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Abstract: This paper deals with the special replacement of the shift operator and its
associated z � transform by delta operator and ∆ � transform, respectively. The aim
of the paper is to clarify the role of zeros of discretized linear single input single
output continuous-time systems modelled by shift and delta operators. In particular,
the effect of zero dynamics on the control system design based on classical pole-zero
assignment in the case of both operators is considered. The analysis is illustrated by
simulation results.
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1 Introduction

Traditional digital signal processing and control algorithms, developed during the
past five decades, employ the technique of the shift operator to represent the dy-
namics of sampled data systems. However, the shift operator does not overcome the
gap between the high sampling rates of widely available digital-signal-processing
chips, and relative slow dynamics of the continuous-time processes. In such situa-
tions of processing and control data, often in real time at very high speeds, a more
suitable mathematical operator is necessary.

Middleton and Goodwin [1],[2] developed a unified description of continuous-
time and discrete-time systems. It allows continuous-time results to be obtained as a
particular special case of discrete-time ones, by setting the sampling period to zero.
The new approach is based on the introduction of the so-called delta (δ � ) operator
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as an alternative to the shift operator. In recent years, the δ � operator methodol-
ogy has been widely accepted as an effective tool, well matched to modern con-
trol system design procedures, for system modelling and identification, computer
control, high-speed digital signal processing, and fast sampled data representation.
The delta operator establishes a special rapprochement between analog and discrete
dynamic models and allows for investigating the asymptotic behaviour of discrete-
time models as the sampling period converges to zero.

Numerous advantages, for using the delta operator rather than the shift oper-
ator, have been listed and studied still by Middleton and Goodwin [3]. Among
other things, they pointed to the advantages of the delta operator by optimum state-
estimation, system identification and time-series modelling, as well as by control
system design. In the shift form, as the sampling rate increases, the poles and zeros
cluster around the point (1, j0) in the z � plane and the solution algorithms are bet-
ter conditioned in delta than in shift form. From then on, the delta operator became
more attractive, and interesting links between continuous-time and discrete-time
signals and systems analysis had been established [3], [4], [5], [6]. On the other
hand, some limitations of the δ � domain setting have been also reported, e.g. it is
a common opinion that the relevant δ � based computations become more compli-
cated [7].

Some researchers in control theory have sought to solve the problem of unstable
sampling zeros at fast sampling rates. They propose the use of the delta operator
to overcome the unstable as well as the nonminimum sampling zero problem in
one relative simple way [8],[9]. Finding efficient stability tests for delta operator
formulated discrete-time systems was another topic of interest in the area of high-
speed signal processing and control [10], [11].

It is well known, that the stability of a digital control system may be lost due to
the finite word length effects at practical implementation of digital control or filter
algorithms. Some filter realizations (direct form, for example) are inherently high
sensitive to small coefficient changes, and thus the coefficient rounding errors may
cause significant errors in a filter implementation. This problem is more serious
when fast sampling is used. Delta operator, however, provides superior rounding
error performance and coefficient sensitivity properties [12], [2],[13].

The δ � operator methodology promoted by Middleton and Goodwin [1] had
been tested in a teaching environment at the University of Newcastle, Australia
for years. Moreover, this encouraged professor Middleton to write the software
and documentation for the Delta Toolbox [14] which can be downloaded from his
personal site.

The layout of the paper is as follows: in Section 2 a brief review of the delta
operator is given; Section 3 addresses to the structure of the zeros of discrete-
time models; Section 4 contains an illustrative example; Section 5 examines pole
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placement design based on both shift and delta object models.

2 Preliminary

Let us define the time domain t � Ω
�
T � as follows

Ω
�
T ��� �

ℜ �
	�� 0 
�� for T � 0� 0 � T � 2T ��������
 for T �� 0 � (1)

where T denotes the sampling period (for continuous time T � 0) and ℜ � is the
set of positive real numbers.

The wellknown forward shift operator, q , may be defined for T �� 0 as

qx
��� � def� y

��� � (2)

where y
�
t � def� x

�
t � T � for all t � Ω

The delta operator is defined for the different values of the sampling period as

δ
�
T � def����� �� d

dt
��� ��� for T � 0

q � 1
T

� for T �� 0 � (3)

and

δx
�
t � def� ��� �� d

dt
x
�
t ��� for T � 0

x
�
t � T � � x

�
t �

T
� for T �� 0 � (4)

Recall, that δ , as given in (2), is Euler’s approximation of derivative, known in
the numerical analyze. Thus, the delta transform represents an alternative discrete
transform (see Fig. 1, [11]). Based on the delta operator, the unified calculus in the
case of continuous- as well as discrete-time systems can be used. Moreover, if we
regard the sampling period T as a perturbation parameter, the δ - system model can
be considered as a regular perturbation of continuous-time system model [1].

Consider the linear continuous-time single input single output system given by
state and output equations

ẋ̇ẋx
�
t ��� AAAcxxx

�
t ��� bbbcu

�
t �

y
�
t ��� cxcxcx

�
t � � xxx � ℜn � u � y � ℜ � (5)

or the corresponding transfer function

Gc
�
s ��� ccc

�
sIII � AAAc ��! 1 bbbc � (6)
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Fig. 1. Mutual relationships between the time- and complex-domains

For the sake of clarity, it is suitable to introduce the realization set Sc noted as

Sc
def�#" � AAAc � bbbc � ccc � : Gc

�
s ��� ccc

�
sIII � AAAc � ! 1 bbbc $ � (7)

The sampled zero-order hold representation of system (7) can be written in shift
form as q � model given by

qxxx
�
t ��� AAAqxxx

�
t �%� bbbqu

�
t �

y
�
t ��� cxcxcx

�
t �&� (8)

as well as in delta form as δ � model given by

δxxx
�
t ��� AAAδxxx

�
t �%� bbbδ u

�
t �

y
�
t ��� cxcxcx

�
t �'� (9)

Therefore the corresponding discrete-time realization sets are

Sq
def�(" � AAAq � bbbq � ccc � : Gq

�
z ��� ccc

�
zIII � AAAq ��! 1 bbbq $ � (10)

and
Sδ

def�#"*) AAAδ � bbbδ � ccc + : Gδ
�
γ ��� ccc ) γIII � AAAδ + ! 1 bbbδ $ � (11)

One can show that

AAAq � III � AAAcT Ψ
�
AAAc � T ��� bbbq � T Ψ

�
AAAc � T � bbbc � (12)

and
AAAδ � AAAcΨ

�
AAAc � T � � bbbδ � Ψ

�
AAAc � T � bbbc � (13)
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where

Ψ
�
AAAc � T �,� III � AAAcT

2!
� AAA2

cT 2

3!
� ����� � (14)

Notice that
lim
T - 0

AAAq � III � lim
T - 0

bbbq � 000 � lim
T - 0

Gq
�
z ��� 0 � (15)

and
lim
T - 0

AAAδ � AAAc � lim
T - 0

bbbδ � bbbc � lim
T - 0

Gδ
�
γ ��� Gc

�
γ �.� (16)

Equations (15) and (16) show that, as the sampling rate increases, the state-space
model in delta domain converges to the underlying continuous-time model, whereas
the limit of the shift domain model is uninformative.

3 Zeros of Discrete-Time Models

Let the continuous-time transfer function Gc
�
s � be a real rational function. Assume

that the difference between the number of poles and the number of zeros is the sys-
tem relative degree, i.e., l � n � m.Recall, that it is not possible to give a simple
formula for the mapping of continuous-time zeros to the discrete-time ones. How-
ever, it is shown [15] that, as the sampling period T / 0, m zeros of Gq

�
z � go to 1

as exp
�
siT � , where si � i � 1 ��������� m are zeros of Gc

�
s � ; the remaining l � 1 zeros of

Gq
�
z � converge to the zeros of Bn ! m

�
z � , where Bk

�
z � is the polynomial

Bk
�
z ��� bk

1zk ! 1 � bk
2zk ! 2 � ����� � bk

k (17)

and

bk
i � i

∑
j 0 1

� � 1 � i ! j jk 1 k � 1
i � j 2 � i � 1 �������3� k (18)

The first five polynomials Bk
�
z � and their zeros are given in Table 1. Notice that

the zeros of the shift operator model introduced by sampling (sampling zeros) de-
pend on sampling period T , and may become unstable in the fast sampling limit.
It implies that some control methods, that require the plant to be minimum-phase,
cannot be used when the sampling is very fast. To avoid the problems with the
nonminimum-phase discrete-time models, the use of delta operator parameteriza-
tion is recommended.

It is shown that, under sampling of a linear continuous-time single-input sin-
gle output system (5) of relative degree l 4 2, the zero dynamics of the resulting
discrete-time δ - model (9) is singularly perturbed [1, 8] . Note, that some results
of Tesfaye and Tomizuka [8] were rectified in the comments of Weller [9]. Then
system (9) has n � 1 zeros which, according to their asymptotic behavior as T / 0,
belong to two grups, as follows
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Table 1. The first five polynomials Bk and their zeros.

k Bk Zeros Location
1 B1 5 z 6�7 1 89898�898
2 B2 5 z 6�7 z : 1 -2 -1 0

-1

-0.5

0

0.5

1

Re z

j Im z

3 B3 5 z 6;7 z2 : 4z : 1 -4 -2 0
-1

-0.5

0

0.5

1

Re z

j Im z

4 B4 5 z 6�7 z3 : 11z2 : 11z : 1
-10 -5 0

-1

-0.5

0

0.5

1

Re  z

j Im  z

5 B5 5 z 6<7 z4 : 26z3 : 66z2 : 26z : 1
-30 -20 -10 0

-1

-0.5

0

0.5

1

Re  z

j Im  z

1. The l � 1 sampling zeros converge asymptoticaly to the set T ! 1λ
�
W1 � , where

λ
�
W1 � denotes the set of eigenvalues of the matrix

W1 �
=>>>>>>>>? � α1 @ l A

α0 @ l A 1 0
�����

0� α2 @ l A
α0 @ l A 0 1 0
...

. . .� αl B 2 @ l A
α0 @ l A 1� αl B 1 @ l A
α0 @ l A 0

�����C�����
0

DFEEEEEEEEG � ℜ @ l ! 1 AIH @ l ! 1 A � (19)

and

αi
�
l ��� cAcAcAi

c

�
i � 1

∑
j 0 0

1 i � 1
j 2KJ � Tbbb L1 � j M

l ! i ! 1 N bbbc � i � 0 � 1 �O�����3� l � 1 � (20)
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where J � Tbbb L1 � j M
k

denotes the coefficient of T k in the expansion of
�
Tb L1 � j and

bbb L1 � Ψ
�
Ac � T � � I;

2. The remaining n � l zeros tend to the finite zeros of the continuous-time
system (5).

4 Illustrative Example

Consider a continuous-time system with the following transfer function

Gc
�
s ��� �

s2 � s � 1 � � s2 � 0 � 4s � 4 ��
s � 1 � � s2 � 4 � � s2 � 9 � � s2 � 16 � � (21)

The relative degree of the system is three and transfer function pole-zero location is
shown in Fig. 2. Figures 3(a) and 3(b) visualize the influence of the sampling period
T on the location of the poles and zeros for the q � and δ � model, respectively.
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-2

-1
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s

wj

Fig. 2. Pole-zero location of transfer function (21)

For the shift operator model we notice that two zeros, introduced by sampling,
converge to the zeros of the polynomial B3

�
z � , i.e. to � 0 � 268 and � 3 � 732. The

remaining four zeros and seven poles converge to 1 on the real axis regardless of
the pole-zero location of the underlying continuous-time system.

In the case of δ � model, the sampling zeros converge to � ∞ as T / 0, while
the rest of zeros, as well as all poles converge to the continuous-time zeros and
poles, respectively. The behavior of two sampling zeros in the delta model for
T � 0 � 1 � 0 � 15 � 0 � 20 �<������� 1 � 0 s is visualized in Fig. 4. It is shown that, under the fast
sampling, one sampling zero (denoted by P ) goes to � 1 � 27 Q T and the another zero
(denoted by R ) migrates to � 4 � 73 Q T .
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Fig. 3. Pole-zero variation of shift operator model and delta model with respect to sampling period.
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Fig. 4. Variation of delta model sampling zeros with respect to sampling period.

5 Pole Placement Design Based on q S and δ S Object Model

A simple servo design method based on classical pole-zero assignment is chosen
as a typical representative of analytical design techniques. The servo specifica-
tions are expressed in terms of a closed-loop system model that gives the desired
response to command signals. However, it is of interest to compare the results of
control system design based on q T and δ T object model in a single-input single-
output system given in Fig. 5, taking into account the quantization effects. Thus,
the design problem may be interpreted as finding the polynomials R U S U and T with
respect to the desired system continuous-time response. This leads to the appli-
cation of the classical pole-placement algorithm with or without cancellation of
process zeros [16]. In the considered control system the object transfer function
is 1 V s W s X 1 Y . The sampling periods of 0 Z 25s and 1s are adopted. The speed of
continuous-time closed-loop system response and stability margin are specified by
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OBJECTRu=Tu -Syc

uc u y

Fig. 5. Block diagram of a control system.

the relative damping coefficient ζ � 0 � 7 and natural frequency ωn � 1rad [ s of the
closed-loop system dominant pair of poles inside the principal strip of the s � plane.

The control law can be written as�
q � r1 � u � t ��� ) t0q � t1 + uc

�
t � � ) s0q � s1 + y

�
t � (22)

or �
δ � r̄1 � u � t ��� ) t̄0δ � t̄1 + uc

�
t � � ) s̄0δ � s̄1 + y

�
t �9� (23)

where t � Ω
�
T � . Two closed-loop system response specifications with and without

cancellation of process zero for different sampling rates is considered. To carry
out the design, it was necessary to solve some linear polynomial equations and
the results are given in Table 2. The control system given in Fig. 5 has been

Table 2. Control parameters in relation (22) and (23)

Pole placement of closed-loop system
with zero cancellation without zero cancellation

T � 0 � 25s T � 1s T � 0 � 25s T � 1s
r1 -0.9201 -0.7183 0.0538 0.2173

r̄1 7.6806 1.7181 0.4487 0.5199
t0 1.8215 1.3485 0.9487 0.7848

t̄0 1.8229 1.3485 0.9497 0.7849
t1 0 0 0 0

t̄1 7.2917 1.3485 0 0
s0 4.3948 -2.5733 2.5284 1.0874

s̄0 4.3958 1.6782 0.5006 0.2649
s1 1.6782 -0.3297 -1.5798 -0.3026

s̄1 7.2917 1.3485 0 0

simulated in all details, taking into account the quantization effects (8 � and 12 � bit
conversion). The control law is implemented in accordance with (22) and (23) for
different sampling periods. The simulation results are given in figures 6, 7 and 8.
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Fig. 6. Simulation results (8 \ bit conversion).

0 10 20
0.0

0.5

1.0
y

t, s

5 10 15

1.00

1.04

q

d

(a) T=0.25 s (b) T=0.25 s

0 10 20

0

1

2

d

q

u

t, s

(c) T=1 s

0 10 20
0.0

0.5

1.0
d

q

y

t, s (d) T=1 s

0 10 20

-1

0

1

2

d

q

u

t, s

Fig. 7. Simulation results (12 \ bit conversion).

The appearance of the ”ringing” or the ”ripple” in the control signal is well-
known. It is caused by the cancellation of the stable zero of discrete object q T
model, located on the negative real axis [16]. The ripple is not noticeable in the
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output signal at the sampling instants (see figures 6(a)and 6(c)). However, it is seen
as a ripple in the output signal between the sampling instants. The amplitude of the
ripple in the output depends on the sampling period and goes down rapidly as the
sampling period is decreased. Fig. 6 visualises that, by faster sampling, the ripple
in the control and output signals are moderated by control based on the object δ �
model. The same regulation quality is preserved by 12-bit conversion, too. All, but
somewhat little expressed, mentioned effects can be seen in Fig. 7.
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Fig. 8. Simulation results (12 ] bit conversion).

Fig. 8 illustrates the second procedure of pole placement based on q � and δ �
model of the object with no cancellation of process zero. Notice that the control
signal is much smoother and, at step change in the reference signal, twice less
amplitude at t � 0. It can be seen that the delta domain design has clearly superior
properties relative to the shift form.

6 Conclusion

In recent decades, an increasing attention has been given to the so-called δ � operator
owing to its wide applicability in many fields of engineering. This paper deals with
the effects of the sampling time on the zero dynamics of continuous linear single
input single output systems expressed in both q � and δ � operator forms. By δ �
domain modelling, the zeros introduced by discretization process (sampling zeros)
are easily distinguished and, as the sampling time tends to zero, migrate to negative
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infinity. The conclusion, that under fast sampling in δ � model one can neglect
the sampling zeros, is very important for delta domain control system design based
on the classical pole-placement techniques with or without zero cancellation. To
illustrate the control system performances that can be achieved in both q � and δ �
design domain, some simulation results have been given.
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