
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 18, No. 2, April 2005, 309-317

Advanced System Software Curricula

S. -Dord̄ević -Kajan, Dragan Stojanović, Aleksandar Stanimirović

Abstract: An advanced System Software curricula at the Faculty of Electronic Engi-
neering in Niš is presented in this paper. The system software track consists of two
important themes of Computer Science and Computing in General organized now as
two separated courses: Operating Systems course and System Software Development
and System Programming course. Both courses offer extensive teaching of founda-
tional concepts and principles of Operating Systems and System Programming along
with design and implementation of presented topics in real operating systems and sys-
tem software, such as Unix, Linux and Windows 2000/XP. Laboratory environments
and exercises for both courses offer both examination of main algorithms and struc-
tures within operating systems and system software through simulation, and what is
more important, hands-on experience with operating system internals and code.

Keywords: System software, Operating Systems, System programming, Laboratory
exercises

1 Introduction

Operating systems and system software in general are an essential part of any com-
puter system. Similarly, a course on operating systems and system software is an
essential part of any computer science and computing education. This field is un-
dergoing change at a breathtakingly rapid rate, as computers are now prevalent in
virtually every application, from games for children through the most sophisticated
planning tolls for governments and multinational firms. All these applications rest
on services and foundational concepts of appropriate operating systems and system
software, because the design of an operating system and associated system soft-
ware exerts a major influence on the overall function and performance of the entire
computer, as well as its applications.

Manuscript received February 28, 2004
The author are with Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva

14, 18000 Niš, Serbia and Montenegro, E-mail: sdjordjevic@elfak.ni.ac.yu

309



310 S. -Dord̄ević -Kajan at all

The concept of operating system as primarily providing its users with a conve-
nient interface is a top-down view and belongs to ordinary users. An alternative,
bottom-up view, holds that operating system is there to manage all the pieces of
a complex system including processors, memories, timers, disks, mice, network
interfaces, printers and a wide variety of other devices and belongs to operating
system designers and system programmers. For them operating system provide
an orderly and controlled allocation of the processors, memories, I/O devices and
other logical and physical resources among the various programs competing for
them. The system software beyond an operating system provides services for pro-
gram development and execution, distributed and network computing, virtual ma-
chines for programming abstractions, database management, an so on. Thus, sys-
tem software development and system programming are the important activity that
enables proper design, implementation and performance of all other application
software developed on top of system software in general. The System software
course, covering both operating systems and system programming, is intended for
such audience providing an up-to-date overview and practical information on un-
derstanding and designing modern operating systems, blending a theoretical foun-
dation of operating systems design with real, contemporary implementations. It
explains key mechanisms of modern operating systems, types of design tradeoffs
and decisions involved in system design, and the context within which the operat-
ing system functions, as well as principles and design of system software residing
on top of operating system.

2 System Software Track at the Faculty of Electronic Engineering

The System Software theme is currently offered as unique two-semester course at
the Faculty of Electronic Engineering, University of Niš, at 7th and 8th semester of
the undergraduate studies. It consists of two important Computer Science topics,
Operating Systems and System Programming, which are taught in each semester.
The Faculty of Electronic Engineering started new Computing Curricula in 2004
according to Bologna Declaration and Process and to the ACM/IEEE work on
Computing Curricula specification and recommendations [1]. In the new Curric-
ula the System Software course is logically split in two courses making a System
Software track. The first one is traditional Operating Systems course, taught in
4th semester mandatory for all Computing undergraduate programme: Computer
Science, Computer Engineering, Software Engineering, Information Systems and
Information Technologies. The second part of current System Software course is
extended and formed as System Software Development and System Programming
Course scheduled for 7th and 8th semester of the new Computing Curricula. The



Advanced System Software Curricula 311

course is one of the core courses for Computer Engineering and Software Engi-
neering programmes and elective for other programmes.

3 Teaching System Software Principles and Concepts

The first part of the System Software track, the Operating Systems course, follows
traditional sequence of topics regarding modern operating systems principles and
concepts [2], [3], [4]. Introductory lecture topic represents so-called bird’s-eye
view of the operating system. It reviews the history of operating system starting
from the early batch systems to modern multiprogramming systems and personal
computer systems. Since operating systems interact closely with the computer
hardware, the topic reviews shortly computer hardware components and their in-
terconnections. The basic components on which all operating systems are built:
processes, memory management, I/O management, the file system and security are
introduced leaving to subsequent chapters to describe them thoroughly. The con-
cept of system calls as the programmer interface to an operating system, as well
as design principles of operating system as monolithic, layered, virtual machine,
exokernels and client-server system are presented. The next lecture topics present
the most central concept in any operating system: the process as an abstraction of
the running program. It introduces the concept of multiple threads of control within
a single process, which are scheduled independently, each one having its own stack
but sharing a common address space within the process they belong to. The topic
discusses process and thread properties and how they communicate with one an-
other using interprocess primitives, such as semaphores, monitors or messages.
It also gives a number of detailed examples of how interprocess communication
works and how to avoid some of the pitfalls. The topic is concluded by the review
of scheduling algorithms. Next follows the topic, which introduces deadlocks as
potential problems in any operating system. It briefly shows what deadlocks are
and discusses the ways to prevent or avoid them. The obligatory topic in this se-
quence is the memory management, which is presented in detail. The important
topic of virtual memory is examined along with closely related concepts such as
paging and segmentation. The next topic provides introduction to the principles and
techniques used within Input/Output subsystem. The tree ways in which I/O can
be accomplished: programmed I/O, interrupt driven I/O and DMA are discussed.
The four level structure of I/O: interrupt service procedures, the device drivers, the
device-independent I/O software, and the I/O libraries are described. Several im-
portant devices, including disks, clocks, keyboards, displays and network terminals
are used as examples. Within the next topic, detailed overview of both the file sys-
tem interface and the file system implementation. The lecture offers a basic view



312 S. -Dord̄ević -Kajan at all

to a file system through operations on collection of files and directories, along with
operations of them, but more thoroughly from inside, concerning how storage is
allocated, how system keeps track of files and containing blocks, how directory
structure is maintained, how free disk space is managed, and so on.

Mentioned themes present completed study of the basic principles of single-
CPU operating systems, which any course on operating systems should cover.
While we recently introduced an elective course in computer security, we could
not guarantee that our computer science graduates would be exposed to a formal
treatment of even the most basic computer security topics. Since computer secu-
rity is a hugely important subject nowadays, we added some fundamental computer
security concepts and activities to our Operating Systems course. Also, The Com-
puting Curricula 2001 Computer Science model curriculum [1] lists security as an
elective component of the Operating System course. Among the topics discussed
in this lecture are threats (e.g. Trojan Horses, viruses, worms, Denial of Service,
etc.), protection mechanisms and security models.

The most valuable component of the Operating Systems course are the case
studies of real operating systems, and design and implementation of presented op-
erating systems components and functions. The Operating Systems chosen are
UNIX/Linux [5] and MS Windows, because of their widespread usage and pop-
ularity. The case studies present how operating system principles and concepts
covered by previous chapters are applied in the real world. Due to high diversity
of UNIX clones and versions, the fundamental principles, system calls, general
implementation strategies, algorithms and data structures are primarily drawn upon
examples of 4.4BSD (FreeBSD), System VR4 and Linux implementations [6]. The
design principles of Windows 2000 and Windows XP are also given.

The System Software Development and System Programming course of the
System software track represents an introduction to the design and implementation
of various types of system software, beyond the operating system [7]. A central
theme of the course is the relationship between machine architecture and systems
software. System software consists of software programs that support the oper-
ation of a computer. A variety of system software programs (assemblers, macro
processors, loaders and linkers, interactive debugging systems, virtual machines,
distributed object and file systems, middleware, database management systems,
embedded software systems, etc.) are covered in the course and some software
engineering concepts and issues related to system software development are also
introduced. The course presents the fundamental concepts and basic design of each
type of system software in a machine-independent way. Both machine-dependent
and independent extensions to the basic concepts are discussed, and examples of
the actual system software are given.



Advanced System Software Curricula 313

4 Laboratory Environment and Exercises for System Software Courses

The purpose of the lab component of the Operating System course is to reinforce
topics covered in lecture and to give students hands-on experience with design of
operating systems. The lecture and lab are complimentary. Lecture material typ-
ically covers the theory behind some concept, while the lab addresses the same
material from a pragmatic standpoint. Our basic idea was to give students opportu-
nity to study and implement real operating system code, which is fundamental for
this kind of course.

In order to provide students a better understanding of operating system internals
we have considered several solutions. First we have considered typical approach
where student projects simulate operating systems internals using system program-
ming. In this way they get experience with system programming while learning
about operating system concepts, but they don’t get opportunity to get “hand-on”
experience with operating system internals. Also, we have considered, using an op-
erating system simulation environment such as Nachos [8]. In this way students get
opportunity to implement operating system internals. But this kind of environment
adds an extra layer of complexity and often developers have to develop their often
design tools. This approach also have to deal with fact that in a real life students
have to deal with real operating systems not with simulations.

We believe that “hands-on” experience is an essential component of computer
science education and that most current curricula rely far too heavily on simulation
when teaching systems issues. In order to provide students with access to real
operating system code we have choose solution based on open source operating
systems. Operating systems with open source code, such as Linux, are not only
available but becoming serious competitors to commercial products in the market.
For this reason we have choose Linux as a operating system for our lab exercises.
We chose to use Linux for several reasons [9]:

� wide range of hardware supported,

� the sophistication of its kernel,

� availability of source code [10] and

� rich documentation.

In order to achieve our goals appropriate laboratory is needed for Operating
System lab exercises. Faculty of Electrical Engineering, with help from TEMPUS
Project CD-JEP 16160/2001, has built a computer laboratory. This laboratory has
15 workplaces. Each workplace is equiped with 1.7MHz Pentium Celeron IV PC
machines running the Windows XP operating system. Each machine has 256MB of



314 S. -Dord̄ević -Kajan at all

RAM, 40GB hard disk, 3.5” floppy, and a DVD ROM drive disk. This laboratory
is available to all CS students. It is not dedicated Operating Systems lab.

Operating System course must provide students with laboratory allowing them
unrestricted access to the machines, but in a safe manner both for students in the
class and for students outside the class. In order for students to modify the operating
system code, they need super-user permission. In this way, each machine becomes
insecure because any file, on their file system, can be compromised, both in terms
of privacy and integrity. This means that open source project machines cannot be
easily time-shared because they can be unstable and not private. There must be a
quick way to selectively repair or re-install the software on a machine in the event
that a system is compromised. Moreover, a super-user can infiltrate the network,
using his time in the lab to compromise other systems. This requires additional
protection in order to provide productive but protected environment.

In order to provide this kind on environment (without dedicated Operating Sys-
tems lab) we have experimented with virtual machines (VirtualPC [11], Vmware
[12], BOCHS [13]). We have installed VMware Workstation in the school comput-
ers, running a commercial open source operating system in the virtual machines.
The virtual machines run fully isolated from the host operating system (the operat-
ing system running on the physical computer), meaning that any errors or crashes
in the virtual machines do not affect the physical computer. Students now per-
form their coursework in the virtual machines, gaining the hands-on experience
that allows them to fully test and develop their skills, without posing a risk to the
school machines. In this way students have opportunity to explore all aspects of
developing an operating system, including modifying, designing, implementing,
and testing kernel code. The virtual machines also give students the freedom to
make mistakes and learn from them. Using undoable disk capabilities offered by
VMware, students can ”undo” their errors and restart the session as many times as
they need to master the material.

The main goal of lab exercises for System Software Development and Sys-
tem Programming course is to provide students with knowledge of how to use
topics, covered in lectures, in realistic situations. In this way students can learn
to construct effective software that interact directly with operating system, rather
than with higher-level abstract machines (such as database managers, windows sys-
tems and high-level file systems). Same time, using system calls directly, students
can gain important insight into way how operating system is designed and imple-
mented.

System Software Development and System Programming lectures provide stu-
dents with concepts and issues. In this way course is concentrated on ideas and
technology that transcend any particular operating system. The 1991 (and draft
2001) IEEE/ACM undergraduate course recommendation describes a course that



Advanced System Software Curricula 315

consists of substantial amount of time spent on issues, but also includes a signif-
icant laboratory component. Even though the trend is toward courses based on
conceptual materials, hands-on expirience is invaluable in learnin about operating
systems and system programming [14]. Lab exercises have to give students oppor-
tunity to try concepts, they have learned in lectures, in real life. For a long time
Linux was the best real operating system on which to build lab exercises for system
programming. It provides a contemporary implementation of Unix, it has a rich
documentation and samples available over Internet and source code is also pub-
licly available [10], [15]. On the other hand Windows operating systems (Windows
2000, Windows XP) dominate commercial market of operating systems. Literally
every PC machine has a copy of some Windows installed on it. For that reason
students are more familiar with Windows environment [16], [17]. For this reasons
we have decide to support both, Linux and Windows, in our laboratory exercises.

In order to help students during preparation of their lab exercises we have pub-
lished a lab manual. Lab manual “System software – Operating systems and sys-
tem programming” [18] is fully supported by Tempus project CD JEP 16160/2001
that is financed by European Commission. This lab manual contains all necessary
material that students need in order to prepare their lab exercises. This material
is written in order to complement with System Software Development and System
Programming course lectures. It contains definitions of most important system calls
and data structures provided by operating system kernel (both Unix/Linux and Win-
dows) that are necessary for system programming and for managing components of
operating system. Source code, that illustrates this system calls and data structures,
is also provided as a part of this lab manual.

For lab exercises we are using the same laboratory used for lab exercises in
Operating System course. Although we treat Unix/Linux and Windows as equal
operating system during lab exercises we slightly favor Linux. There are several
reasons for this. First, most of our CS students have not used any operating system
other than Windows before. Using Linux in our class gives students experience
with another major operating system. Second, although development GUIs exists
for Linux, we chose to use the command-line interface. Using the command-line
reinforces the ideas behind topics, rather than teaching students how to use a partic-
ular GUI. A non-GUI approach is not feasible in an easy way in Windows. Third,
Linux is easily customized to provide a secure environment in which students can
work.

Our System Software Development and System Programming course have 7
projects. In the projects the students were required to study the current operating
system and his system calls, design and implement a solution, evaluate the perfor-
mance of their solution and answer some short questions regarding extensions to
their project. The first project was designed to get students familiar with the Linux



316 S. -Dord̄ević -Kajan at all

system. It included a series of “cook-book” type instructions that walked students
through the addition of user accounts, the use of some common Unix tools such
as find and grep. Second project is designed in order to get students familiar with
internal parameters of current operating systems and to use some tools to access
those parameters. Other projects prepare students to deal with projects regarding
processes, synchronization, deadlock, security, virtual memory and file manage-
ment.

5 Conclusions

Providing the great importance of Operating Systems and System Programming
topics for undergraduate Computer Science and Computing in general education,
we organize those topics in advanced System Software track, comprising two courses,
at the Faculty of Electronic Engineering in Niš, for Computing and Informatics
new curricula programme. Those courses blend up-to-date theory with broad cov-
erage of fundamentals, offering a comprehensive treatment of operating systems
and system programming, with an emphasis on internals and design issues of both
operating systems and system software. The Operating Systems course and System
Software Development and System Programming courses provide a thorough dis-
cussion of the fundamentals of operating systems and system software design and
relates these principles to contemporary design issues and to current trends in the
development of operating systems and system software. It helps students develop
a solid understanding of the key structures and mechanisms of operating systems
and system software beyond them, the types of trade-offs and decisions involved in
operating system and system software design, and the context within which the op-
erating system functions (hardware, other system programs, application programs,
interactive users, etc).

Acknowledgement
The work on this paper is partially supported by the Tempus project CD JEP

16160/2001 financed by European Commission.

References

[1] “Computing curricula 2001: Computer science (final report),” in The Joint Task Force
on Computing Curricula. IEEE Computer Society, Association for Computing Ma-
chinery.

[2] G. Nutt, Operating Systems: A Modern Perspective, 2nd ed. Addison Wesley, 2000.

[3] J. L. Peterson and A. Silberschatz, Operating System Concepts, 6th ed. John Wiley
& Sons Inc, 2002.



Advanced System Software Curricula 317

[4] A. S. Tanenabum, Modern Operating Systems, 2nd ed. Prentice Hall, 2001.

[5] S. -Dord̄ević-Kajan and E. Kajan and I. Popović, UNIX sistemski prilaz. Niš: Elek-
tronski fakultet, 1996.

[6] (2004) The single unix specification version 3. Open Group Publications. [Online].
Available: http://www.unix.org/single unix specification/

[7] L. Beck, System Software: An Introduction to Systems Programming, 3rd ed.
Addison-Wesley, 1997.

[8] (2005) Nachos. [Online]. Available: http://www.cs.washington.edu /homes /tom
/nachos/

[9] R. Chapman and W. Carlisle. (2005, April) A linux-based lab for operating systems
and network courses. [Online]. Available: http://www.linuxjournal.com/

[10] (2005) Linux source code browser. [Online]. Available: http://lxr.linux.no/source

[11] (2005) Microsoft virtual pc. [Online]. Available:
http://www.microsoft.com/windows/virtualpc/default.mspx

[12] (2005) Vmware. [Online]. Available: http://www.vmware.com/

[13] (2005) Bochs ia 32 emulator project. [Online]. Available:
http://bochs.sourceforge.net/

[14] G. Nutt, Kernel Projects for Linux. Addison-Wesley, 2000.

[15] W. R. Stevens, Advanced Programming in the UNIX Environment. Addison-Wesley
Publishing Company, 1992.

[16] J. M. Hart, Win32 System Programming: A Windows(R) 2000 Application Devel-
oper’s Guide, 2nd ed. Addison-Wesley Professional, 2000.

[17] G. Nutt, Operating System Projects Using Windows NT. Addison Wesley, 1999.

[18] S. -Dord̄ević-Kajan and D. Stojanović and A. Stanimirović and B. Predić, Laboratory
Manual for System Software Course: Operating Systems and System Programming.
Niš, Serbia and Montenegro: Faculty of Electornic Engineering, University of Niš,
2004.


