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Numerical Inversion of the Laplace Transform

Gradimir V. Milovanović and Aleksandar S. Cvetković

Dedicated to our Friend Professor Milić Stojić

Abstract: We give a short account on the methods for numerical inversion of the
Laplace transform and also propose a new method. Our method is inspired and moti-
vated from a problem of the evaluation of the Müntz polynomials (see [1]), as well as
the construction of the generalized Gaussian quadrature rules for the Müntz systems
(see [2]). As an illustration of our method we consider an example with 100 real poles
distributed uniformly on

���
1 � 2 � 100 � . A numerical investigation shows the efficiency

of the proposed method.

Keywords: Laplace transform, Bromwich integral, orthogonal polynomials, Gaus-
sian quadrature formula.

1 Introduction

Laplace transforms are powerful tools in many problems of mathematics, physics,
and other applied and computational sciences. Primarily, these transforms are very
attractive in solving differential equations, and therefore play important role in au-
tomatics and control theory.

An integral of the form

F � s �	��
� f � t ��������� ∞

0
e � st f � t � dt � Re � s ��� σ0 � (1.1)

is called the Laplace transform of the original f � t � , for which we suppose it grows
at most exponentially, i.e., there is σ � σ0 such that � f � t ����� Meσt � t ��� ∞ � . In
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Niš, Serbia and Montenegro (e-mails: G.V. Milovanović grade@ni.ac.yu, A.S. Cvetković
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addition, if f � t � is absolutely integrable on any interval � 0 � a � � a � 0 � , then the
Laplace integral (1.1) converges for all Re � s �!� σ and defines a single-valued ana-
lytic function in this half-plane. Here, σ0 is so-called the abscissa of convergence
of F � s � . For an original we put f � t ��� 0 for t " 0. An analysis of properties of
F � s � , as well as several applications, are given in details in [3, pp. 199–261].

The main difficulty in applications is finding the inversion of F � s � , except cases
when it is given in a table (cf. [4]). As an imprecise form of inversion formula is

f � t �	� 1
2πi

� σ � i∞

σ � i∞
F � s � est ds � σ � σ0 �#� (1.2)

which is correct if f � t � is differentiable at the point t. Here, the integration along
the Bromwich contour from σ $ i∞ to σ � i∞ � σ � σ0 � should be understood as
the Cauchy principal value, i.e.,� σ � i∞

σ � i∞
� lim

ω % � ∞
� σ � iω

σ � iω &
The Bromwich contour is parallel to the imaginary axis and it is located to the right
of all the singularities of F � s � . If F � s � is an analytic function in Re � s �'� σ0 and for
σ � σ0

1. � � ∞� ∞
�F � σ � iω ��� dω converges,

2. F � s �	� 0 for Re � s �!( σ , � s �)�*� ∞,

then (1.2) holds.
As an immediately consequence of Cauchy’s theorem, the Cauchy principal

value integral on the right side of (1.2) does not depend on σ , so that in its numerical
calculation, using some quadrature formula, one can move the Bromwich contour
to the left in order to reduce in magnitude the exponential factor est in the integrand,
but not too close to singularities of F � s � .
2 Methods of Numerical Inversion

There are several algorithms available for the numerical inversion of Laplace trans-
forms. Some surveys were given by Davies and Martin [5], Narayanan and Beskos
[6] and Duffy [7]. A bibliography of several hundred such papers is available on
the WEB (see [8]). In a recent paper, Abate and Valkó [9] have classified those
algorithms into four categories according to the basic approach of the method as
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follows: (1) Fourier series expansion; (2) Laguerre function expansion; (3) Combi-
nation of Gaver functionals; (4) Deform the Bromwich contour.

The methods from the first category were discussed in the survey paper of Abate
and Whitt [10] as well as in the papers of D’Amore, Lacetti and Murli [11].

Another type of algorithms is based on the Laguerre function expansion of the
original f � t � (cf. Weeks [12], Lyness and Giunta [13], Abate, Choudhury, Whitt
[14] and Weideman [15]), i.e.,

f � t �	� eσt � ∞

∑
n + 0

ane � btLn � 2bt �#� t � 0 � (2.1)

where Ln � t � denotes the Laguerre polynomial of degree n, b is a positive number,
and the coefficients an are defined by

2b
1 $ z

F , σ � 2b
1 $ z

$ b -.� � ∞

∑
n + 0

anzn � � z �/" R � (2.2)

where R is the radius of convergence of the series on the right side in (2.2). The
method is associated with the name of Weeks, although this expansion was con-
sidered several years ago by Tricomi [16]. Two free parameters, σ �0� σ0 � and b�0� 0 � , are included in the expansion. For a given σ � σ0, one can find the optimal
b, which maximizes the rate of convergence of the series, in terms of the location
of the singularities of F � s � , as it is described by Guinta, Lacetti and Rizzadi [17]
and Weideman [15]. After a selection of these parameters, the method is based on
an N-term truncation of the series (2.1). Then, it can be evaluated recursively, e.g.
by the well-known Clenshaw’s algorithm. Such an implementation in FORTRAN
was given by Garbow, Giunta, Lyness, and Murli [18].

The third approach to numerical inversion of the Laplace transform is based on
the sequence of functionals developed by Gaver [19]. A comparison of sequence
accelerators for the Gaver method was given by Valkó and Abate [20].

Finally, one of the best ways for numerical inversion of the Laplace transform
is to deform the standard contour in the Bromwich integral (1.2). One of the well-
known paper in this direction is given in 1979 by Talbot [21].

The Talbot’s contour is illustrated in Figure 2.1. It can be expressed in the form

s � z �	� σ � λ sν � z �#� z 12�0$ 2πi � 2πi �#�
where

sν � z �	� z
1 $ e � z � 1

2
� ν $ 1 � z &



518 G.V. Milovanović and A.S. Cvetković:

Fig.2.1. Talbot’s contour

Putting z � 2iθ , the contour can be parameterized using

s � θ �3� σ � λ sν � θ �#� sν � θ �	� θ cotθ � iνθ � θ 12�0$ π � π � & (2.3)

The real parameters σ , λ �0� 0 � and ν �0� 0 � determine the geometry of the curve.
Since s 4ν � θ �	� cotθ $ θ csc2 θ � iν , the integral (1.2) reduces to

f � t �	� λeσt

2πi
� π� π

F � σ � λ sν � θ ��� eλ sν 5 θ 6 ts 4ν � θ � dθ &
In order to calculate this integral, Talbot uses the trapezoidal rule and in that way
he gets

f � t �	78$ i
λeσt

n

n

∑
j + 0
4 4 eλ tsν 5 θ j 6 F � σ � λ sν � θ j ��� s 4ν � θ j �#� (2.4)

where ∑ 4 4 denotes that the first and last term of the sum (for j � 0 and j � n) are
taken with factor 1 9 2.

Remark. By replacing the function θ cot θ with the first two terms in its partial
fraction expansion, a similar contour can be obtained (cf. [22]). In this case we
have

s � θ �:� σ � λ , 1 � 2θ 2

θ 2 $ π2 � iνθ - � $ π � θ � π &
At the end of this section we mention also the Henrici’s real inversion formula.

Starting from the (complex) Riemann inversion formula, Henrici [3] derived an
explicit representation of the original function in terms of its Laplace transform
function evaluated along the real negative axis. Such representation is known as
the real inversion formula. It requires that the Laplace transform function, which
must be considered as the restriction on the half plane of convergence of a complex
function, has a branch point at zero and the negative real axis as a branch cut.
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Integrating the function s ;� F � s � est over the contour as in Figure 2.2, with
R �*� ∞ and r � 0 � , we get the Henrici’s formula

f � t �	� 1
2πi

��� ∞

0
e � tx < F = xe � iπ > $ F = xeiπ >�? dx � (2.5)

where the values of F on the upper and lower edges of the cut are denoted by
F = xeiπ > and F = xe � iπ > � x � 0 � , respectively.

Recently D’Amore, Murli, and Rizzardi (see [23]) introduced some extensions
of this formula. Namely, they derived an integral equation of convolution type,
whose solution is the inverse Laplace transform function. This formula can be used
if the Laplace transform has a finite number of singularities, located everywhere in
the complex plane, and provided that their corresponding residues are known. Of
course, their formula only requires the knowledge of the Laplace transform function
on the real negative axis.

Fig.2.2. Henrici’s contour.

3 New Method

In this section we present another method for the calculation of the inverse Laplace
transform. It can be applied successfully for the specific class of functions @ . Ac-
tually, it is a function class as the one to which Talbot algorithm can be applied (see
[21], [24]). Thus, we assume that function F has the following two properties:A All singularities of F are known to be placed in the the region

S BDC s EFE Im G s H�EJI K K Re G s H'L σ0 M K
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N �F � s ��� tends to zero uniformly as � s � tends to infinity for Re � s �O� σ0 and� Im � s ���P� K.
The main idea is to perform the evaluation of the Bromwich integral on the

contour presented in Figure 3.1.

Fig.3.1. Deformed Bromwich contour

For this class of functions Q we can prove the following result:

Theorem 3.1 For any σ � σ0, t � 0 and a � Kt, we have

f � t �R� 1
2πi

� σ � i∞

σ � i∞
est F � s � ds � eσt

πt S Re � a

0
eiuF , σ � iu

t
- du$ Imeia �2� ∞

0
e � uF , σ � ia

t
$ u

t
- du T & (3.1)

Proof. First we note that, according to fact that every original f is real, we have
that

F � s �	� � � ∞

0
e � st f � t � dt � F � s �#�

i.e., F � s �	� F � s � . Using this fact we can write

2πi f � t �U� � σ � i∞

σ � i∞
est F � s � ds � ieσt ��� ∞� ∞

eiyt F � σ � iy � dy� ieσt , ��� ∞

0
eiyt F � σ � iy � dy �V��� ∞

0
e � iyt F � σ $ iy � dy -� 2ieσt Re S � � ∞

0
eiyt F � σ � iy � dy T &
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Now, perform the substitution u � yt and choose some a � Kt. Then, we have

f � t �3� eσt

πt
, Re � a

0
eiuF , σ � iu

t
- du � Re � � ∞

a
eiuF , σ � iu

t
- du - &

Consider the last integrand in the complex u-plane over the closed contour

CR �XW u � u 12� a � a � R �ZY\[ W u � u $ a � Reiθ � θ 12� 0 � π 9 2 �ZY[ W u � Re � u �	� a � Im � u �!12� 0 � R �]Y3�
where R � 0. According to the analytic properties of Q and Cauchy residue theorem
we know that ^

CR

eiuF � σ � iu 9 t � du � 0 &
For the integral over the arc we get____ � π ` 2

0
eiRcos θ e � Rsinθ eiaF , σ � iu

t
- Reiθ dθ

____� R � π ` 2
0

e � Rsinθ
____ F , σ � iu

t
- ____ dθ� max

θ acb 0 d π ` 2 e ____ F , σ � iu
t
- ____ R � π ` 2

0
e � Rsinθ dθ� π

2
= 1 $ e � 2R ` π > max

θ acb 0 d π ` 2 e ____ F , σ � iu
t
- ____ �

where we used Jordan inequality sinθ � 2θ 9 π , for θ 1f� 0 � π 9 2 � . It can be easily
seen that, according to assumptions, we have that the integral over the arc tends to
zero as R tends to � ∞, due to the fact that the function F tends uniformly to zero
as the argument tends to infinity in the region Im � s �g� K and Re � s �h� σ0. To be
completely precise we need to justify the convergence in the region Im � s ��� K and
Re � s �i� σ0, but this is a consequence of the fact that the Laplace transform tends
uniformly to zero as the argument tends to infinity in the region Re � s �h� σ0 (see
[25]).

This means that we have� � ∞

a
eiuF , σ � iu

t
- du � ieia � � ∞

0
e � uF , σ � ia

t
$ u

t
- du &

Since we need only the real part of the last integral and it is multiplied by i, actually
we need minus imaginary part of the integral which is not multiplied by i.
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This theorem suggests usage of the Gaussian quadrature rules to two integrals
which are presented in (3.1). Especially, the second integral can be easily seen
to be an integral with respect to the Laguerre measure so that we can apply the
Gauss-Laguerre quadrature rule. For the first integral we can apply the Gauss-
Legendre quadrature rule. However, in order to have faster convergence it is usually
suitable not to perform the Gauss-Legendre quadrature to the first integral as a
whole, but to divide interval � 0 � a � into the several subintervals and then to apply
suitably transformed Gauss-Legendre quadrature rule to each subinterval.

As we know (see [26]), the Gauss-Legendre quadrature rule has the following
property � 1� 1

p � x � dx � n

∑
k + 1

wn
k p � xn

k �#�
where p is a polynomial of degree less than 2n. In order to apply the Gauss-
Legendre quadrature rule for the approximation of an integral over the interval� a � b � , we need to transform it in the following fashionj

wn
k � T b

a � wn
k �k� b $ a

2
wn

k � x̃n
k � T b

a � xn
k �k� a � b $ a

2
� xn

k � 1 �#� (3.2)

where k � 1 � &Z&Z& � n.
Then we have the following lemma.

Lemma 3.1 Suppose wn
k and xn

k , k � 1 � &Z&Z& � n, are the nodes and weights of the
Gauss-Legendre quadrature rule, and w̃n

k and x̃n
k , k � 1 � &Z&Z& � n, are given by � 3 & 2 � ,then we have � b

a
p � x � dx � n

∑
k + 1

j
wn

k p � x̃n
k �#�

for all polynomials of degree smaller than 2n.

Now, suppose that we have divided the interval � 0 � a � into the following non-
overlapping intervals � aν � bν � , ν � 1 � &Z&Z& � m, with the property that l m

ν + 1 � aν � bν �:�� 0 � a � . Then, we have� a

0
eiuF , σ � iu

t
- du � m

∑
ν + 1
� bν

aν

eiuF , σ � iu
t
- du

7 m

∑
ν + 1

nν

∑
k + 1

T bν
aν
� wnν

k � eiT bν
aν 5 xnν

k
6 F m σ � iT bν

aν
� xnν

k
�

t n &
In the previous formula it is assumed that on every subinterval we can take differ-
ent Gauss-Legendre quadrature rules, this fact produces index ν . In the case we



Numerical Inversion of the Laplace Transform 523

are using the same Gauss-Legendre quadrature rules, on every subinterval, we can
safely drop every appearance of ν connected with the nodes and weights.

The Gauss-Laguerre quadrature rule on the other hand has the following prop-
erty � � ∞

0
e � x p � x � dx � n

∑
k + 1

Wk p � Xk �#�
for all polynomials p of degree less than 2n (see [26]).

According to (3.1) and the previous discussion, in total, our quadrature rule can
be given by

f � t �R7 eσt

πt o Re
m

∑
ν + 1

nν

∑
k + 1

T bν
aν
� wnν

k � eiT bν
aν 5 xnν

k
6 F m σ � iT bν

aν
� xnν

k
�

t n$ Im eia
N

∑
k + 1

WkF , σ � ia $ Xk
t

-qp & (3.3)

The real art is how to choose free parameters in the equation (3.3), in order
to have as small as possible number of function evaluations and to have as high
as possible precision in the result, for the given function F . Free parameters are
m, the number of subintervals, then nν , ν � 1 � &Z&Z& � m, the number of nodes of the
Gauss-Legendre quadrature in each interval, the point a, the number of nodes in
the Gauss-Laguerre quadrature rule N, and of course σ which only constraint is to
be bigger than σ0. In general, this problem is still open.

However, there are some general guidelines for choosing parameters of the
quadrature rule (3.3). First one is that the parameter σ should be chosen such
that the contour is not passing to close to the singularities of the function F , for
if it does, it would produce slow convergence of the quadrature rules. Numerical
results suggest it should be at least at the distance 1 from the closest singularity. The
parameter a should be chosen such that singularities of the function are far away
from the arc r s � Re � s �g1V�0$ ∞ � σ �#� Im � s �!� a s , in order for the Gauss-Laguerre
quadrature rule to be efficient. Also, the intervals � ak � bk � should not be to large,
for if they are oscillatory nature of the function eiu, becomes the dominant factor
which affects the convergence.

In order to present results easier we adopt the following short notation

F1 � u;σ � t �3� F , σ � iu
t
- and F2 � u;a � σ � t �3� F , σ � ia $ u

t
- (3.4)

for functions which appear in the quadrature rule (3.3). It can be easily seen that
the function F1 has singularities which depend of t and σ . Also, the function F2
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has singularities depending on t, σ and a. This means that our contour should also
change with t in order to have the smallest number of function evaluations.

Some surprising results that can be achieved we discuss in the next section.

4 Numerical Example

In this section we give a numerical example of the evaluation of the inverse Laplace
transform using Talbot algorithm presented in [21], [24] and, also, using algorithm
which uses Gaussian quadrature rules given by equation (3.3).

We present the evaluation of the inverse Laplace transform for the function

F � s �3� 1
s � λn

n � 1

∏
k + 1

s $ λk $ 1
s � λk

� (4.1)

where the nondecreasing sequence λk, k � 1 � &Z&Z& � n, is the sequence of real numbers
with the property λk �t$ 1 9 2. A calculation of the inverse Laplace transform for
the presented function F is motivated from the problem of the evaluation of the
Müntz polynomials (see [1] and [27]) and is quite essential for the construction
of the generalized Gaussian quadrature rules for the Müntz function systems (see
[2]). The value of n is typically required to be around 100, while the numbers λk,
k � 1 � &Z&Z& � n, are usually distributed uniformly on �0$ 1 9 2 � 100 � .

As it can be checked directly, the function F has all of its singularities on the
real line, and all singularities are poles. It cannot be claimed these poles are simple,
since it might happen that some elements of the sequence λk, k � 1 � &Z&Z& � n, be the
same. It can be checked easily that the function F satisfies the following property

limu
s
u % � ∞

F � s �	� 0 &
This property allows us to use the method presented in Section 3, as well as the
Talbot method.

At first, we present results obtained using Talbot algorithm as implemented in
[24]. The interesting part is that the contour which is used for the calculation, for
the case of the function (4.1), is always driven by λ1 and the actual value of t. Due
to this simple fact, the algorithm is perfectly well-suited, provided we have only
one pole, i.e., λk � λ1, k � 1 � &Z&Z& � n. However, if we choose original settings of
our problem, the results are quite poor, since the Talbot contour is not optimized in
any way to take into account other singularities in our function (4.1). The Talbot
contour, chosen for our function, is presented in Figure 4.1.
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Fig.4.1. Talbot contour for the inversion of function (4.1) for t v 1, with param-
eters λ v 6 w 4, σ v 0 w 5, ν v 1.

The parameters of the Talbot curve (2.3), according to [24] provided we are
working with double precision format, can be calculated in the following way

σ � max r 0 �]$ λ1 sc� λ � 6 & 4 9 t � ν � 1 &
Choosing some random λk, k � 1 � &Z&Z& � n, uniformly distributed in the interval �0$ 1 9 2 � 100 � ,
the relative error of the Talbot algorithm, for t � 1, is of order 106, with 104 nodes
in the quadrature rule (2.4).

First we discuss the change of the singularities with respect to t in the method
given by (3.3). Using (3.4), for our example we have

F1 � u;σ � t �3� F , σ � iu
t
- � $ it

u $ it � σ � λn � n � 1

∏
k + 1

u $ it � σ $ λk $ 1 �
u $ it � σ � λk �

and

F2 � u;σ � a � t �U� F , σ � ia
t
$ u

t
-

� $ t
u $ t � σ � λn �x$ ia

n � 1

∏
k + 1

u $ t � σ $ λk $ 1 �y$ ia
u $ t � σ � λk �y$ ia &

We note that for t � 0 � , almost all singularities of F1 are grouped and very
close to the number zero. Such behavior is not what we would like, since it would
harm the computation of the integral on the interval which has zero as its left bound-
ary. To avoid this, we can choose σ �D$ λ1 � 1 9 t, and for any t � 0 we have that
the distance between closest singularity and the interval � 0 � a � is at least one. There
is also one more effect which appears. That is an accumulation of the zeros of the
function F around the point zero or, if we are using σ �z$ λ1 � 1 9 t, around the
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point one on the imaginary axes. This fact gives a possibility for an easier calcula-
tion since zeros and poles of the function F , loosely speaking, are cancelling each
other.

When t tends to � ∞, the situation seams to be better since our singularities
become more and more sparsely distributed on the imaginary axes, which allows
stable calculation with the smaller effort.

The same thing is happening with the function F2, however, for t � 0 � . The
zeros and poles are accumulated around the point 1 � ia, and are “cancelling” each
other. When t tends to � ∞, the singularities are sparsely distributed on the line
Im � s �i� a, Re � s �{( 1. This situation can be harmful for the computation since,
until t is not big enough, density of poles can result in huge values of the function
F2 on the path of integration. This suggests that a has to be chosen large in order to
avoid this phenomenon.

In order to be able to compare results with exact value of the inverse Laplace
transform we focus our attention to the example λk � k $ 1, k � 1 � &Z&Z& � n, in which
case we can prove the following simple auxiliary result:

Lemma 4.1 If λk � k $ 1, k � 1 � &Z&Z& � n, and F is given by � 4 & 1 � , we have

f � t �	�8�0$ 1 � n n

∑
k + 0
�0$ 1 � ν e � νt , 2ν

ν -|, n � ν
n $ ν -�� t � 0 & (4.2)

Proof. Direct computation.
This concrete sequence λk � k $ 1, k � 1 � &Z&Z& � n $ 1, is an illustrative example,

since λk, k � 1 � &Z&Z& � n, are uniformly distributed on � 0 � n $ 1 � . To get the feeling what
are we dealing we give the graphic of the inverse function f in Figure 4.2.

2 4 6 8 10 12

-0.5

0.5

1

Fig.4.2. Graph of the function t }~ f � t � given by (4.2)
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log10 t f

�

t

�

Absolute error contour nν total points�5 0 �9034 10 �16 0 � 3 � 10 20 � 20 � 20 60�4 0 �2297 10 �15 0 � 3 � 10 20 � 20 � 20 60�3 0 �2223 10 �14 0 � 3 � 6 � 10 20 � 20 � 20 � 20 80�2 0 �1743 10 �13 0 � 3 � 6 � 10 � 30 20 � 20 � 20 � 20 � 20 100�1 0 �3659

� �1 � 10 �15 0 � 3 � 6 � 10 � 18 � 30 � 60 20 � 20 � 20 � 20 � 20 � 20 � 20 140
0 0 �8108

� �1 � 10 �15 0 � 3 � 7 � 14 � 25 � 40 � 70 � 110 20 � 20 � 20 � 20 � 20 � 20 � 20 � 20 160
1 �0 �5986 10 �16 0 � 3 � 9 � 40 20 � 20 � 20 � 20 80
2 �1 � 10 �15 0 � 3 � 9 � 40 20 � 20 � 20 � 10 70
4 �1 � 10 �15 0 � 3 � 18 20 � 20 � 10 50
5 �1 � 10 �15 0 � 3 � 20 20 � 20 � 10 50

Table 4.1. Results of the experiments performed on the function (4.1)
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Table 4.1, represents the results of the calculation. The first column represents
the actual value of t at which the function is being evaluated. The second column
gives the actual value of the function. The third column represents an absolute error
with respect to the exact value of the calculated using (4.2). In the fourth column
we give the contour which is used for the integration in the formula (3.3). For
example, for t � 10 � 5, we have a1 � 0, b1 � a2 � 3, b2 � a � 10. The fifth column
shows the number of points in the quadrature rules used on any part of the contour.
For example for t � 10 � 5 we have 20 points in the Gauss-Legendre quadrature rules
on � 0 � 3 � and � 3 � 10 � , and exactly the same number of points in the Gauss-Laguerre
quadrature rule on � 10 � 10 $ i∞ � . The last column represents the total number of
function evaluations we used to achieve the requested accuracy.

As it can be seen the results are in a good correlation with the consideration we
had in this and the previous section.
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