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Applicatin of the α-Approximation for Discretization of
Analogue Systems

Tomislav B. Šekara and Milić R. Stojić

Abstract: The method for discretization of analogue systems using the α-approximation
is presented. A generalization of some of the existing transformation methods is also
done. A comparative analysis, through the corresponding examples involving several
known discretization methods, is carried out. It is demonstrated that the application
of this α-approximation allows the reduction of discretization error compared to other
approximation methods. The frequency characteristics of the discrete system obtained
by these transformations are approximately equal to these of the original analogue sys-
tem in the basic frequency range.
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1 Introduction

The design of a classical analogue system in combination with a digital system
often requires formulation of a discrete model or a discrete equivalent. This can
be done either by employing the method of invariable response to a pulse or step
excitation or by a method involving hold circuits or by a series of other approximate
methods. The procedure of transformation of a continuous transfer function to a
digital equivalent (pulse transfer function) should preserve the essential properties
of the analogue system. First of all, the transformation has to be rational, i.e.,
starting from an analogue transfer function, which is a real rational function of the
complex frequency s � one should obtain a rational function of the complex variable
z. Secondly, for the purpose of preserving stability of the system, the poles of the
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analogue transfer function lying in the left half of the s-plane have to be mapped
inside the unit circle centered at the origin of the z-plane. Thirdly, it is desirable
that the transformation does not increase the order of the transfer function, that the
steady state gains are equal, etc. In the process of discretization of a continuous
system, one can use the well-known mapping of the s-domain into z-domain by
substitution

z � esT � (1)

where T is the sampling period. Transformation (1) maps the left half of the s-plane
into the interior of the unit circle in the z-plane. This means that the stability of the
discrete system has been preserved if all poles of the discrete system are inside the
unit circle.

One of the basic goals of discretization is fulfilling the need for practical real-
izations of, e.g., adequate control laws or some other digital systems focused at the
goal that the digital equivalent is as close as possible to the corresponding contin-
uous system. For example, the synthesis of digital filters of IIR type is most often
carried out by an appropriate transformation of the transfer function of the corre-
sponding analogue filter. This approach to the synthesis procedure is justified by
several reasons. First of all, the procedure of synthesis of analogue filters (particu-
larly low frequency filters) has been studied for more than sixty years so that there
are developed procedures for many important practical situations.

The paper is divided into four sections including the introduction and conclu-
sions. The second section presents a brief review of the basic discretization meth-
ods of the classic analogue systems. The third section presents the novel method for
discretization of continuous systems together with a comparative analysis through
the corresponding examples of several other known methods for discretization of
such systems.

2 A brief review of the basic discretization methods

The basic definition of the pulse transfer function is

G
�
z ��� Z � g � t ����� ∞

∑
k 	 0

g
�
kT � z 
 k � Z � L 
 1 �G � s ���� � (2)

where Z and L 
 1are the operators representing the Z-transform and inverse Laplace
transform, respectively. The pulse transfer function H

�
z � of a system containing

zero-order hold can be written as

H
�
z ��� �

1 � z 
 1 � 1
2πi

σ � i∞�
σ 
 i∞

z
z � esT

G
�
s �

s
ds � eσ T ��� z � (3)
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where T is the sampling period and σ is a real number such that all poles of function
G
�
s ��� s have real parts smaller than σ and lim

s � ∞
G
�
s ��� 0. Applying the calculus of

residues to (3), after rearrangement, one could write

H
�
z ��� �

1 � z 
 1 � ∑
k

Res � z
z � esT

G
�
s �

s � s 	 sk

(4)

Transfer function defined by (3) or (4) can also be obtained on the basis of the
expression

H
�
z ��� �

1 � z 
 1 � Z � L 
 1 � G �
s �

s ��� (5)

Notice that from (2) one can formally obtain G
�
z � by substitution s � ln(z ��� T , i.e.,

G
�
z ��� G � � s ����� s 	! ln z "$# T (6)

Where G � � s � is the Laplace transform of the pulse sequence
g � � t �%� ∑∞

k 	 0 g
�
kT � δ � t � kT � . The above described transformations (2), (4), and

(5) are direct and they allow transformation of transfer function G
�
s � of a contin-

uous system to a zero-hold equivalent pulse transfer function [1], [2]. It should
be noticed that besides these direct discretization methods there are also indirect
discetization methods which are approximate and are based to a transformation of
the type

s � f
�
z � � (7)

where f
�
z � is the corresponding real rational function of complex variable z ob-

tained on the basis of relation (1).
For the purpose of discretization of an analogue system, the use is often made

of the so called method of matching poles and zeros (MPZ) [3].
It is shown [4] that when G

�
s � =1/sn , then

HJ
�
z �&� T n

n!
Bn
�
z ��

z � 1 � n � (8)

where Bn
�
z � are given for several values of n ' N.

B1
�
z ��� 1

B2
�
z ��� z ( 1

B3
�
z �&� z2 ( 4z ( 1

B4
�
z ��� z3 ( 11z2 ( 11z ( 1
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B5
�
z ��� z4 ( 26z3 ( 66z2 ( 26z ( 1

B6
�
z ��� z5 ( 57z4 ( 302z3 ( 302z2 ( 57z ( 1

.................................................................

Bn
�
z ��� bn

1zn 
 1 ( bn
2zn 
 2 (*)�)�)+( bn

n

Here bn
k � kbn 
 1

k ( �
n � k ( 1 � bn 
 1

k 
 1 , k � 2 � n � 1, and bn
1 � bn

n � 1. It can also be
established that B2

�
z � and B3

�
z � have one unstable zero (zero outside of the unit

circle with the origin of the z-plane), B4
�
z � and B5

�
z � two unstable zeros, B6

�
z �

three unstable zeros, etc. Other details concerning zeros in the discrete transfer
function and Jury’s polynomials Bn

�
z � are available in the literature [4],[5],[6].

3 α-approximation

Starting from basic relation (1), the following equivalent relation can be written

z � esT � es  $ 1 
 α " T � α T "
� e  1 
 α " T s

e 
 α T s
� α ',� 0 � 1 � (9)

After the numerator and denominator on the right hand side of (9) have been ex-
panded in series and all member of the second and higher orders neglected, expres-
sion (9) becomes

z � ∑∞
n 	 0

� � 1 � α � T s � n
n!

∑∞
k 	 0

� � 1 � k � α T s � k
k! -

1 ( �
1 � α � T s

1 � α T s
(10)

By solving (10) for complex variable s, the α-approximation of first order is ob-
tained

s � f
�
z � α ��� 1

T
z � 1

1 ( α
�
z � 1 � (11)

Parameter α can be obtained by a physical explanation (Fig. 1) in the sense of
a continuous increase of the part of the surface of the basic rectangle of integration
sum, in particular from the surface of the basic rectangle of the lower integration
sum to the surface of the basic rectangle of the upper integration sum. This enables
the possibility of vertical modification of Z-transform such as, e.g., modified Z-
transform along time axis. Generally speaking, direct application of the first order
α-approximation for the purpose of discretization of continuous systems should
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Fig. 1. Physical interpretation of the α-approximation of first order, for
variable parameter α

ensure mapping stability (a stable analogue system is mapped into a stable discrete
system). In order to analyze this problem, let us use Fig. 2 which shows mapping
of the left half of the s-plane (a) into a circle in the z-plane (b) by applying the
suggested approximation (11). As is known from the theory of stability of digital
systems, mapping is stable if the left half of the s-plane is mapped inside the unit
circle of the z-plane. Fig. 2 shows clearly that for values of parameter α . 0.5 the
first order α-approximation results to a stable mapping. If the value of parameter
α is less than 0.5, the left half of the s-plane is mapped into a unit circle in the
z-plane exceeding the boundaries of the unit circle. The center and radius of the
corresponding circle are C

�
1 � 1 � � 2α � � j0 � and R � 1 � � 2α � , respectively.

It should be noted that approximation s � 8
7T

1 
 z / 1

1 � z / 1 # 7 , which has been intro-
duced and analyzed [7] with respect to other approximations, corresponds to the
α-approximation for α � 7 � 8. This shows that the α-approximation, depending on
the value of α , unifies a number of the approximation, some of them are presented
in Table 1. In other words, the α-approximation can offer an additional degree of
freedom in the course of an efficient discretization of a particular analogue system.

The efficiency of the α-approximation may be looked at on the basis of the
following equation:

1
sn � n

∏
k 	 1

1 ( αk
�
z � 1 �

z � 1
T (12)

This means that a separate parameter α k ' [0,1], k � 1, n is attached to each integra-
tor 1/s offering a considerable degree of freedom in achieving efficient discretiza-
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Fig. 2. Mapping of the left half of the s-plane applying the α-approximation first order to a
circle of radius R centered at C in the z-plane

Table 1. Generalization of some known transformations for discretization of analogue systems
[8],[9],[10],[11],[12]

r α s � z approxi-
mation

Name of approximation

- 0
�
z � 1 ��� T Euler approximation of first or-

der (FD)
1 1

2
2
T

z 
 1
z � 1 Tustin approximation (BL)

0 1 1
T

z 
 1
z Euler approximation of second

order (BD)
- α '0� 0 � 1 � 1

T
z 
 1

1 � α  z 
 1 " α � approximation of first order
r '1� 0 � 1 � α ' � 0 2 5 � 1 �

α � 1 � � 1 ( r � 1 � r
T

z 
 1
z � r Parametric BD-BL

approximation
- - s � u 1 
 z
 v � wz General form of first-order s � z

approximation

tion of particular continuous systems.
Example 1. Let be given an analogue transfer function describing suppressed

oscillations
G
�
s ��� 1

s2 ( 0 2 4s ( 0 2 68
(13)

Determine discrete transfer function G
�
z � by using previously introduced standard

approximations, given in Table 1, and make a comparison with the α-approximation
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given in the same table.
a1 � The use is made directly by Euler’s approximation of first order from Table

1 with T � 1 to obtain

GE1
�
z ��� 25

25z2 � 40z ( 32
(14)

����������	


 � �
 �� 
 � �





��

�

���



��
�������������

Fig. 3. Step response of the system in the continuous and discrete domains
for G 3 s 4 and GE1 3 z 4

a2 � By using directly the Tustin approximation from Table 1 with T � 1, one
obtains

GT
�
z �&� 25

�
z ( 1 � 2

137z2 � 166z ( 97
(15)

a3 � By using directly the Euler approximation of second order from Table 1
with T=1, one obtains

GE2
�
z ��� 25z2

52z2 � 60z ( 25
(16)

The α-approximation of discretization will be illustrated by the above exam-
ple and compared to the results obtained by (a1 � to (a4 � . By applying direct α-
approximation of the first order (11) to relation (13), one obtains discrete transfer
function

Gα
�
z ��� a2 z2 ( a1 z ( a0

b2 z2 ( b1 z ( b0

� (17)
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Fig. 4. Step response of the system in the continuous and discrete domains
for G 3 s 4 and GT 3 z 4

where

a0 � 25T 2 � 1 � α � 2
a1 � 50α

�
1 � α � T 2

a2 � 25α2 T 2

b0 � 17α2 T 2 ( 2α T
�
5 � 17T �5( 17T 2 � 10T ( 25

b1 �6� 34α2 T 2 � 2α T
�
10 � 17T �5( 10

�
T � 5 �

b2 � 17α2 T 2 ( 10α T ( 25
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Fig. 5. Step response of the system in the continuous and discrete domains
for G 3 s 4 and GE2 3 z 4

Determine such α and T that poles zk of discrete transfer function Gα
�
z � coin-

cide with poles pk of transfer function G
�
z � on the basis of relation zk=eT pk . This
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means that discrete transfer function Gα
�
z � should have poles in the z-plane z1 7 2 �

e 
 0 8 2 9 j 0 8 8 � 0 2 5704 : j 0 2 5873. By numerical solution of equations b0
b2
� z1z2 �

e 
 0 8 4, b1
b2
��� � z1 ( z2 �;�<� 2e 
 0 8 2 cos

�
0 2 8 � , one obtains α=0.53401 and T=1.06063.

a4 � By introducing the obtained parameters α and T in the right hand side of
(17), one obtains discrete transfer function

Gα
�
z ��� 2 2 812

�
2 2 67z ( 2 2 329 � 2

90 2 29z2 � 103z ( 60 2 52
(18)
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Fig. 6. Step response of the system in the continuous and discrete domains
for G 3 s 4 and Gα 3 z 4

It can be seen that, with the α-approximation of first order, it is possible to
make corrections of the amplitude and phase errors depending on the values of
parameters α and T of the second order system which is most often met in practice.
If a priory discretization period T is fixed, there remains parameter α available
for optimization of the discrete transfer function in accordance with the practical
need important for achieving minimum errors in the phase and amplitude frequency
characteristics.

E.g., for the analogue system (13), by relation (12) directly and by specifying
discretization time T , the discretized analogue system becomes

Gα1 7 α2
�
z ��� 1=

1
T

z 
 1
1 � α1  z 
 1 "+>@? 1

T
z � 1

1 ( α2
�
z � 1 �BA ( 0 2 4 ? 1

T
z � 1

1 ( α1
�
z � 1 �CA ( 0 2 68

(19)
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a5 � If discretization time is adopted to be T=1, in accordance with the previ-
ous examples, and α1 and α2 are determined so that poles zk of discrete transfer
function Gα1 7 α2

�
z � coincide with poles pk of transfer function G

�
s � on the basis of

relation zk � eT pk ,one obtains α1=0.71320 and α2=0.32120 and discrete function
(19) becomes

Gα1 7 α2

�
z ��� 0 2 22908

�
z ( 2 2 1133 � � z ( 0 2 40213 �

1 2 2843z2 � 1 2 4651z ( 0 2 86086
(20)
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Fig. 7. Step response of the system in the continuous and discrete domains
for G 3 s 4 and Gα1 D α2 3 z 4

On the basis of the presented step responses in the continuous and discrete
domains, it is straightforward to notice that errors of the approximation relations of
Table 2 and of the α-approximation of the first order in this example are smaller
compared to those of the classical approximations of Table 1 for α '0E 0, 0.5, 1 F .

Let us verify numerically these results and present them in Table 2 by using the
following integral criterion of the squared error for each cell over the interval of
observation in all previous examples, a1 � to a5 � , with reference to the exact value.

J � N 
 1

∑
k 	 0

? �  k � 1 " T
kT

�
g
�
t �;� gap

�
kT ��� dt A 2 � (21)

where:
g
�
t � - exact value of the step response of continuous system in G

�
s � , (13)

gap(kT) - the corresponding step response of discrete system Gap
�
z � obtained

by approximations a1 � to a5 � ,
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Table 2. The values of the integral criterion of the squared error for each cell in the interval of
observation N G 30 of the previous examples ak, k G 1 HJIKILIKH 5

Example1. (a1) (a2) (a3) (a4) (a5)
J - 0 2 0719 0 2 7598 0 2 0714 0 2 0022

N- number of cells in the interval of observation.
By using frequency characteristic given in Fig. 8, one can notice the advanta-

geous merits of the α-approximation for discretization of analogue systems which
gave characteristic a5 in example a1 � .
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Fig. 8. The amplitude and phase characteristics of the analogue G 3 s 4 (-ideal) and the cor-
responding discrete approximations GT 3 z 4 (-a2), GE2 3 z 4 (-a3), Gα 3 z 4 (-a4), and Gα1 D α2 3 z 4
(-a5) for Example 1

Example 2. Let be given a transfer function describing stationary oscillations

G
�
s ��� 0 2 64

s2 ( 0 2 64
(22)

Determine pulse transfer function G
�
z � , comprising the zero-order hold circuit, by

using previously introduced standard approximations given in Table 1 and make a
comparison with the α-approximation given in the same table.
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b1 � Let us form function

GHO
�
s 
 1 ��� 0 2 64s 
 3

1 ( 0 2 64s 
 2

�
1 � e 
 sT �M2 (23)

By the corresponding substitution s in (23) on the basis of relation (12) and taking
that T=1, one obtains zero-hold equivalence pulse transfer function

Gα1 7 α2
HO

�
z ��� 0 2 64

�
1 � z 
 1 �

z � 1
1 ( α0

�
z � 1 � ? z � 1

1 ( α1
�
z � 1 � z � 1

1 ( α2
�
z � 1 � ( 0 2 64 A (24)

Let us determine such α0, α1and α2 so that poles zk of discrete transfer function
Gα1 7 α2

�
z � coincide with poles pk of transfer function G

�
s � on the basis of relation

zk � eT pk , one obtains α0=0.5, α1=0.0951 and α2=0.9049 and discrete function
(24) becomes

Gα1 7 α2
HO

�
z ��� 0 2 026104

�
z ( 0 2 10511 � � z ( 1 � � z ( 9 2 5134 �
z
�
z2 � 1 2 3934z ( 1 � (25)

Fig. 9 shows step response of Gα1 7 α2
HO

�
z � together with step response of continuous

function G
�
s � .
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Fig. 9. Step response of the system in continuous and discrete domains for
G 3 s 4 and Gα1 D α2

HO
3 z 4

b2 � By using directly α-approximation with T=1, one obtains pulse transfer
function

Gα
HO � 16

z

�
1 ( α

�
z � 1 ��� 3�

16α2 ( 25 � z2 � 2
�
16α2 � 16α ( 25 � z ( 16α2 � 32α ( 41

� (26)
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which is stable for parameter α N 0.5. This implies all α-transformations covered
by the set of values 0.5 � α � 1 where also belong the Tustin and Euler trans-
formations of second order. If it is assumed that the corresponding roots of the
characteristic equation are at the boundary of stability in both discrete and contin-
uous systems, it follows that α � 0 2 5 (Tustin’s approximation), i.e., the discrete
transfer function is

GT
HO

�
z �&� 2

�
z ( 1 � 3�

29z2 � 42z ( 29 � z (27)

Fig. 10 shows step response of GT
HO

�
z � together with the step response of continu-

ous function G
�
s � .

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 10. Step response of the system in continuous and discrete domains
G 3 s 4 and GT

HO 3 z 4
On the basis of Fig. 9, one may conclude that in Example 2 the step re-

sponse of the discrete equivalent (25) obtained by using α-approximation coin-
cides fairly with the step response of the continuous system (23). The maximum
discrepancy ε � max � g � kT �O� gap

�
kT � � � 0 2 052, obtained in the interval of obser-

vation t 'P� 0 � 30 � corresponds to the relative error of less than 3 % with respect
to the exact value. The maximum error obtained in this example, applying the
α-approximation for α � 0 2 5 (Tustin’s approximation for the same interval of ob-
servation), is ε � 1 2 0001. This error arises as a consequence of the phase delay
brought about by the Tustin approximation. It can be best shown by using fre-
quency diagrams shown in Fig. 11.

Example 3. Determine discrete model of the continuous system represented by
the Butterworth filter of sixth order having transfer function GBF

�
s � for the purpose

of synthesizing IIR filter functions having sampling period T � 0.5, i.e., Ω � ωT �
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Fig. 11. The amplitude and phase characteristics of the analogue G 3 s 4 (-ideal) and digital
Gα1 D α2

HO
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HO 3 z 4S3RQ b2) for Example 2.

ω � 2, applying approximation polynomials [13]. Then, compare the amplitude and
phase characteristics of the analogue and digital filters and also their step responses.

GBF
�
s ��� 1�

s2 ( 2cos 5π
12 s ( 1 � � s2 ( 2cos π

12 s ( 1 � � s2 (UT 2 s ( 1 � (28)

Applying α-approximation on the basis of relation (12) on the previously obtained
relation of the analogue Butterworth filter (28), one obtains equivalent transfer
function HBF

�
z � of the digital Butterworth filter

HBF  z "V	 K
 z � 1 8 6406 "R z � 0 8 99664 "J z � 0 8 86104 "R z � 0 8 84193 "R z � 0 8 79103 "J z � 0 8 55494 " z2 
 1 8 2236z � 0 8 38063 "R z2 
 1 8 3175z � 0 8 49307 "W z2 
 1 8 5562z � 0 8 77196 " 7 (29)

where K � 1 2 1816 X 10 
 4.

4 Conclusion

For the purpose of discretization of continuous systems depending on their pur-
pose, a series of approximation methods has been developed. A generalization of
some of the existing approximations for discretization (α-approximation) of ana-
logue systems has been carried out. This paper has presented α-approximation
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Fig. 12. The amplitude and phase characteristics of the analogue GBF 3 s 4 (-1) and digital
HBF 3 z 4 (-2) Butterworth filters
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Fig. 13. The step responses of the analogue GBF 3 s 4 and digital HBF 3 z 4
Butterworth filters

offering more efficient discretization of analogue systems. The application of this
α-aproximation has also some practical implications, e.g., in the synthesis of IIR
filters for digital signal processing it allows modular solutions.
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References
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