
FACTA UNIVERSITATIS (NIŠ)
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Abstract: Complexity and large size of contemporary control, communication, and
computer systems impose strong challenges to methods of their mathematical mod-
elling, design, and testing. Classical approaches to their formal specification by ex-
ploiting theory of systems on groups of real numbers R and complex numbers C,
often do not fulfill requirements of practice. For that reason, theory of systems on
groups different from R and C has been developed. Differential operators and spectral
(Fourier) analysis on groups play the same important role in such systems as in the
case of systems modelled by signals defined on R and C.

This paper first briefly reviews some aspects of research in system theory on
groups and then presents an extension of the notion of Gibbs differentiation to matrix-
valued functions on finite non-Abelian groups.
Keywords: System theory, Differential operators, Spectral techniques, Linear Sys-
tems.

1 Introduction

Signals representing information in communication and control systems demand
in processing the use of strongly time-invariant systems, and shift-invariant and
rotational-invariant systems in case of speech and images, respectively. This means
mathematically that the groups of real numbers R and complex numbers C are the
natural domains for the definition of signals. The theory of differential calculus and
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Fourier analysis are two very important formal methods in the study of such signals
and systems.

However, in some areas of contemporary engineering practice, as for instance,
in computer engineering, consideration of systems defined on various other groups
may be required [1], [2]. Conversely, methods developed for such (generalized)
systems may provide advantages in solving some particular tasks in classical sys-
tem theory and applications. Due to that, generalizations of systems theory to sys-
tems described by signals on groups different from R or C are a subject of consid-
erable research efforts in the last few decades. The same applies to the extensions
and generalizations of the differential calculus and spectral methods on groups, that
are also used in system theory on groups.

Professor M.R. Stojić contributed remarkably to these activities in different
ways, by doing research and publishing [3], [4], [5], [6], [7], editorial work [8],
as well as conducting and supervising MSc and PhD dissertations. This paper is
intended to focus attention on this part of his academic activity.

The paper first briefly reviews research work in the area of systems on groups
and related differential (Gibbs) operators in the last few decades. Then, it presents
an extension of the notion of Gibbs derivatives to matrix-valued functions on finite
non-Abelian groups. The paper ends with a discussion of the relationships between
the Gibbs derivatives and linear shift-invariant systems on groups and their possible
applications.

2 Linear Shift-invariant Systems on Groups

In this section, we briefly discuss linear convolution systems whose input and out-
put signals are deterministic signals on groups.

Definition 1 A scalar linear system S over a finite not necessarily Abelian group
G is defined as a quadruple

�
P
�
G ��� P � G ��� h ����� where the input-output relation � is

the convolution product on G,

y � h � f � f � h � y � P
�
G ���

i.e.,

y
�
τ �	� ∑

x 
 G
h
�
x � f

�
τ � x � 1 ����
 τ � G � (1)

where � is the group operation of G and P
�
G � the space of functions f : G � P,

where P is a field.
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An ordered pair
�
f � y ��� P

�
G �	� P

�
G � is exactly then an input-output pair of S

if f and y fulfill equation (1). The function h � P
�
G � is the impulse response of S.

It is easy to show that the system S is invariant against the translation of the
input function. By that we mean that if y is the output to f , then T τ y is the output
to T τ f , for all τ � G. Therefore, we denote the system S as a linear translation
invariant (LTI) system.

Linearity is a property very often used in providing mathematical models of
physical phenomena. In that setting, the linear shift invariant systems and in par-
ticular, linear convolution systems on groups are efficiently used in mathematical
modelling of real life systems. For example, in that general ground the linear time-
invariant systems can be regarded as systems on the real group R. Similarly, the
linear discrete-time-invariant systems are an example of systems defined on the
additive group of integers Z.

Modelling of systems in terms of convolution product, naturally results in es-
tablishing the links to the Fourier analysis and exploiting advantages from the con-
volution theorem. These relationships extend to the systems and Fourier transforms
on various groups.

It is similar to the situation with differential operators which are usually used
to describe the change of the state in a system. In the case of systems on R, the
Newton-Leibniz derivative is used. For systems on groups, the Gibbs derivatives
are a good candidate, especially since they can be alternatively defined by them-
selves in terms of the convolution product on the group.

Note that from the system theory point of view, S is a linear input/output system
whose input and output are defined over an arbitrary group G. By using different
groups, various systems studied by several authors can be obtained.

It is pointed out in [9] that the notion of dyadic invariant linear systems has been
introduced in [10], if G is the dyadic group. Theory of linear systems on dyadic
groups has been contributed by the work of Harmuth in 1964, and supported by the
mathematical background theory provided by Polyak and Shreider [11], [12].

The dyadic systems have been intensively studied by Pichler in a series of pa-
pers and by several other authors; see [13] for a bibliography up to 1989. For more
recent result, we refer to [14], [15], [16].

The systems where input and output signals are modelled by functions mapping
the infinite cyclic group of integers into Galois fields of order 2q � q � N, GF

�
2q �

have been considered by Tsypkin and Faradzhev [17]. A generalization of the con-
cept was given in [18] where it was shown that both cyclic and dyadic convolution
systems on finite groups can be regarded as special classes of permutation-invariant
systems. A special class of discrete-time systems with variable structure over a
finite interval � 0 � g � 1 � has been considered in [19]. In a more general setting, sys-
tems over locally compact Abelian groups were considered by Falb and Friedman
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[20]. Some aspects of the theory were extended also to non-Abelian groups by
Karpovsky and Trachtenberg [1], [2].

Recall that systems over finite groups can be regarded as a special class of dig-
ital filters [21], [22], [23] or a special class of discrete-time systems with variable
structure [19] over a finite interval � 0 � g � 1 � , see also [24].

Regarding the applications of these systems note that they can be used as mod-
els of both information channels (for example to represent an encoder, a digital
filter, or a Wiener filter if K is the field of complex numbers and u is a stochastic
signal), and computation channels if K is a finite field. For example, different cri-
teria for the approximation of linear time-invariant systems by linear convolution
systems on groups were discussed in [24].

If G is the group Zpn we obtain the systems studied in [25], [26], [27], and [28]
called somewhere as p-adic systems.

3 Gibbs Derivatives and Linear Systems

Differential operators are used in linear systems theory to describe the change of
state of a system. The systems on R described by linear differential equations
with constant coefficients in terms of Newton-Leibniz derivative are probably the
most familiar example. However, the group theoretic models of systems and Gibbs
derivatives on groups, in particular on the dyadic groups Cn

2 and groups Cpn, where
C2 and Cp are cyclic groups of orders 2 and p, respectively, have attained some
considerable attention [15],[26], [28],[29], [30], [31], [32], [33], [34], [35].

The relationship between linear convolution systems on locally compact Abelian
and finite non-Abelian groups discussed above can be considered and summarized
in a general setting as follows.

In a general ground the Gibbs differentiator of order k of a function f � P
�
G ���

which we denote by Dk f � is considered as the linear operator in P
�
G � satisfying the

relationship [36] �
F
�
Dk f ��� � w �	� ϕ

�
w� k � � F � f ��� � w ��� (2)

where F denotes the Fourier transform operator in P
�
G � .

In most cases ϕ
�
w � k ��� wk, but in some cases a scaling factor should be applied,

while in a few particular cases the function ϕ differs and is related to the order of
group G. For example, in the case of the extended Butzer-Wagner dyadic derivative
[37] ϕ

�
w� k �	� �

w � � w ��� k � where

w � � w ��� ∞

∑
i � 0

� � 1 � iwi2
i �
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wi being the coefficients in the dyadic expansion of w � P� In the case of Gibbs
derivatives on Vilenkin groups [38], [39], [40], the function ϕ

�
w� k � is a function

from the so-called symbol class Sm
ρ � σ [38] defined as ϕ

�
w� k ����� k � m � m � 0 � where� x �	� max  1 �"! x !$# .

In attempting to determine a relationship between Gibbs derivatives and linear
convolution systems we want to point out that

1. Thanks to the relation (2) and the convolution theorem in the Fourier analysis
on groups, the Gibbs differentiator of order k can be considered as a convo-
lution operator and, therefore, can be identified with a linear convolution
system whose impulse response function h is given in the transform domain
by

�
F
�
h ��� � w �%� ϕ

�
w� k � . For example, in the case of the Gibbs derivative

on finite not necessarily Abelian groups, as well as in the case of dyadic and
groups Cpn, ϕ

�
w� k ��� wk by definition and, therefore, h is the k-th Gibbs

derivative of the δ -function defined as δ
�
x ��� 1 for x equals the unit element

of G, and δ
�
x �	� 0 otherwise.

2. A considerable class of linear systems on groups can be described by Gibbs
differential equations in a way resembling the use of classical differential
equations with constant coefficients in the linear system theory on the real
group R. In other words, a linear Gibbs differential on a group is defined
as a polynomial in the Gibbs differentiator with real coefficients. The linear
Gibbs differential operator form a subset of the group convolution operators
realized by the corresponding subset of the group convolution systems.

As we noted above such linear systems over dyadic groups were discussed in
[41], [42], and for the infinite dyadic groups in [32]. A generalization to finite
non-Abelian groups was given in [43], see also [44] and for p-adic systems with
stochastic signals in [15].

Note that the use of systems modelled by Gibbs differential equations in the
processing of two-dimensional signals was suggested in [45], [46].

4 Gibbs Derivatives for Matrix-Valued Functions

In this section, we extend the notion of Gibbs differential operators to matrix-valued
functions on finite non-Abelian groups. Linear-shift invariant systems modelled by
matrix-valued functions have already been considered, see for example, [1], and the
present interest in them may be related to the reconfigurable networks for different
calculation tasks over the same structure.

Denote by f � P
�
G � the space of functions f : G � P, where G is a finite group

of order &G &'� g and P a field that may be the complex field C or a finite (Galois)
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field. A function f � P
�
G � is conveniently represented as a vector of its values at

all the points of G, as F �(� f � 0 ���������)� f � g � 1 �*� T .

Definition 2 (Matrix-valued functions)
A function f defined on a group G and taking values in a set of

�
a � b � matrices

Ma � b over a field P is called a matrix-valued function on G.

The space of all matrix-valued function on G over P is denoted by Pa � b � G � . A
function f � Pa � b � G � is represented by a vector �F �+�,� f � 0 ���������-� f � g � 1 �*� T , where
f
�
i � are

�
a � b � matrices over P.

Definition 3 The Gibbs derivative D for functions in Pa � b � G � is defined as

D f � g � 1 �R �/. � �G �102�R � � 1 ���
where �R � is the matrix of unitary irreducible representations of G over P, i.e.,�R �/�3� ai j � with ai j � R j

�
i � , i �4 0 � 1 ��������� g � 1 # , j �5 0 � 1 ��������� K � 1 # , G is a column

vector of K elements defined as G �,� kIrwk
� , k �6 0 � 1 �������-� K � 1 # , and Irwi

is the�
rwi

� rwi
� identity matrix with rwi

the order of Rrwi
, and �R � � 1 �7� bsq � with bsq �

rsR � 1 � q � , s �8 0 � 1 �������)� K � 1 # , q �9 0 � 1 �������-� g � 1 # . In this relation, . stands for
the generalized matrix multiplication permitting to multiply matrices whose entries
are matrices, and 0 is this multiplication performed componentwise.

This definition will be illustrated by the example of the Gibbs derivative for
matrix-valued function on the Quaternion group Q2.

Example 1 The unitary irreducible representation of the quaternion group Q2 are
given in Table 1 where

I � :
1 0
0 1 ; A � :

1 0
0 � 1 ; B � : � 1 0

0 1 ;
C � :

0 � 1
1 0 ; D � :

0 1
1 0 ; E � :

0 1� 1 0 ;
Therefore, Table 1 defines the matrix �Q � of unitary irreducible representations

of Q2. The inverse matrix is

�Q � � 1 � 1
8

<====> 1 1 1 1 1 1 1 1
1 1 1 1 � 1 � 1 � 1 � 1
1 � 1 1 � 1 1 � 1 1 � 1
1 � 1 1 � 1 � 1 1 � 1 1

2I 2iB � 2I 2iA 2E 2iD 2C � 2iD

?A@@@@B �
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Notice that �Q � � 1 defines the Fourier transform on Q2.
In analytical form, the direct and inverse Fourier transform of f � P2 � 2 � Q2 � are

defined respectively by

S f
�
w �C� �

S D i � j Ef

�
w ����� rwg � 1

7

∑
u � 0

f D i � j E � u � Rw
�
u � 1 ���

f
�
x �F� �

f D i � j E � x ���	� 4

∑
w � 0

Tr
�
S D i � j Ef

�
w � Rw

�
x �����

The matrix �G � in P
�
Q2 � is given by

�G �G�
<======> 0

1
2
3:

4 0
0 4 ;

?A@@@@@@B �
Therefore, the Gibbs derivative for a function f � P2 � 2 � Q2 � is defined as

D f � 1
8
�Q ��. � �G �'0H�Q �I� 1 ���

and, after simple calculations, where when multiplying matrix-valued entries of a
matrix, the trace of the resulting matrix-valued entry is taken,

D f � 1
8

<==========>
22 � 4 � 10 � 4 � 2 0 � 2 0� 4 22 � 4 � 10 0 � 2 0 � 2� 10 � 4 22 � 4 � 2 0 � 2 0� 4 � 10 � 4 22 0 � 2 0 � 2� 2 0 � 2 0 22 � 4 � 10 � 4
0 � 2 0 � 2 � 4 22 � 4 � 10� 2 0 � 2 0 � 10 � 4 22 � 4
0 � 2 0 � 2 � 4 � 10 � 4 22

?A@@@@@@@@@@B
Notice that the matrix D f has the structure of the convolution matrix on Q2.

Therefore, the Gibbs derivative in P2 � 2 � Q2 � can be defined as

D f � f � q �
where q is defined by the vector q of it values as

q � 1
8
� 22 �J� 4 �J� 10 �J� 4 �J� 2 � 0 �J� 2 � 0 � T �
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and � denotes the convolution product as defined in (1) applied to matrix-valued
functions.

For the function f � P2 � 2 � Q2 � given by the vector of its values�F �K� :G:
0 1
1 0 ; � : 1 0

1 1 ; � : 0 1
1 0 ; � : 0 1

1 0 ; �:
0 1
1 0 ; � : 1 0

1 1 ; � : 1 0
1 1 ; � : 0 1

1 0 ;L; T �
the Gibbs derivative is�D f �M� 1

8

:G: � 6 6
0 � 6 ; � : 20 � 20

0 20 ; � : � 6 6
0 � 6 ; � : � 12 12

0 � 12 ; �: � 14 14
0 � 14 ; � : � 16 16

0 � 16 ; � : 18 � 18
0 18 ; � : � 16 16

0 � 16 ;G; T

� r 0 :
1 � 1
0 1 ; �

where r � 1
8 �N� 6 � 20 �J� 6 �J� 12 �J� 14 �J� 16 � 18 �J� 16 � T .

The Fourier spectrum of the considered function f is given by� S f �M� � S f
�
0 ��� S f

�
1 ��� S f

�
2 ��� S f

�
3 ��� S f

�
4 �*� T �

where the Fourier coefficients are

S f
�
0 �O� 1

8

:
3 5
8 3 ; �

S f
�
1 �O� S f

�
2 �P� S f

�
3 �P� 1

8

: � 1 1
0 � 1 ; �

and

S f
�
4 �Q� 1

4

<====> : � i � 1 R i
1 R i i ; :

i 1 � i� 1 � i � i ;:
0 0
0 0 ; : � i � 1 R i

1 R i i ;
?A@@@@B �

The Fourier spectrum of D f is given by� SD f
�M� � SD f

�
0 ��� SD f

�
1 ��� SD f

�
2 ��� SD f

�
3 ��� SD f

�
4 �*� T �
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where the Fourier coefficients are

SD f

�
0 �O� 1

8

:
0 0
0 0 ; �

SD f

�
1 �O� 1

8

: � 1 1
0 � 1 ; �

SD f

�
2 �O� 1

8

: � 2 2
0 � 2 ; �

SD f

�
3 �O� 1

8

: � 3 3
0 � 3 ; �

and

SD f

�
4 �	� <====> : � i � 1 R i

1 R i i ; :
i 1 � i� 1 � i � i ;:

0 0
0 0 ; : � i � 1 R i

1 R i i ;
?A@@@@B �

Therefore, it is easy to verify that the relation (2) expressing main feature of
Gibbs derivatives is true, i.e., in this case� SD f

�(�G �'02� S f �S�
This Gibbs differential operator expresses all the properties of Gibbs differen-

tiators on groups [36], and fast calculation algorithms for it can be derived in a
way similar to that used in [47].

The example above illustrates the principle of defining the Gibbs derivatives for
matrix-valued functions on finite non-Abelian groups for the case of the quaternion
group Q2 as the domain, and the complex field P for the range of signals processed.
Extensions and generalizations to signals described by functions defined on other
groups and direct products of groups, and taking values in different fields admitting
the existence of a Fourier transform for the group considered, are straightforward.

5 Closing Remarks

The dyadic derivative is a differential operator especially adapted to functions hav-
ing many jumps and possessing just a few and short intervals of constancy. Even
functions having a denumerable set of discontinuities like the well-known Dirichlet
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Table 1. Irreducible unitary representations of Q2 .

x R0 R1 R2 R3 R4

0 1 1 1 1 I

1 1 1 -1 -1 iA

2 1 1 1 1 � I

3 1 1 -1 -1 iB

4 1 -1 1 -1 C

5 1 -1 -1 1 � iD

6 1 -1 1 -1 E

7 1 -1 -1 1 iD
r0 � 1 r1 � 1 r2 � 1 r3 � 1 r4 � 2

function can be dyadically differentiable on � 0 � 1 �S� In the case of finite groups, the
Gibbs derivatives also provide a mean to differentiate functions on those groups.
In one word, through the family of Gibbs differentiators, the advantage of the use
of differential calculus extends to the theory of systems whose input/output signals
are piecewise constant, or discrete functions.

In order to point out some possible advantages of linear systems on groups
modelled by the Gibbs differential equations, recall that the use of Fourier analysis
in linear systems theory is based upon the convolution theorem and the relationship
between the Newton-Leibniz derivative. Thanks to the first property, the Fourier
transform maps the convolution into ordinary multiplication, while the second per-
mits the translation of differential equations into the algebraic ones. As in many
other areas, the application of Fourier analysis in linear systems theory is further
supported by the existence of the fast Fourier transform, FFT, and related algo-
rithms for efficient calculation of Fourier coefficients and some other parameters
useful in practical applications.
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The Gibbs derivatives possesses most of the useful properties of Newton-Leibniz
derivative, except the product rule and, therefore, their role in the theory of lin-
ear systems on groups can be compared to that of Newton-Leibniz derivative in
classical linear systems theory on R. At the same time, the Gibbs derivatives are
efficiently characterized by the Fourier coefficients on groups.

The matrices representing Gibbs derivatives are Kronecker product representable
in the case of finite decomposable groups, and, therefore, fast algorithms for the
calculation of the values of Gibbs derivatives on these groups can be defined.

It may be said that the Gibbs differentiation shares some of very useful proper-
ties of both Fourier analysis and differential calculus.

Thanks to these properties the Gibbs derivatives could be very promising for the
use in the theory of linear systems on groups. Some recent results and extensions
of the theory are given in [14], [16].
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239–251, 1964.
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Personal remarks from Radomir S. Stanković

Postscript on Teaching, Research, and Friendly Advising

It has been quite long after I was introduced by Miomir to Prof. Milić R.
Stojić. Although we both were already graduated and liberated of usual student’s
responsibilities, we continued to attend lectures of Prof. Stojić, being interested not
just in the subject, but also mainly due to an outstanding way of lecturing. I clearly
remember an answer that we got when asking him about teaching, Each lecture is a
performance and, as professionals, you should always be well prepared and much
convincing. Students should have the feeling that the science you are explaining
has been created right now and in front of them.

Lectures were scheduled on Friday afternoons, since Prof. Stojić devotedly
accepted to sacrifice his weekends travelling from Belgrade to Niš, to help devel-
opment of this branch of science at a young, for a University, Faculty of Electronics.
This appeared a very convenient schedule that we liked, since after the regular part,
lectures usually continued deep in the evening and often night, by slowly changing
the subject from scientific and research topics, to history, mostly Serbian, through
culture and art, to the way of writing and literature, first mainly English, and then,
almost as seeking for an equilibrium, as it should be in a good stable automatic sys-
tem, with a twist to the Russian literature, with suddenly few sentences in perfect
Russian.

We used to ask many questions on various subjects. That was a very good
way to learn. It was not always easy to recognize whether something he said has
been a straightforward strong comment, a bitter irony, or just an innocent joke.
For many comments, we have to think twice: shall we take them straightforwardly
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or in the completely opposite sense, and we easily realized that the justification
for the nickname Era given to Prof. Stojić, has much deeper than geographical
roots. To decide, it was necessary to be a good listener, careful observer of all
the circumstances, and continuously keep a global overview of all aspects of the
current and past discussions.

These premises for participation in the conversation, actually were a very good
introduction and training for accepting the same policy in a research work. Re-
search tasks, often quite sophisticated, were given in a simple way, during the con-
versation, almost unnoticeably, and guidance towards solutions formulated through
questions. We have often had the feeling that these are problems we should already
ask ourselves and definitely must try to learn more.

In such circumstances, it was not surprising that we soon reached the period
of learning first steps in scientific publishing. Friendly advising and the guidance
by Prof. Stojić that we had the privilege to follow, have been very important and
equally interesting due, for instance, among other things, also to many words bor-
rowed and customized from German that had been used in printing, which are now
replaced by a more modern computer-related terminology.

The same way of study and research, always with strong, but friendly, criticism,
advising, and support, continued for many years through participation at projects
conducted by Prof. Stojić, who always provided room for research also for topics
such as discussed in the above paper, and the relationships established helped us
quite much not to give up, resists, and continue research in spite of all the circum-
stances that Serbia went through.

Similar research interests, high professionalism, and first of all, willingness to
help youngsters to learn, has been a natural basis that, from the first meeting in
Serbia, when that finally become possible few years ago, Prof. Moraga and Prof.
Stojić, have immediately found a high common understanding and jointed efforts
to further help the Faculty of Electronics in providing a better millieu for research
and study.

We hope that joint work and friendship with Prof. Stojić will be long lasting
and as enjoyable as always in the future.


