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Abstract: The problem of pricing equilibrium of multi-service priority-based net-
work is studied by using incentive strategy in Stackelberg game theory. First, some
concepts in game theory were introduced. Then, the existing results on two-user two-
level Nash problem was introduced briefly. A new one-leader two-user two-level in-
centive Stackblberg strategy is presented by employing the time delay in the strategy.
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1 Introduction

Modern telecommunications represent multi-service network systems that are hier-
archically structured large-scale complex systems carrying a wide variety of traffic
classes and serving many users, and besides are undergoing a permanent process
of development [1, 2]. Functionally they appear in various operating topologies as
a result of the executed networking. In addition, the network is shared by a set of
non-cooperative users each sending its communication flow in a fashion optimizing
the individual performance objective.
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The users self-optimizing behaviour tendency, on one hand, leads to network
operating behaviour that is usually referred to as non-cooperative networking [3]; it
has been observed in various practical networks. Such common example networks
with non-cooperative operating dynamics are the B-ISDN (Broadband Integrated
Service Digital Network) network and the Internet [4, 5], and the incentive pricing
is the realistic means to arrive at optimum operation [1, 2]. On the other hand, while
the network is developing, the network users need and require strict Quality of
Service (QoS). Then immediately how to supply the corresponding QoS becomes
an urgent issue. It is therefore that the idea of employing some pricing strategy
to manage the users actions and using different prices for different QoS supplies
has been introduced [5]. Recently, DaSilva, Petr and Akar [1] have studied the
pricing problem in multi-service priority-based networks by using the concept of
Nash equilibrium in Game Theory [6], [7], [8].

The pricing of network services not only determines the economic viability
of commercial networks but also plays an important role in traffic management
through its influence on user behaviour. The principles of game theory have been
used for years as tool of economic analysis [6] and for management problems [9].
Its applications to networking problems of recent date [3] and include not only
pricing but also congestion control and call-admission control as well [2], [4][5].
While at times users and providers may have conflicting objectives [9], the pricing
can be used as a means to encourage users to exhibit behaviour that is beneficial to
the network as a whole [1, 2].

In our recent research [2], we have derived an optimal multi-user Nash-
equilibrium strategy by studying this problem from the viewpoint of pricing based
strategies in multi-service networks. A network authority, e.g. network manager,
was introduced to mediate actively when users do not cooperate. The manager
imposes certain limits to users behaviour by employing an incentive Stackelberg
strategy thus obtaining the optimum in running the network. A kind of linear Stack-
elberg incentive strategy was proposed in [2] under which the users act as if they
were a team, and it is further improved in this article on the to account of operating
time delay.

In the subsequent section, the relationship between the behaviours and benefits
of users and the strategies of manager is revealed first. Then, an improved incentive
Stackelberg strategy based on the time delay in networks is developed, which en-
ables the network manager to operate effectively the whole network at an operating
Nash equilibrium. For this purpose a couple of new theoretical results are proved.
Conclusions and references follow thereafter.
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2 System Model

Consider a single FIFO queue with M levels of priority. In [1], a relatively simple
system (M � 2) was studied and a method was given for finding the equilibrium
in a priority system with any price difference between services and user’s utility
functions.

Let N be the number of customers utilizing the queue at a given time. The user
i can choose to tag a percentage si j of his/her traffic as priority of level j, paying
a price p j for the bandwidth utilized. Denote si

� � si1 � si2 ��������� siM � T . All available
strategies of user i make a set Si. The joint strategy space, denoted by S, is the
Cartesian product of the individual strategy sets, so

S � S1 � S2 � ����� � SN
�	� s � � s1 � s2 �������
� sN ��� si  Si ��� (1)

Denote the traffic statistics for user i by ti which may include information such
as average transmission rate and statistics of message size.

The consumers surplus Ci
�
s � is defined as the difference between the utility

obtained with given service choice and the price paid for the service.

Ci
�
s � � Ui

�
qi ��� M

∑
j � 1

p jsi jλ i i � 1 � 2 �������
� N (2)

where Ui
�
qi � is the user’s utility function and qi represents the level of service the

user i received from the network. λ i is the average arrival rate.

Users will decide on a service request s � � � s �1 � s �2 ��������� s �N � that maximizes their
surplus functions (2). A proper kind of equilibrium joint strategy is necessary to
evaluated the effectiveness of a pricing policy. If the users act as team to maximize
their surplus functions, the solution is easy to be obtained. In practice, however,
the consumers are non-cooperative. A Nash equilibrium is a proper strategy com-
bination where no user can unilaterally increase his/her utility by changing his/her
strategy [3, 6]. In the two-user two-level case, [1] studied the Nash equilibrium and
got some results. As pointed out in [1], the equilibrium is stable in some price range
and not stable out of the range, i.e. at least one user would prefer another strategy
combination to optimize his/her cost. To a proper strategy combination, a kind of
so-called incentive Stackelberg strategy is best to be employed to force each user
to obey this strategy combination. More precisely, the definitions of Nash equi-
librium, incentive Stackelberg strategy and relative concept of Pareto optimality
[6, 7, 8], respectively, are offered as follows

Definition 1 (Nash Equilibrium) Strategy combination s � is a Nash equilibrium if

Ci
�
s � ��� Ci

�
si � s � � i � � si  Si � i � 1 � 2 �������
� N (3)
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where s � i
� � s1 �������
� si � 1 � si � 1 �������
� sN � .

Definition 2 (Pareto Optimality) A strategy combination s̃ is Pareto optimal if
there does not exist s �  S such that

Ci
�
s � ��� Ci

�
s̃ � � i � 1 � 2 ��������� N (4)

and for at least one i,
Ci
�
s � ��� Ci

�
s̃ � (5)

Definition 3 (Incentive Stackelberg Strategy) Assume ŝ be the proper strategy
combination of the entire network. As a leader, the network provider can make
a leader strategy s0, which is some kind of pricing decision effecting Ci

�
s � in such

way as Ci
�
s0
�
s � � s � , such that

Ci
�
s0
�
ŝ � � ŝ ��� Ci

�
s0
�
si � ŝ � i � � si � ŝ � i ��� si  Si � i � 1 � 2 �������
� N (6)

For the incentive Stackelberg strategy, there exists a necessary and sufficient
condition by which we can determine an incentive Stackelberg strategy easily [10].

Lemma 1 A strategy s0 is an incentive Stackelberg strategy if and only if

argmax
s

Ci
�
s0
�
s � � s � � ŝ � (7)

s0
�
ŝ � � ŝ0 � (8)

where, ŝ0 is the proper strategy of the leader, when the users act as a team.

3 Two-user Two-level Nash Problem

In [1], a two-user two-level case was investigated by using Nash equilibrium con-
cept with Pareto optimality. In that case, the surplus of user i was selected as

Ci
�
s � � Ai � BiW

di
i � pHsi1λ i � pLsi2λ i � i � 1 � 2 � (9)

where, Ai � BiW
di
i

is some nonlinear utility function of Wi if di �� 1. For each user,
Ai and Bi are constants. Wi is the average waiting time in the queue. pH (and pL)
is the price of the high (and low) priority of the two levels of priority, respectively.
Because si j represents the percentage of traffic, so we can rewrite (9) as

Ci
�
s � � Ai � BiW

di
i � pHsiλ i � pL

�
1 � si � λ i � i � 1 � 2 � (10)
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where si1 is replaced by si for simplicity. The joint strategy space for that case can
be S � � 0 � 1 ! � � 0 � 1 ! .

Due to the scarcity of closed-form results for delay in G " G " 1 priority queueing
systems, we assume Poisson arrivals to the queue, with ti

� � λ i � xi � x2
i � , where xi

and x2
i are the first two moments of message length for user i, i � 1 � 2. Utilizing

the well-known queuing theory results [11], and assuming xi
� x, x2

i
� x2, � i, the

average waiting time Wi in the G/G/1 queue will be

Wi
� K

1 � xλ T si
1 � x

�
s1λ 1 # s2λ 2 � � i � 1 � 2 (11)

where λ T
� λ 1 # λ 2, K � x2λ T

2
�
1 � xλ T � which is unrelated to si.

So we can calculate ∂W di
i
" ∂ si, i � 1 � 2, as follows

∂W di
i

∂ si

� Kdidi

$
1 � xλ isi

1 � x
�
s1λ 1 # s2λ 2 �&% di

� 1 ' � xλ T
1 � x
�
s1λ 1 # s2λ 2 �# �

1 � xλ T si � xλ i�
1 � x
�
s1λ 1 # s2λ 2 ��� 2 (� Kdidixλ j

�
1 � xλ T si � di

� 1�
1 � x
�
s1λ 1 # s2λ 2 ��� di � 1

� � 1 # xλ T s j �)�
(12)

Let

∂C1
�
s �

∂ s1

� B1Kd1d1xλ 2

�
1 � xλ T s1 � d1

� 1 � 1 � xλ T s2 ��
1 � x
�
s1λ 1 # s2λ 2 ��� d1 � 1 �+* pλ 1

� 0 � (13)

and

∂C2
�
s �

∂ s2

� B2Kd2d2xλ 1

�
1 � xλ T s2 � d2

� 1 � 1 � xλ T s1 ��
1 � x
�
s2λ 2 # s1λ 1 ��� d2 � 1 �+* pλ 2

� 0 � (14)

where, * p � pH � pL.

If there exists a solution for (13) and (14), it is just the pure strategy Nash equi-
librium. A closed-form result, under the assumption of exponentially-distributed
message lengths of mean µ , as well as numerical results, were given in [1].

Lemma 2 A two-user system achieves a unique Nash equilibrium that is Pareto
optimal and maximizes revenue if and only if$

min
i � 1 , 2 Bi % 2λ

µ
�
µ � 2λ � � µ � λ �.- * p - $ max

i � 1 , 2 Bi % 2λ
µ
�
µ � 2λ � � µ � λ � (15)
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The Lemma 2 gave a range of * p for the existence of an optimal equilibrium.
In that range, there exists the Nash equilibrium with Pareto optimality. If * p is
out of the range given by (15), there maybe exist a Nash equilibrium which has,
however, the probability of deviation by at least one user who would prefer other
strategy combination to maximize his/her surplus. We refer to such case as insta-
bility of the network.

When

∆p � $ min
i � 1 , 2 Bi % 2λ

µ
�
µ � 2λ � � µ � λ �

or

∆p � $ max
i � 1 , 2 Bi % 2λ

µ
�
µ � 2λ � � µ � λ �

(16)

there is no longer a unique equilibrium, since more than one strategy will be equiv-
alent in the eye of one of the users.

Furthermore, when Bi for all users are the same, say B, * p has to be just a
point exactly rather than in an interval to guarantee the sufficient and necessary
condition hold. In such case, the network provider has to put the high-priority level
at the point where is just * p higher than the low-priority level, or he cannot control
the entire network.

4 One-leader Two-user Two-level Incentive Problem

To overcome the instability of Nash equilibrium solution, we employ the incentive
Stackelberg strategy. At first, we should introduce a leader into the system. And
then, a cost function for the leader should be selected. At the third step, a proper
strategy combination for the entire network should be determined. Finally, we will
construct an incentive Stackelberg strategy to achieve our goal.

The network provider is the best and natural choice to be the player with lead-
ership in the game. The leader represents the interest of the entire system. We can
consider the following linear combination of Ci as the leader’s cost function.

C0
�
s0 � s � � α1C1

�
s0 � s � # α2C2

�
s0 � s � (17)

where α1 and α2 are the weights of user 1 and user 2, respectively, and α 1 # α2
� 2.

s0 is the strategy of the leader, which is as a function of the strategy combination s
so that the leader has the ability to punish the users who want to deviate the proper
strategy combination. For two-user system, s0 may be a 2-dimensional vector, i.e.
s0
� � s01 � s02 � T . In practice, s0i can be taken as the extra price charged to the use
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i if he makes the deviation from the team solution. Therefore, s0i will never be
negative.

In (17), Ci
�
s0 � s � , i � 1 � 2, are the extensions of Ci

�
s � , i.e.

Ci
�
s0 � s � � Ci

�
s � # Pi

�
s0 � � i � 1 � 2 (18)

where Pi
�
s0 � , i � 1 � 2, play the punitive or incentive part and Pi

�
0 � � 0, Pi

�
s0 � - 0

for s0 �� 0. Usually, we can take a linear function as Pi
�
s0 � . So, we have

Ci
�
s0 � s � � Ai � BiW

di
i � pHsiλ i � pL

�
1 � si � λ i # ξ is0i � i � 1 � 2 � (19)

where ξ i - 0, i � 1 � 2, are the parameters of the linear functions. Usually, ξ i
� � 1,

for the convenience of calculations.

When α1
� α2 and s0

� 0, C0
�
s0 � s � is just the sum of the surplus Ci

�
s � � i � 1 � 2.

The proper strategy combination can be obtained by taking derivative of (17)
with respect to si � i � 0 � 1 � 2. Denote the proper strategy combination as

�
s̃0 � s̃ � . We

can calculate ∂C0
�
s0 � s � " ∂ si, i � 1 � 2, as follows.

∂C0
�
s0 � s �

∂ s0

� � α1ξ 1 � α2ξ 2 � T � (20)

∂C0
�
s0 � s �

∂ s1

� α1
∂C1
�
s0 � s �

∂ s1
# α2

∂C2
�
s0 � s �

∂ s1� α1
∂C1
�
s �

∂ s1
# α2

∂C2
�
s �

∂ s1

(21)

∂C0
�
s0 � s �

∂ s2

� α1
∂C1
�
s0 � s �

∂ s2
# α2

∂C2
�
s0 � s �

∂ s2� α1
∂C1
�
s �

∂ s2
# α2

∂C2
�
s �

∂ s2

(22)

The first part of the right hand in (21) is just (13) and the second part is

∂C2
�
s �

∂ s1

� � B2Kd2d2

' 1 � xλ T s2
1 � x
�
s1λ 1 # s2λ 2 � ( d2

� 1

� � 1 � xλ T s2 � ' xλ 1�
1 � x

�
s1λ 1 # s2λ 2 ��� 2 (� � B2Kd2d2xλ 1

�
1 � xλ T s2 � d2�

1 � x
�
s1λ 1 # s2λ 2 ��� d2 � 1

(23)
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The first part of the right hand in (22) is

∂C1
�
s �

∂ s2

� � B1Kd1d1

' 1 � xλ T s1
1 � x

�
s1λ 1 # s2λ 2 � ( d1

� 1

� � 1 � xλ T s1 � ' xλ 2�
1 � x

�
s1λ 1 # s2λ 2 ��� 2 (� � B1Kd1d1xλ 2

�
1 � xλ T s2 � d1�

1 � x
�
s1λ 1 # s2λ 2 ��� d1 � 1

(24)

and the second part is just (14). As Ci
�
s0 � s � is a linear function of s0i as in (19),

∂C0
�
s0 � s � " ∂ s0 never be zero but less than zero. So, we can see s̃ � � s̃0 � s̃1 � s̃2 � T ��

0 � s̃1 � s̃2 � T .

We have just established the following lemma when it is in the interior of the
joint strategy set � 0 � ∞ � � S, i.e. in

�
0 � ∞ � � � 0 � 1 � � � 0 � 1 � .

Lemma 3 If s̃ is a solution for the system of equations:

∂C0
�
s0 � s �

∂ si

� 0 � i � 1 � 2 (25)

then s̃ is a proper strategy combination on which the users act as a team.

If ∂C0
�
s0 � s � " ∂ si �� 0 for all si  � 0 � 1 � � i � 1 � 2, s̃ will not be in

�
0 � 1 � � � 0 � 1 � .

s̃i
� 1, when ∂C0

�
s0 � s � " ∂ si � 0 over S. Conversely, s̃i

� 0, when ∂C0
�
s0 � s � ∂ si / 0.

If the users are cooperative, then the system will be in the optimal situation by
taking the team strategy combination s̃. The users of the network, however, are
usually noncooperative. In such case, a Nesh strategy can be taken among the users
who are in the same position. But, if a leader is introduced, the leader will be in
the charge of management of network. Therefore, it is his/her duty to manage the
entire system optimal. Stackelberg strategy is, then, the best to that purpose.

The Strakelbreg Strategy of [2] has simple formula, can not embody the re-
lationship between profits of the user and the network provider. Here, we derive
a kind of incentive strategy that is improved considerably on the account of the
networking time delay. First we consider the effect of time delay.

Wi
� K

1 � x̄λ T si
1 � x̄

�
s1λ 1 # s2λ 2 � i � 1 � 2; (26)

∂Wi
∂ si

� Kx̄λ j
� 1 # x̄λ T s j�

1 � x̄
�
s1λ 1 # s2λ 2 ��� 2 - 0 (27)
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where Wi is the decrease function about si. When si increase, the value of Wi de-
crease.

∂Wj

∂ si

� Kx̄λ i

1 � x̄λ T s j�
1 � x̄
�
s1λ 1 # s2λ 2 ��� 2 � 0 (28)

where W j is the increase function about si,when si increase, the value of W j increase.

By analyzing above formula, we know that if the user i use the advanced priority
bandwidth then it’s time delay is decreased and the other’s is increased. We can
chose the following incentive Stackelberg strategy.

s0
� s̃0 #10 Q1

��� � B1
�
W d1

1 �32W d1
1 � # B2

� 2W d2� 2 �	2W d2
2 ���

Q2
�
B1
� 2W d1� 1 � 2W d1

1 ��� B2
�
W d2

2 � 2W d2
2 ���54 (29)

where 2Wi
� K

1 � x̄λ T s̃i
1 � x̄
�
s̃1λ 1 # s̃2λ 2 � i � 1 � 2 (30)

W
i
� K

1 � x̄λ T si
1 � x̄
�
siλ i # s̃ jλ j � i � 1 � 2; j � 1 � 2; i �� j (31)

2W� i
� K

1 � x̄λ T s̃i
1 � x̄
�
s̃iλ i # s jλ j � i � 1 � 2; j � 1 � 2; i �� j (32)

where Q1 and Q2 are the punishment parameters. Substituting(29) into (19) yields

Ci
�
s0 � s � � Ai � BiW

di
i � PHsiλ i � PL

�
1 � si � λ i# ξ iQi

� � Bi
�
W di

i � 2W di
i � # B j

� 2W d j� j � 2W d j
j ��� i � 1 � 2; j � 1 � 2; i �� j

(33)

The derivative with respect to si are given by means of

∂C1
�
s0 � s �

∂ s1

� B1Kd1d1x̄λ 2

�
1 � x̄λ T s1 � d1

� 1 � 1 � x̄λ T s2 ��
1 � x̄
�
s1λ 1 # s2λ 2 ��� d1 � 1 � ∆pλ 1

# ξ 1Q1

$ � B1Kd1d1x̄λ 2

�
1 � x̄λ T s1 � d1

� 1 � � 1 # x̄λ T s̃2 ��
1 � x̄

�
s1λ 1 # s̃2λ 2 ��� d1 � 1# B2Kd2d2x̄λ 1

�
1 � x̄λ T s̃2 � d2�

1 � x̄
�
s1λ 1 # s̃2λ 2 ��� d2 � 1 %

(34)

∂C2
�
s0 � s �

∂ s2

� B2Kd2d2x̄λ 1

�
1 � x̄λ T s2 � d2

� 1 � 1 � x̄λ T s1 ��
1 � x̄

�
s1λ 1 # s2λ 2 ��� d2 � 1 � ∆pλ 2

# ξ 2Q2

$
B1Kd1d1x̄λ 2

�
1 � x̄λ T s̃1 � d1�

1 � x̄
� 2s1λ 1 # s2λ 2 ��� d1 � 1� B2Kd2d2x̄λ 1

�
1 � x̄λ T s2 � d2

� 1 � 1 � x̄λ T 2s1 ��
1 � x̄
� 2s1λ 1 # s2λ 2 ��� d2 � 1 %

(35)
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Let s � s̃ and

Fi
�
s � � BiK

didix̄λ j

�
1 � x̄λ T si � di

� 1 � 1 � x̄λ T s j ��
1 � x̄

�
s1λ 1 # s2λ 2 ��� di � 1 i � 1 � 2; j � 1 � 2; i �� j

Hi
�
s � � BiK

didix̄λ i

�
1 � x̄λ T si � di�

1 � x̄
�
s1λ 1 # s2λ 2 ��� di � 1 i � 1 � 2 (36)

Let
∂Ci
�
s0 � s �

∂ si

� 0 i � 1 � 2 (37)

We have

Qi
� ∆pλ i � Fi

�
s̃ �

ξ
�
Hi
�
s̃ �6� Fi

�
s̃ ��� i � 1 � 2; (38)

where Qi is the punishment parameter of manager, so the user can get maximum
surplus at s̃ point.

The leader’s strategy (29) with Qi given in (38) is just the incentive Stackelberg
strategy which can make the users get their maximal surplus at the point s̃.

Theorem 1 If Qi � i � 1 � 2 , in (29) are chosen as (38), then the strategy s0 given in
(29) can be taken as an incentive Stackelberg strategy for the leader of the network.

Proof : According to Lemma 1, we just need to show that s0 presented in (29) with
Qi given in (38) satisfies the conditions (7) and (8). It is evident that (8) is held for
this strategy. Now, let us consider the condition (7). Substituting (38) into (34) and
(35), we can see that ∂Ci

�
s0 � s � " ∂ si

� 0 only when si
� s̃i. It indicates that only

si
� s̃i can be the optimum point of Ci

�
s0 � s � , i.e.

argmax
s

Ci
�
s0
�
s � � s � � s̃ � (39)

Whatsoever si
� s̃i � i � 1 � 2 is or not the extreme point, it always make

∂Ci
�
s0 � s � " ∂ si

� 0 with Qi chosen as in (38).

5 Conclusions

In this article, we improved the existing result on pricing strategies that reinforce
Nash equilibrium in multi-service networks by means of the incentive Stackelberg
strategy concept of game theory. The new theoretical results, presented in terms
of Lemma 3 and Theorem 1, provide a new solution to the problem in two-user
two-priority-level case in the game-theoretic setting of leader-follower concept.
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The network provider was introduced into the game-theoretic representation
model of the problem as the player who has the leadership role in the priority-based
networking game. Then an appropriate linear incentive Stackelberg strategy of
network-service pricing was derived. This incentive Stackelberg strategy, however,
is a non-linear function of users time delays.

Network provider, who employs this strategy, shall be able to manage all the
network users at Nash equilibrium by effectively forcing them to act as if they were
a team. Thus, during the network operation, the network provider can inter-link
users connections and manage users behaviour much better. Hence he will ensure
the benefits for all the users and the network.
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