
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 18, No. 2, August 2005, 263-274

A Virtual Lab Model for an Introductory Computer
Science Course

Ioanna Kantzavelou

Abstract: This paper presents a model of a virtual laboratory for an introductory com-
puter science course. The proposed model aims at solving a number of problems in-
volved in the educational procedure of such a course. The model architecture consists
of seven modules, each one corresponds to a specific topic of the course. Every mod-
ule provides several different services in order to assist students to assimilate theory
with practical exercises. Preliminary results of partial implementation of the proposed
model, show the solution of some problems and better understanding of abstract con-
cepts.

Keywords: Virtual Lab, Computer Science, introductory course.

1 Introduction

The ACM/IEEE curriculum ’01 states clearly the intense debate for the structure
of the introductory computer science course. Therefore, the Joint Task Force on
Computing Curricula has chosen not to recommend any single approach [1]. On
the contrary, they described the pros and cons of programming and its position
in the introductory curriculum, the length of the introductory sequence known as
CS1 and CS2, and six implementation strategies for introductory computer science.
The corresponding curriculum for Computer Engineering, recognizes introductory
courses as extremely important, because they are the first courses that students
encounter [2].

Most Computer Science departments include an introductory course to Com-
puter Science in their undergraduate syllabi. This introductory course might have
one of two different forms. The first form provides the fundamental elements of

Manuscript received February 28, 2005
The author is with Technological Educational Institution of Athens, Department of Informatics,

Greece (e-mail: ikantz@teiath.gr).

263



264 I. Kantzavelou:

information technology, making the students skilled to attend and be trained to the
majority of the remainder of the courses of the curriculum. This form is usually
called Introduction to Computer Science. The second form aims at making stu-
dents able to use a computer by tutoring them in the most useful and elementary
tools for word processing, internet services (eg. browsing, e-mail), spreadsheets,
presentations, etc. The latter form is known as Computer Literacy. Although sev-
eral software products can support the second form, there is a lack of an integrated
software to support the first form of courses.

Some of the problems involved in the educational procedure of an introductory
computer science course are listed below.

� Today’s students are already familiar with several computer services (eg. e-
mail, internet, etc.). Therefore, they come to the classroom with the im-
pression that an introductory computer science course covers merely what
they already know and that such a course has nothing special to add to their
knowledge. For this reason, there is a need for students’ awareness concern-
ing the context of an introductory computer science course. A virtual lab
aims at attracting students interest and creating motivations that stimulate
this interest.

� An introductory computer science course should include lab exercises to help
students to take fully into their mind and experience effects of elementary
computer science knowledge.

� Due to the diverse curriculum of an introductory computer science course
which forms a collection of several different topics, laboratory exercises re-
quire many different software and hardware tools (eg. an instrument for the
construction of digital circuits, hardware and software to support different
operating systems and networks, interpreters, compilers and linkers of differ-
ent programming languages, etc.) Therefore, a virtual lab consisting of tools
and simulators can effectively replace the use of the corresponding necessary
equipment and provide equivalent services to support students.

� Physical labs are usually weekly scheduled two-hour and staffed by teaching
assistants (TA) to instruct students to accomplish their exercises and to solve
their problem sets. Students who might want to use a physical lab more often,
complain about this time limitation. Virtual labs are a solution, providing
unlimited use of the offering services.

2 Related Work

In 1990, Daniel Joyce from Villanova University, presented a virtual lab to support
CS1 and CS2 courses [3]. This virtual lab was in place of a physical lab without



A Virtual Lab Model for an Introductory Computer Science Course 265

a room reservation nor scheduled hours. Joyce described in detail the reasons to
implement a virtual lab, its structure and its topics which are merely programming
oriented. Finally, he evaluated the use and success of this lab by questioning the
students and received satisfactory positive comments.

In 1992, Baldwin and Koomen mentioned the lack of exercises in introductory
computer science courses, although the ACM/IEEE curriculum ’91 had already
suggested the use of experiments in several laboratory courses [4]. In order to fill
this gap, they proposed the use of scientific experiments as valuable teaching tools
in introductory computer science courses, analogous to experiments used in other
sciences (biology or physics). They described a number of benefits and minimal
drawbacks encountered by the application of the proposed framework in CS1 and
CS2 courses, dedicated to programming fundamentals. A similar approach has
been proposed by Doran and Langan in [5] for introductory computer science
courses.

In 1999, Poindexter and Heck triggered the subject of integrating the internet
into courses [6]. They described virtual labs as sophisticated interactive demos and
proposed them as a good substitute of physical labs in case the electronic lab mate-
rial is accompanied by animation. Along with these attempts, distance learning has
become more widely accepted. Very recently, Colace et al. described roughly the
architecture of the SimBAD environment [7], to support Electrical and Electronics
Measurements courses. This distance learning dedicated approach aims at solving
the problems of the increasing number of students who access the university educa-
tional structures and the high cost of lab maintenance. Similarly, Ciubotariu et al.
are currently working in developing a virtual lab for distance learning to support
electrical, computer, and software engineering curricula [8]. They have already
implemented some components, one related to digital logic (flip-flops) and another
one related to a traffic light controller. Finally, Weaver describes in [9] the devel-
opment of a programming laboratory for e-commerce. He lists the goals of this
effort, the lecture topics, and a brief demonstration of his virtual lab.

Since 2000, the World ORT organization has developed a complete Information
Technology foundation course, the DO.I.T [10], that covers the topics of Hardware,
Software, Computer Languages, Developing an Information System, Information
Representation, Networks, and the Internet. The DO.I.T’s target group might have
incomplete or no knowledge of computer science, learn by viewing pictures and
reading text, and finally examine themselves through a number of questions asso-
ciated with answers.

Currently, ACM is intending to create a new organization to help teachers and
students to be aware and increase the value of career opportunities motivated by
computer science [11]. The organization will be a national computer science com-



266 I. Kantzavelou:

munity to support computing education for students age 5-18 (K-12). Among the
current working projects supported by volunteer educators is the development of
a national Web-based repository of teaching and learning materials for K-12 CS
courses. The main goal of this attempt is to keep alive the inspiration of interest
and excitement generated by the first experience of computing.

3 The Virtual Lab Model Architecture

This approach aims at achieving the following objectives:

� a collection of tools and programs in a virtual lab,

� to assist the educational process of an introductory computer science course,

� to increase the lab course time to 24/7, but without closing down the physical
lab, nor making redundant the teaching assistants,

� to help students to acquire concrete knowledge for abstract concepts by ex-
perimentation, and

� to attract students interest and create motivations that stimulate this interest.

The proposed Virtual Lab Model is composed of seven modules which have
been selected according to the described concepts covered in the introductory cur-
riculum [1]. These modules are:

1. Gates and Circuits (GC)

2. Data Representation (DR)

3. Main Memory (MM)

4. Computer Architecture (CA)

5. Algorithms (AL)

6. Programming Languages (PL)

7. Operating Systems and Networks (OSN)

Description of the role and the functioning of each module in the Virtual Lab
Model is provided in the next seven subsections. Figure 1 depicts the architecture
of the proposed model.



A Virtual Lab Model for an Introductory Computer Science Course 267

Fig. 1. The Virtual Lab Model Architecture and its seven modules with the corresponding provided
services.



268 I. Kantzavelou:

3.1 Gates and Circuits

The Gates and Circuits (GC) module covers the digital logic concepts by providing
the following services:

� Demonstration of basic logic gates: It shows the functionality of elementary
gates by presenting their figure, the number of inputs and outputs as well as
their values.

� Creation of new gates: It allows the creation of user-defined gates by select-
ing a figure from a collection of given figures, defining the number of inputs
and outputs and finally by identifying the values of these inputs and outputs.

� Construction of circuits: It allows the construction of circuits by using exist-
ing and user-defined gates showing the way a circuit works. Special circuits,
as flip-flops are supported and explained in detail.

3.2 Data Representation

The Data Representation (DR) module covers the concepts of computer arithmetic
by providing the following services:

� Arithmetic Systems: It familiarizes users with the use of other arithmetic
systems than the known decimal system. The binary and the hexadecimal
systems are mainly presented and conversion tables for every two systems are
displayed to help users to understand better the data storage into a machine.

� Representation of integers: It describes methods for the representation of
positive and negative integer values (two’s complements and excess nota-
tion), instructing users to accomplish related exercises.

� Representation of floating point values: It describes the representation of
positive and negative floating point values considering a specific notation,
and instructs users to accomplish related exercises.

� Machine limitations: It instructs users to determine the lowest and highest
number values for the specific machine, and shows examples of the overflow
problem and truncation errors.

� Text, Image, and Sound representation: It demonstrates the text, image, and
sound coding through a series of examples and instructs the users to distin-
guish between different file types.

3.3 Main Memory

The Main Memory (MM) module covers concepts related to the Main Memory of
a machine and provides the following services:



A Virtual Lab Model for an Introductory Computer Science Course 269

� Presentation of memory organization: It familiarizes users with the organi-
zation of a main memory in general, showing the arrangement of its cells and
associating the data representation services described in 3.2.

� Memory Capacity: It describes measures for the capacity of main memory,
introduces the new proposed measures kibi, mebi, and gibi, instructing users
to accomplish related exercises.

� Memory functions: It clarifies and visualizes the most important functions
carried out in main memory by showing a series of examples and explains
fundamental concepts related to the data storage topic.

3.4 Computer Architecture

The Computer Architecture (CA) module is a simulator of a generic computer ar-
chitecture that works with a specific virtual machine language with only twelve
fundamental instructions. It is based on the classical John von Neumann architec-
ture, and provides the following services:

� Visualization of a computer architecture: It presents the heart of a computer
architecture in a visual environment by picturing some of the cells and their
addresses of the Main Memory, the general purpose registers, the program
counter, the instruction register, and the Arithmetic and Logic Unit.

� Typing a program in the Main Memory: It allows a user to enter into the
memory cells the instructions of a program of his own, written in the specific
virtual machine language associated with this architecture.

� Program execution: It executes the program stored into the Main Memory by
showing step by step the machine cycle (fetch, decode, execute). Throughout
these steps, the changes made inside the machine, i.e. the contents of the
program counter, the registers, the instruction register and the memory cells
are recorded and updated to show the current view of the machine as the
result of the program execution.

3.5 Algorithms

The Algorithms (AL) module covers the topic of algorithms, and provides the fol-
lowing services:

� Algorithmic thinking and representation: It introduces the elementary issues
of algorithms and problem solving as models of computational processes
through visualized examples. It instructs users to strategies of algorithmic
thinking and the concept and representation of algorithms by a series of ex-
amples and exercises.



270 I. Kantzavelou:

� Discovery of algorithms: It allows a user to discover algorithms of selected
problems and represent them using knowledge acquired from the previous
service, and verifies the efficiency and correctness of the user-defined algo-
rithms.

� Iteration and Recursion: It presents the structure of the major controls, itera-
tion and recursion, and allows a user to become skilled at creating algorithms
which include these controls.

� Fundamental algorithms: It instructs users to fundamental algorithms of
sorting and searching, and allows them to analyze and evaluate the char-
acteristics of their strategy and the corresponding performance.

3.6 Programming Languages

The Programming Languages (PL) module covers the subject of programming lan-
guages by providing the following services:

� Code Reading: Code reading is a key method of learning how to write
code [12]. This service presents useful tools and sources for code reading,
and helps users to create a plan of how to be trained to any programming
language.

� Programming Paradigms: It presents existing programming paradigms (pro-
cedural, declarative, functional, and object-oriented) and allows users to un-
derstand the relationships and differences between several programming lan-
guages with the use of visualized examples.

� Data Structures: It introduces primitive data structures, supports users in
distinguishing arrays, records, strings, etc., and connects this subject with
the corresponding described in 3.3 to show the data representation into the
main memory.

� Procedures and Functions: It presents a variety of examples in different pro-
gramming languages and allows users to comprehend concepts of breaking a
program apart into procedural units, their call and parameter passing.

� The Translation Process: It presents the steps of the translation process by
showing the different phases and the intermediate steps for the production
of an executable program; it allows users to work with numerous compilers
and interpreters of various programming languages and perform comparison
tests between them.



A Virtual Lab Model for an Introductory Computer Science Course 271

3.7 Operating Systems and Networks

The Operating Systems and Networks (OSN) module covers the subject of oper-
ating systems and their actual expansion to computer networks, by providing the
following services:

� Operating System Architecture: It presents the main components of a generic
operating system and relates them to real operating systems by visualization
of selected processes such as the booting process.

� Processes: It demonstrates the distinction between programs and processes,
displays examples of processes present in single and multiple processor sys-
tems and their administration by the operating system, and allows users to
tackle case studies of process competitions as deadlocks.

� Fundamentals of Networks: It presents ways of network classification, basic
network equipment, the Internet and its services, and allows users to assimi-
late theory by accomplishing a series of exercises.

4 Preliminary and Expected Results

The Technological Educational Institution of Athens operates on a semester sys-
tem. The introductory computer science course of the Department of Informatics
is divided into the lecture course (2h/w) and the lab course (2h/w). The entering
students attend also one course for Algorithms and an introductory programming
course.

Last semester, the lab part of the introductory computer science course was
supported by a collection of selected tools found at various sites. The topic of gates
and circuits was supported by the circuit builder developed by the Johns Hopkins
University as part of a virtual engineering laboratory [13]. The topic of data repre-
sentation was supported by a number of related sites which offered exercises and
problem sets. Finally, a virtual machine simulator (Figure 2) was implemented and
instructed to entering students who experienced a generic computer architecture to-
gether with its corresponding virtual machine language.

The results showed that students assimilated digital logic, data representation
and the structure and the functioning of a simple abstract computer architecture
better and intensively. This consequence was verified by the theory exam results
which increased the number of passed marks by 20%.



272 I. Kantzavelou:

Fig. 2. The Virtual Machine Simulator (VMS) of the Computer Architecture Module.

5 Future Work

The proposed model should be fully implemented in the near future. An appropriate
implementation platform will be first selected, associated with the corresponding
tools to ensure a working product. In addition to the described model components,
other topics such as, the theory of computation, artificial intelligence, data base
structures, and security issues might be considered to expand the proposed archi-
tecture.

6 Conclusion

Although there is not a general consensus about the syllabus of an introductory
computer science course, a virtual lab model has partially been developed to assist
the educational process. This model is under development and based on prelimi-
nary results, the expected results are promising. The model might be expanded in



A Virtual Lab Model for an Introductory Computer Science Course 273

the future to include additional topics, and it might form the foundation for imple-
mentations to support other courses.

7 Acknowledgements

I would like to thank my TAs, Andreas Zoupas and Markos Plytas, who have in-
structed the students to use the virtual lab model, and the students who have enthu-
siastically endorsed the project.

References

[1] The Joint Task Force on Computing Curricula, “Computing curricula 2001 - Com-
puter Science,” IEEE Computer Society and Association for Computing Machinery,”
Final Report, Dec. 15, 2001.

[2] ——, “Computing curricula 2004 - Computer Engineering,” IEEE Computer Soci-
ety and Association for Computing Machinery,” Final Curriculum Report, Dec. 15,
December 12, 2004.

[3] D. T. Joyce, “A virtual lab to accompany CS1 and CS2,” ACM SIGCSE
Bulletin, vol. 22, no. 1, pp. 40–43, Feb. 1990. [Online]. Available:
http://portal.acm.org/citation.cfm?id=319059.319077&coll=GUIDE&dl =ACM&
CFID=39556168&CFTOKEN=53247351

[4] D. Bladwin and J. A. G. M. Koomen, “Using scientific exper-
iments in early computer science laboratories,” ACM SIGCSE Bul-
letin, vol. 24, no. 1, pp. 102–106, Mar. 1992. [Online]. Available:
http://portal.acm.org/citation.cfm?id=135250.134532&coll=GUIDE&dl =GUIDE&
CFID=38926914&CFTOKEN=88331108

[5] M. V. Doran and D. D. Langan, “A congnitive-based approach to introductory com-
puter science cources: Lessons learned,” in Proc. of the SIGCSE Technical Sympo-
sioum on Computer Science Education, Nashville, TN USA, March 1995, pp. 218–
222.

[6] S. E. Poindexter and B. S. Heck, “Using the web in your courses: What can you do?
what should you do?” IEEE Control Systems Magazine, Feb. 1999.

[7] F. Colace, M. D. Santo, and A. Pietrosanto, “Work in progress - virtual lab for elec-
tronic engineering curricula,” in 34th ASEE/IEEE Frontiers in Education Conference
T3C, Savannah, GA, Oct. 20–23, 2004, pp. 22–24.

[8] C. Ciubotariu and G. Hancock, “Work in progress - virtual laboratory with remote
control instrumentation component,” in 34th ASEE/IEEE Frontiers in Education
Conference T3C, Savannah, GA, Oct. 20–23, 2004, pp. 18–19.

[9] A. C. Weaver, “A programming laboratory for electronic commerce,” in 34th
ASEE/IEEE Frontiers in Education Conference T3H, Savannah, GA, Oct. 20–23,
2004, pp. 25–30.



274 I. Kantzavelou:

[10] World ORT. (2000) Information technology foundation cource. electronically. World
ORT. [Online]. Available: http://doit.ort.org/

[11] C. Stephenson, “Creating a national k-12 computer science community,” Communi-
cations of the ACM, vol. 48, no. 1, pp. 29–31, Jan. 2005.

[12] D. Spinellis, Code Reading - The Open Source Perspective. Addison-Wesley, 2003.

[13] Johns Hopkins University. Virtual laboratories - experiments. electronically.
[Online]. Available: http://www.jhu.edu/ virtlab/virtual-laboratory/


