

controller
GPI

�
z � 1 ��� Kp

�
1 � Ts

TI

1
1 � z � 1 � (22)

is used and its parameters are set by using Dahlin’s algorithm to obtain [14]

Kp � 1 � e � λTS

K
�
e

TS
TI � 1 � � 1 � k

�
1 � e � λTS ���

TS
TI

� e
TS
TI � 1

(23)

With K � 56, T1 � 1 � 5, K � 1, and Dahlin’s tuning parameter λ � 1 � 1 � 5, one
obtains Kp � 0 � 1164 and TS � TI � 0 � 1331.

The inner control loop of the system of Fig. 2 is designed by the nominal
plant model (21), polynomial R

�
z � 1 �&� P0

u
�
z � 1 �%� 0 � 1175, and digital filter (12).

In (12), polynomial A1
�
z � 1 � represents the implicit model of disturbance obtained

by solving Diophantine equation (11), and A f
�
z � 1 ��� C � z � 1 � is the low-pass digital

filter which should be selected to improve the system robustness and to reduce the
system sensitivity with respect to the measurment noise.

The solution of Diophantine equation (11) with relatively large dead-time k
is rather difficult. To simplify the solution, we propose an alternative approach.
Namely, if we assume prediction polynomial D

�
z � 1 ��� 2 � z � 1 or prediction filter

Φ
�
z � 1 ��� �

1 � z � 1 � 2 that corresponds to the extraction of ramp disturbances, then
polynomial A1

�
z � 1 ��� A ' k (

1

�
z � 1 � in (12) may be split into

A ' k (1

�
z � 1 �
� A ' 0 (1

�
z � 1 ��� k

�
1 � z � 1 � (24)

where A ' 0 (
1

�
z � 1 � and A ' k (

1

�
z � 1 � are the solutions of Diophantine equation for k � 0

and arbitrary k, respectively. Of course, the solution of equation

z � 1A ' 0 (1

�
z � 1 ��� B1

�
z � 1 � Φ �

z � 1 ��� C
�
z � 1 � (25)
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depends upon the assumed absorption filter Φ
�
z � 1 � and low-pass filter or polyno-

mial C
�
z � 1 � .

Thus, if we assume Φ
�
z � 1 � and Butterworth filter A f

�
z � 1 ��� C � z � 1 � of third or-

der, having the bandwidth of fo � 0 � 05 � � 2Ts �&� 0 � 05 � � 2 ) 0 � 1875 ��� 0 � 1333 Hz,
the implicit internal model of disturbance (12) is derived as

A
�
z � 1 �

C
�
z � 1 � �

0 � 0295 � 0 � 0593z � 1 � 0 � 0012z � 2 � 0 � 0577z � 3 � 0 � 0290z � 4

1 � 2 � 6862z � 1 � 2 � 4197z � 2 � 0 � 7302z � 3 (26)

In all the simulation runs that follow, reference signal r
�
t ��� 1 ) � t � 10 � is

applied and the system is subjected by the slow varying disturbance contaminated
by the measurement noise. With PI controller (22) and implicit model of distur-
bance (26), the system of Fig. 2 was simulated and the results of the simulation
runs are shown in Fig. 3. Trace 1 of Fig. 3 shows that, dispite of the I-action in the
main controller, the system does not reach the required steady-state value, due to
the presence of disturbance. However, after introducing the local control loop, the
system eliminates the disturbance in the steady-state (see trace 2 of Fig. 3). Notice
that prediction polynomial D

�
z � 1 ��� 2 � z � 1 embededed into the implicit model of

disturbance (26) has a derivative character and thus produces fluctuations around
the steady-state value of the system output.

Fig. 3. 1 - Output of the system without the local loop. 2 Output of the system with the
local loop designed with the internal model of ramp disturbance. 3 Disturbance.

In the second simulation, the same sampling time Ts * 0 + 1875 s is applied and
the local control loop is designed with the same low-pass filter and absorption filter
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Φ
�
z � 1 �&� 1 � z � 1 or prediction polynomial that corresponds to a constant distur-

bance. In this case, the following implicit model of disturbance is derived

A
�
z � 1 �

C
�
z � 1 � �

0 � 00042 � 0 � 00125z � 1 � 0 � 00125z � 2 � 0 � 00042z � 3

1 � 2 � 6862z � 1 � 2 � 4197z � 2 � 0 � 7302z � 3 (27)

Fig. 4. Output of the system without the local loop. 2 Output of the system with the local
loop designed with the internal model of constant disturbance. 3 Disturbance.

With (27), the system is unable to eliminate the disturbance completely (see
trace 2 of Fig. 4). However, fluctuations of the system output are now notably
suppressed (see traces 2 of Figs. 3 and 4).

Fig. 5 shows the simulation of the system in which the local loop is designed by
the internal model of ramp disturbance and the low-pass filter of reduced bandwidth
fo � 0 � 025 � � 2Ts ��� 0 � 025 � � 2 ) 0 � 1875 �%� 0 � 0667 Hz. Now, one obtains

A
�
z � 1 �

C
�
z � 1 � �

0 � 0047 � 0 � 0049z � 1 � 0 � 0002z � 2 � 0 � 0092z � 3 � 0 � 0046z � 4

1 � 2 � 8430z � 1 � 2 � 6980z � 2 � 0 � 8546z � 3 (28)

By comparing Figs. 3 and 5, one can notice that the fluctuations of the system
output in Fig. 5 are radically reduced.

Finally, the local loop is designed by the low-pass filter having fo �
0 � 025 � � 2Ts �,� 0 � 025 � � 2 ) 0 � 1875 �-� 0 � 0667 Hz and prediction polynomial
D
�
z � 1 �
� 1 corresponding to constant disturbances. In this case, one obtains

A
�
z � 1 �

C
�
z � 1 � �

0 � 0000561 � 0 � 0001682z � 1 � 0 � 0001682z � 2 � 0 � 0000561z � 3

1 � 2 � 8430z � 1 � 2 � 6980z � 2 � 0 � 8546z � 3 (29)
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Fig. 5. Output of the system without the local loop. 2 Output of the system with the local
loop designed with the internal model of ramp disturbance. 3 Disturbance.

The simulation results are shown in Fig. 6. Notice that now fluctuations of
the system output disapear, but the disturbance is not completely rejected from the
steady-state value of the system output.

Fig. 6. Output of the system without the local loop. 2 Output of the system with the local
loop designed with the internal model of ramp disturbance. 3 Disturbance.
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5 Experimental Setup

The experimental setup is organized by laboratory Process Trainer Feedback PT-
326. The trainer consists of the process and control equipment. It has the char-
acteristics of a large plant, enabling transport lag, process time constant, system
response, P and PI control laws etc. to be demonstrated. In the trainer, the air
drawn from the atmosphere by a centifugal blower is driven past a heater grid and
through a length of tubing to the atmosphere again. The process consists of heating
the air flowing in the tube to a desired temperature level, and the purpose of the
control equipment is to measure the air temperature, compare it with the set-value
and generate a control signal which determines the amount of electrical power sup-
plied to the correcting element, in this case a heater mounted adjacent to the blower.
The experimental setup is shown in Fig. 7. The digital control law is implemented

Fig. 7. Experimental setup.

on a personal computer. The sampling time of 0.11 is chosen and A/D and D/A
coverters having resolution of 12 bits are used. The electric power of the range
from 15 W to 85 W supplied to the wire grid heater having resistance of 120 Ω, is
controlled by the thyristor rectifier having voltage output of 0-10 V. The air flow is
changed by the segment cap with angular displacement α ./� 10 01� 170 02� . The tem-
paratire sensor is thyristor mounted into a plastic cork and its sensitivity depends
on angular position β between the cork and the direction of air flow.

The control plant is nonlinear and time-varying, and it belongs to the class of
industrial processes that can be approximated, in the vicinity of working point, by
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the first-order nominal plant model

Wou
�
s �
� Ke � τs

1 � Ts
� (30)

The plant parameters are changeable and they vary with the nominal working
conditions (amount of airflow, environment temperature, tube temperature, angu-
lar position β , desired temperature, temperature of grid heater etc.). For assumed
transfer function (30) of the controlling process and working regime determined by
unom � 5V , α � 50 0 , β � 30 0 , the parameter identification is performed [13]. By
averaging identification results from nine sets of measurement data, the following
values of plant parameters are obtained: K � 0 � 44, T � 0 � 72, and τ � 0 � 22.

These values are used for setting of P- and I-action in the PI digital con-
troller according to Dahlin’s algorithm [14]. Dahlin’s tuning parameter λ � 0 � 25
is adopted. In the local control loop of the IMPACT structure, the third-order low-
pass Butterworth filter having bandwidth of fo � 0 � 05 f s � 2 � 0 � 23 Hz is employed.
In the design of disturbance estimator, the internal models of constant and ramp
disturbances are used. The experimental measurements are also given in the case
when the local control loop is excluded. To enable the comparision of the results
obtained from different conrol structures, the deterministic disturbance is set by the
software. Namely, to the measured output, after A/D conversion, external distur-
bance w

�
t � is added by the program. Actually, this disturbance corresponds to a

real situation that might occur in the system when additional disturbances due to

Fig. 8. Disturbance.

system nonlinearities are neglected. By inserting disturbance w 3 t 4 one moves the
process working point from the given set-point. In other words, it is equivalent to
the change of air temperature for amount of w 3 t 4 that could occur due to variations
of air and/or tube temperatures. In doing so, the comparision of experimental mea-
surements and simulation results are possible. The simulation runs are performed
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in the vicinity of the nominal workig regime, when interval changes of the plant
parameters and measurement noise do not exist, and when the system linearity is
implied. For the sake of evidency, the experimental measurements and simulation
results are given together in Figs. 9 and 10.

(a) (b)

Fig. 9. System behaviour in the presence of disturbance w(t), with diconnected inner control loop.
(a) 1 - Reference. 2 - System output (simulated). 3 - System output (real). (b) 1 - Control variable
(V) (real). 2 Control variable (simulated).

Fig. 9 illustrates the system behaviour in the presence of disturbance w(t), when
the local control loop is disconnected. Fig. 9 (A) shows the system constant refer-
ence and system output (simulated and real). In Fig. 9 (B) the simulated and real
control variables are shown. Fig. 9 visualizes the agreement of the traces obtained
by simulation runs and by measurements on the experimental setup. However, due
to the presence of disturbance, the system output greatly fluctuates around its ref-
erence value.

The traces of Fig. 10 illustrate the system behaviour in the presence of w
�
t �

and when the local control loop is connected. Figs. 10 (A) and (B) correspond to
the case when the local control loop is designed by the digital filter and internal
model of constant disturbance. The traces of Figs. 10 (C) and (D) are obtained
when the local control loop is designed by digital filter and internal model of ramp
disturbance. From Fig. 10 (A) it is seen that the use of internal model of constant
disturbance radically reduces effects of disturbance on the system output. However,
when the local control loop is designed by the internal model of ramp disturbance,
the disturbance is completely rejected from the steady-state value of system output
(see Fig. 10 (B)). The fluctuations of the system output around its steady-state
value, in Fig. 10 (C), arise due to the measurement noise that could be further
filtered by a digital filter of a lower bandwith.
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(a) (b)

(c) (d)
Fig. 10. (a) and (b) System behaviour in the presence of disturbance w(t), with inner control loop
designed by the internal model of constant disturbance. (a) 1 - Reference. 2 - System output (simu-
lated). 3 - System output (real). (b) 1 - Control variable (V) (real). 2 Control variable (simulated).
(c) and (d) System behaviour in the presence of disturbance w 5 t 6 , with inner control loop designed by
the internal model of ramp disturbance. (c) 1 - Reference. 2 - System output (simulated). 3 - System
output (real). (d) 1 - Control variable (V) (real). 2 Control variable (simulated).

6 Conclusions

The IMPACT controlling structure has been described and its structural and pa-
rameter synthesis are given in detail. The structure design requires the solution of
two Diophantine equations and it might produce difficulties particularly when the
structure is to be implemented in industrial applications. Therefore the structural
modification is developed in order to simplify the parameter synthesis and to adjust
the structure to common industrial applications.

The modified IMPACT structure is rather simplified and has the form of a con-
ventional control loop comprising PI or PID control laws and added a local minor
loop which consists of the internal nominal plant model and internal model of the
expected class of immeasurable external disturbances embedded into the distur-
bance estimator. It is shown that the main control loop with various conventional
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controllers and the local control loop may be designed independently. The overall
control algorithm has a relatively small number of control parameters having clear
physical meanings.

The disturbance estimator comprises the internal plant model, internal model
of disturbance implicitly, and low-pass digital filter of selected bandwidth fo. The
lower bandwidth fo enables lower system sensitivity to measurement noise, higher
degree of system robustness to uncertainties and interval change of plant parame-
ters, smooth variations of controlled variable, but it reduces the efficiency of dis-
turbance extraction.

The experimental results show that the disturbance estimator designed by the
model of constant or slow varying disturbance slows down the speed of disturbance
extraction, increases the system robustness and reduces the system sensitivity to the
measurement noise. To improve the system efficiency in disturbance extraction,
more complex internal models of disturbances (ramp and parabolic, for example)
may be embedded into the disturbance estimator. In this case, an adequate low pass
filter should be included within the local control loop of the system. The results of
simulation runs and experimental measurements verified the theory and efficiency
of the proposed controlling structure.
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