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Abstract: The algorithm of simultaneous estimation of motion parameters and scene
structure using the integrated navigation system consisting from inertial sensors (three
rate gyros and three accelerometers) and TV camera has been presented. All men-
tioned sensors are rigidly fixed to the body of a moving object. It is assumed that the
inertial sensors are characterized by constant biases. The recognizable landmarks ex-
isting in the scene on known locations in the reference coordinate frame are assumed
also. It is enabled by parallel processing of information in two independent naviga-
tion systems that they may correct each other, in order to estimate moving object’s
linear and angular position relative to the landmark as well as it’s linear and angular
velocities in an optimal fashion.

Keywords: Inertial navigation system, visual navigation system, dynamic vision, TV
camera.

1 Introduction

The integration of different navigation systems is a highly widespread method of
increasing the overall system reliability as well as of improving the resultant ac-
curacy in navigation parameter estimations. The most usual case is that an inertial
navigation system (INS) is aided by some others like: satellite global positioning
systems (GPS, GLONASS), systems based on radar altimeters and Doppler radars,
or visual navigation systems (VNS) based on TV or IR cameras. The basic idea
consists in extending the set of measurements outside INS itself and providing the
means for the optimal estimation of navigation parameters (vectors of linear po-
sition and linear velocity of a moving object relative to the reference coordinate
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frame) as well as for the estimation of error parameters characterizing the inaccu-
racies of inertial sensors inside INS.

Speaking about the integration of INS and VNS it is possible to consider dif-
ferent levels of coupling, according to the particular application. There are some
surveillance and guidance systems of military purpose where the INS is responsible
for the guidance of the moving object until it reaches the area where it is possible
to recognize the target by TV camera, and after that, the guidance is transferred to
the VNS. In such cases, two independent systems act inside one complex guidance
system, but practically without exchanges of information. The existence of rec-
ognizable visual landmarks inside the field of view of TV camera may be used in
different ways as the source of corrective information for an INS. General princi-
ples of integration of these two systems in order to improve the overall navigation
system accuracy are considered in [1], while their equalized treatment for the pur-
poses of system initialization and mutual corrections was the subject of interest in
articles [2, 3]. However, in all those approaches, INS was implicitly considered
as ”master” system, continuously operating with high sampling frequency, while
initially and/or in work, it is calibrated/corrected by the information originating
from VNS (supposing their higher level of accuracy). The similar level of coupling
can be found in examples given in [4]-[6] where the VNS based on dynamic vi-
sion algorithm has been used as the primary system while the required information
regarding the linear velocity and angular attitude are provided by INS and consid-
ered as the accurate ones. This later category of applications is generally oriented
toward the field of robotics and automatic motion control of land vehicles.

This paper makes an approach toward the consideration of the highest level of
interactions between INS and VNS (tightly coupled systems). VNS will be pro-
visionally considered as the primary one, having in minds that the suitable appli-
cations in robotics and automatic control of cars on roads would primarily require
the estimation of the scene structure (distance of the moving object from the land-
mark/obstacle and angular orientation of the object carrying the TV camera). VNS
algorithm includes two mechanisms in parallel:

1. autonomous estimations based on a priory knowledge of landmark charac-
teristics, calculated using the general principles of projective geometry [7];

2. estimations obtained by the processing of the sequence of frames, using the
additional information originating in INS (dynamic vision algorithm).

The main idea in usage of dynamic vision is to incorporate the required INS data
after the process of optimal estimation of linear and angular velocities obtained by
INS aided by autonomous VNS. The accuracy of these data is improved by the
estimation of inaccuracies of inertial sensors.
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The second part of paper is related to the basic mathematical models of INS and
VNS algorithms. The scenarios of motion of an object as well as the characteristics
of ground landmarks suitable for the verification are specified also. Suggested al-
gorithm of INS/VNS integration suitable for the simultaneous estimation of scene
structure and motion parameters is explained in third part of paper. The fourth part
consists from typical results obtained throughout the simulations of this algorithm.

2 MODELS OF NAVIGATION ALGORITHMS

2.1 Inertial navigation algorithm

Relevant coordinate frames are specified on Fig. 1. Reference coordinate frame
(ICF) used for representation of a moving object’s position is denoted as O1x1y1z1
and will be considered as the stationary one (inertial - index I). The moving coordi-
nate frame OCxCyCzC is fixed to the body of a moving object. TV camera is rigidly
fixed to the body of a moving object and for the sake of clarity it is supposed that
the central line of its field of view coincides with the object’s longitudinal axis.

Fig. 1. Reference (ICF) and camera fixed (CCF) coordinate frames.

Kinematic model of translational motion of an object in ICF is represented as�
vI
� TI
�
C
�
aC � �gI ��

xI
� �v � �

vI
�
0 � � �vI0 ��

xI
�
0 � � �xI0 � (1)

where the notations are following:
�
xI
��� xI yI zI 	 T - vector of linear position of a

moving object;
�
vI
��� vXI vY I vZI 	 T - vector of linear velocity of a moving object;�

aC
�
� aXC aYC aZC 	 T - vector of linear acceleration of a moving object (measured

onboard);
�
gI
��� 0 0 g 	 T - gravitational acceleration;

�
xIO � �vIO- initial conditions.

Angular orientation of a moving object (TV camera) relative to ICF is specified
via transform matrix connecting CCF to ICF, denoted as TI

�
C . Introducing four
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parameter operator
�
b ��� b1 b2 b3 b4 	 , the transform matrix could be expressed as

TIC
� � b2

4 � b2
1 � b2

2 � b2
3 2

�
b1b2 � b4b3 � 2

�
b1b3 � b4b2 �

2
�
b1b2 � b4b3 � b2

4 � b2
1 � b2

2 � b2
3 2

�
b2b3 � b4b1 �

2
�
b1b3 � b4b2 � 2

�
b2b3 � b4b1 � b2

4 � b2
1 � b2

2 � b2
3

��
(2)

Vector
�
b has the geometric interpretation:�

b ��� �E sin
ε
2

cos
ε
2 	 T (3)

Vector
�
E has the meaning of the ort of a principal axis (it is a direction in space

about which the object should be rotated in order to coincide with ICF), while the
angle ε represents the amount of this rotation. Angular orientation dynamics is
defined by the following set of differential equations:�

b � 1
2

��� 0 r � q p� r 0 p q
q � p 0 r� p � q � r 0

�����
(4)

The elements of matrix Ω are the components of object’s angular velocity vector
relative to body fixed CCF -

�
ω ��� p q r 	 T .

Linear accelerometers, rigidly fixed to the body of a moving object, are mea-
suring �

a �C � �aC � �ab � �an (5)

where
�
aC is physically existing acceleration,

�
ab is a constant accelerometer bias,

while
�
an represents the measurement noise. Similarly, set of rate gyros rigidly

fixed to the body of a moving object measures�
ω �C � �ωC � �ωb � �ωn (6)

Due to assumption that the biases of inertial sensors are constant, the following
relationships are valid: � ˙�bb

˙�ωb 	 ��� 0 0 	 (7)

Complete state vector of the inertial navigation system is of dimension 16, encom-
passing: �

X ��� �xT
I
�
vT

I

�
bT �

aT
b
�
ωT

b 	 T (8)

The elements of state vector are the linear position and velocity of a moving
object relative to ICF, its angular orientation relative to ICF, as well as the constant
biases of linear accelerometers and rate gyros.
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Excluding the uncertainty regarding the initial position and velocity, inaccu-
racy of an INS is a result of the fact that during numerical integration of differential
equations (1) the measured acceleration (5) acts as an operand instead of physi-
cally existing one, while in integration of (4), the measured angular velocity (6) is
included.

2.2 Autonomous Visual Navigation Algorithm

Autonomous estimation of the position of a moving object relative to the station-
ary object (landmark) existing inside the field of view of TV camera, time rate of
change of this position, and angular orientation of a camera relative to ICF, assumes
the existing of a priory knowledge of landmark’s shape and dimensions. Assum-
ing additionally that landmark’s position in ICF is known also, the calculation of
relative position of a moving object in respect to the landmark at the same time
enables the calculation of its absolute position in ICF. The requirement that the
landmark’s shape and dimensions should be known in advance is the fact limiting
the area of possible applications. However, this field is wide enough, encompass-
ing the number of possible robotic applications as well as the applications where
the land vehicles are to be automatically guided in some indoor situations or on the
highways, etc. In order to simplify the following calculations, it is assumed without
the loss of generality that the central point of the landmark is located at the origin
of ICF. Moreover, it is assumed that the landmark’s central point lies at the cross
section of two strip-like areas located in the horizontal plane of ICF (Fig. 2.) In
aerial navigation applications, this case could be related to the cross section of two
roads (at known angle).

Fig. 2. Reference object inside camera’s field of view.

Dynamics of changes of a landmark central point position relative to CCF is
given with

˙�xC � �ω � �xC � �vc (9)
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Position and velocity of a moving object relative to ICF are defined with�
xI
� � TI

�
C
�
xC � �vI

� � TI
�
C
�
vC (10)

Points from three-dimensional space are projected onto the focal pane of an
optical system of TV camera at the distance f from the camera’s sensitive element.
Inside this plane, the coordinate frame fixed to the picture (PCF) is specified. After
the appropriate image processing the coordinates of images of space points are
specified in PCF as �

y ��� xL yL 	 T ��� yC
xC

zc

xc � T (11)

Every point inside the picture is defined by its m-vector�
m ��� f xL yL 	 T (12)

while the picture lines specified by n1xL � n2yL � n3 f � 0 are determined by the
appropriate n-vector �

n ��� n1 n2 n3 	 T (13)

Under the assumption that the relevant part of landmark could be distinguished
as the rectangle ABCD, relative angular attitude of the camera can be calculated
using the m-vectors of vanishing points P and Q (shown on Fig. 2) as

TI
�
C
��� �mP

�
mQ

�
mP � �mQ 	 T (14)

The image of landmark central point can be obtained at the cross-section of
rectangle diagonals as �

mO
� � � �nAC � �BD	! �

nAC � �nBD
! (15)

The distance from camera to the landmark center is calculated as" �
R
" � �

mA
� �
mp � �mQ � "OIA

"! �
mOI

� �
mp � �mQ � �mA � �mA

� �
mp � �mQ � �mOI

! (16)

and, finally, moving object’s position vector relative to ICF is found as�
xI
� � " �R " TI

�
C
�
mOI

(17)

A priory knowledge of the shape (rectangle) and dimensions (distance between
points OI and A, in this particular case) enabled the reconstruction of scene structure
(camera’s linear position in ICF (17) and its angular orientation (14)).
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2.3 Visual navigation algorithm based on dynamic vision

Basic relationships characterizing visual navigation (state model (9-10) and model
of measurements (11)) are valid in this case also. Linear velocity vector

�
vC and an-

gular velocity vector
�
ωC as well as the angular orientation of camera determined by

TC
�
I
� T T

I
�
C , are considered as a priory known variables (measured by independent

sensors). These variables, appearing in (10-11) as parameters, are originating from
an INS.

By processing of sequence of images obtained from TV camera it is possible
to determine the inter-frame shift of characteristic landmark point between two
consecutive frames. The new position of reference point in CCF is denoted as� xc � ∆xC yC � ∆yC zC � ∆zC 	 T while the increment of position vector

�
xC is a

result of moving object’s motion between two frames and its change in angular
orientation, given as

∆
�
xC
� ∆TC

�
IT

T
C
�
I
�
xC � � TC

�
I � ∆TC

�
I � ∆ �xI (18)

Shift of the image of reference point in PCF is determined by

∆xL
� f

∆yC
xC � ∆xC

� xL
∆xC

xC � ∆xc

∆yL
� f

∆zC
xC � ∆xC

� yL
∆xC

xC � ∆xc

(19)

Having in minds that
�
xC can be expressed as

�
xC
� xC

� f xL yL 	 T , the knowl-
edge of ∆

�
xI , TC

�
I and ∆TC

�
I from INS enables that components of ∆

�
xC from (18)

could be expressed as functions of xC, xL and yL. By their replacement in (19) it
is possible to calculate xC , and after that, based on (11), the remaining two com-
ponents

�
xC � yC � . Finally, it is possible to calculate the moving object’s position in

ICF as:
�
xI
� � TI

�
C
�
xC.

2.4 Scenario of application

The simple straight line trajectory of motion is assumed. The starting position
is specified at

�
xI0
�
� � 1000 � 100 � 100 	 T and the constant velocity of mo-

tion along x-axis of ICF is assumed as
�
vIO
��� 10 0 0 	 T . CCF coincides with

ICF. Linear accelerometers are characterized by constant bias of 10mg (= 0.1m/s2),
while the rate gyros are of low accuracy (constant bias of 36 # /h = 0.174 mrad/s).
Measurement noises of accelerometers and rate gyros are assumed as white, Gaus-
sian, with zero men values and standard deviations of: σacc � 10mg i σrg �
1mrad $ s, respectively. For the optical system of TV camera it is assumed that focal
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distance is known (f = 1). The process of determination of characteristic points in
PCF is characterized by the measurement noise which is white, Gaussian, with zero
mean value, and standard deviation of one pixel. Assuming that the overall field
of view is 25 % 60 and that digitized image has 512 pixels along both directions, the
angular equivalent of this error is equal to 0 % 050 � � 0 % 87mrad � . Central point of the
reference object is located at the origin of ICF. Strip-like areas are of 20m width
and characterized by recognizable contrast relative to the surrounding background.
Reference distance

�
OIA � is equal to 14.1m in this case. The sampling frequencies

are 100Hz in INS and 10 Hz in VNS.

3 Integrated Navigation Algorithm

3.1 General structure

The structure of intended integrated navigation algorithm is shown on Fig. 3.

Fig. 3. Structure of an integrated navigation algorithm.

The estimations of moving object’s position in ICF are continuously present
as the output of INS. They are corrected by averaging with the position estimates
originating from two separate parts of VNS algorithm, at the moments when the
later ones are available. The estimate of a linear velocity is obtained in INS based
on corrections from autonomous VNS and transferred toward VNS based on dy-
namic vision. The same is valid for the attitude information also. The scene struc-
ture as well as the motion parameters is simultaneously estimated based on the full
available set of measurements: linear accelerations, angular rates, landmark points’
positions in every frame, and their shifts between two consecutive frames.

3.2 Corrections of INS

System model in state space obtained by grouping of equations (1), (4) and (7)
is obviously nonlinear and it is needed to apply its linearization in the neighbor-
hood of the estimated state vector in order to implement the optimal recursive state
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estimator. The linearized model has the form

˙�x � d
dt
� �
X � ˆ�X � � F

�
x � G

�
u (20)

where the matrices F and G are obtained by partial differentiation of nonlinear
vector function ˙�X � �Phi

� �
X � �u � relative to state variables (8) and stochastic inputs

specified in (5,6) as the components of measured signals at the outputs of inertial
sensors.

The differences between INS and autonomous VNS outputs are supplied as
system measurements. As the state model is of relatively high order (sixteen) it is
beneficial to make its decoupling onto two subsystems. Rotational motion model is
going to be considered separately (encompassing state variables

�
b and

�
ωb ). After

the replacement of expressions for measured angular rates (6) into the equation (4)
and its partial differentiating, the appropriate matrices specified by general form in
(20) would have the following meanings

F1
7 & 7 �(' Ω �4 & 4 B̂4 & 3

03 & 4 03 & 3 ) � G1
7 & 3 �*' B̂4 & 3

03 & 3 ) � B̂4 & 3 � ��� b̂4 � b̂3 b̂2
b̂3 b̂4 � b̂1� b̂2 b̂1 b̂4� b̂1 � b̂2 � b̂3

����� % (21)

Vector
�
b calculated in VNS corresponds to matrix transform T � T VNS

I
�
C in the

following way�
b �+� t32 � t23

4b4

t13 � t31
4b4

t21 � t12
4b4

0 % 5 , 1 � Trace
�
T � � T (22)

Statistical parameters of the state model noise are assumed based on the as-
sumptions regarding the rate gyros’ measurement noise. Parameters of the system
measurement noise are specified by the uncertainty in calculation of locations of
vanishing points P and Q.

In order to increase the accuracy of angular orientation calculation in autonomous
VNS (matrix TVNS

I
�
C ) two important processing steps have been applied:

1. m-vectors of vanishing points are calculated by collecting all edge points of
strip-like areas and by finding the best fitting line through them, rather than
by using of rectangle vertices only for this purpose. This way the effective
resolution of TV picture is improved.

2. in spite of this procedure, transform matrix obtained in (14) does not sat-
isfy otrhogonality condition in general case (the condition

�
mP
�
mQ
� 0 is not

fulfilled exactly). From this reason, an iterative procedure of minimizing
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the scalar product is used, giving as a result:
�
mP
�
mQ - ε (the inner product

is made to be arbitrarily small). Vertical direction is obtained as the outer
product of these estimates: ˆ�mP � ˆ�mQ.

The second part of correction algorithm consists in optimal estimation of the re-
maining part of state vector from equation (8) - � �xT

I
�
vT

I
�
aT

b 	 T . Transform matrix
T̂I
�
C from the first phase of correction is used in the subsystem state model (1).

3.3 Dynamic Vision Algorithm Based on Corrected INS

After INS calculations of angular attitude and linear velocity have been corrected,
part of VNS based on dynamic vision uses these data and by processing of two
consecutive frames calculates the new estimate of moving object’s position -

�
xDV

I .

3.4 Resultant estimates

In 2.4 it is realistically assumed that the sampling frequency of INS is greater than
inside VNS. According to this fact, INS continuously estimates scene structure
while the corrections are made periodically, after calculations made by two parts
of VNS algorithm. Motion parameters (linear and angular velocity) are calculated
by INS only, but they are improved based on VNS calculations used in order to
determine inertial sensors’ biases.

4 Illustrative Results

Some of the most illustrative results obtained through the simulations of suggested
integration algorithm are given here. Figure 4. illustrates unlimitedly increasing
position errors obtained during 50s of work of uncorrected INS. It is obvious that
due to relatively high values of accelerometer biases, position estimates based on
uncorrected INS could be valid just in a short time interval.

Fig. 4. Position errors in the case of uncorrected INS.
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Fig. 5. Position errors in the case of autonomous VNS.

The appropriate position errors obtained by autonomous VNS are shown on
Fig. 5. These errors are of oscillatory nature, but generally decreasing while the
moving object approaches the landmark.

The benefits of corrections made in INS based on calculations inside autonomous

(a)

(b)
Fig. 6. Position errors obtained with Dynamic Vision algorithm: (a) uncor-
rected INS; (b) corrected INS.
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Fig. 7. X-Position error obtained with integrated navigation algorithm.

VNS are obvious from the Fig. 6 where the position errors are illustrated for two
cases of VNS algorithm based on dynamic vision. Diagrams (a) are obtained with
uncorrected INS while diagrams (b) are results obtained when corrected INS data
have been used. While the first ones are showing very low accuracy in the case
of x coordinate, the later ones illustrate that the accuracy is now approximately the
same as in autonomous VNS. Finally, Figure 7. is an illustration of the estimate of
the most critical (x) position obtained by averaging of results all three navigation
algorithms as it was specified on Fig. 3. It is obvious that the error is limited and
that by approaching the landmark it becomes of order of 1m.

5 Conclusion

The integration of inertial and visual navigation algorithms have been considered
here, following the main idea that by extending the number of available measure-
ments and using the fact that the accuracy of different sensors is affected by dif-
ferent physical sources, the overall navigation system accuracy can be improved
by proper combination of these data. The main step in this integration consists
in corrections of INS calculations based on the scene structure estimates provided
by autonomous VNS. As a result of this, INS internal errors are estimated and its
short term good accuracy is enabling the acceptable results between the moments
when VNS supplies its data. However, the accuracy of autonomous VNS is highly
affected by image processing effects (image noise, finite resolution) and in order to
obtain the useful results two internal optimization procedures in calculation of cam-
era angular orientation have been suggested. The next step making the coupling of
INS and VNS more strong is done by including the second part of VNS algorithm
based on dynamic vision principle. Calculation of position of just one character-
istic landmark point is less noise sensitive than in the case of autonomous VNS
where four characteristic points are of interest. On the other side, dynamic vision
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algorithm is critically dependent on the accuracy of data supplied by INS. If the
data regarding angular orientation and linear velocity are provided from corrected
INS, the accuracy of position estimates obtained by dynamic vision algorithm is
becoming comparable to other two. This way the redundancy is increased and the
resultant position estimates are obtained as a result of averaging of three separate
ones.

Although the analyzed moving object trajectory and type and dimensions of
a landmark are of the aerial application type, it seems that the indoor applica-
tions are the most promising field where this approach could be applied. Using
the maps of buildings, extra added reference objects fixed on walls and floor as
well as wall/floor edges and corners existing in such an environment, it is possible
to overcome the problem of usual non-existence of GPS signals and to allow the
usage of such type of navigation system integration.
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