
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 18, No. 2, August 2005, 299-307

Parsing in Different Languages

Miroslav D. Ćirić and Svetozar R. Rančić

Abstract: A compiler is a translator that accepts as input formatted source file or files,
and produces as output a file that may be run directly on a computer. Given the same
ANSI C++ compliant input file, two different ANSI C++ compliant compilers running
on the same operating system produce two different executable programs that should
execute in exactly the same way. To some degree, this is achieved by the standard-
ization of the C++ language, but it is also possible because computer programming
languages like C++ can be compiled using reliable technologies with long traditions
and understood characteristics. LALR(k), as practical version of LR, is such reliable
technology for parsing. Traditional LALR(1) tool YACC has proved his value during
years of successful applications. Nowadays there are a few commercial and noncom-
mercial alternatives that are very interesting and promising. This paper will examine
some of the them with ability of parsing in different programming languages.

Keywords: Parsing, LALR(1), programming languages.

1 Introduction

Although compilers are not the only computer applications that make use of pars-
ing technology, this section will briefly explain compiler architecture in order to
make clear where lexical analysis, parsing, and semantic analysis fit into the bigger
picture of compilation. After a source file has been preprocessed so that it contains
only those symbols that are properly part of the programming language being com-
piled, it is broken into discrete tokens. This task has been accomplished by lexical
analyzer or scanner. As a result we have a stream of tokens such as constants,
variable names, keywords and operators. In essence, the lexical analyzer performs
low-level syntax analysis. For efficiency reasons, each class of tokens is given a

Manuscript received
Miroslav D. Ćirić and Svetozar R. Rančić are with the Faculty of Sciences and Math-

ematics, University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro (e-mail:
mciric@pmf.ni.ac.yu and rancic@pmf.ni.ac.yu).

299



300

unique internal representation number. Also, some scanners place constants, labels
and variable names in appropriate tables. The lexical analysis supplies tokens to
the syntax analyzer. These tokens may take the form of pair of items. The first item
may give the representation number of the token, while the second item is the ad-
dress or the location of the token in some table. Both of them may also be wrapped
in some structure. The syntax analyzer is much more complex than the lexical an-
alyzer see [1] [2]. Its function is to take the source program in the form of tokens
and determine whether or not a series of tokens satisfies the expressed syntactic
rules of language. In syntax analysis we are concerned with grouping tokens into
larger syntactic classes such as expression, statement or procedures. The syntax
analyzer or parser outputs a syntax tree (or its equivalents) in which its leaves are
the tokens and every nonleaf node represents a syntactic class type. The general
description of the syntactic form of a language is called grammar. The syntax tree
produced by syntax analyzer is used by the semantic analyzer. The function of se-
mantic analyzer is to determine the meaning (or semantic) of the source program.
The meaning is in term of operations on a computer. For a bit of code regardless
of how a given computer achieves the desired results, has one semantic meaning.
Although it is conceptually desirable to separate the syntax of the source program
from its semantics, the syntax and semantic analyzers work in close cooperation.

Fig. 1. Structure of a compiler

The semantics analyzer often interacts with the various tables of the compiler
in performing its tasks. His actions may involve the generation of an intermediate
form of the source code, as shown in Figure 1.

The output of the semantic analyzer is passed on to the code generator. Some
high level clishés and constructs are very useful for making source code read clearly
to other human beings, but to a computer, expressed inefficiently. Optimizing com-



301

pilers take this into account and restructure some of these constructs in ways that
allow the final program to be in optimal or near optimal form for the next stage of
compilation, code generation. At this stage collection of many semantically correct
intermediate representations of the source code is mapped into the target language
of machine or some lower level intermediate abstract representation just above the
level of the actual machine. The output of the code generator is passed to the code
optimizer. This process is present in sophisticated compilers. Its purpose is to pro-
duce a more efficient object program, and to profile target code according to meet
need of the code authors. Finally, output from code optimizer, in form of the target
code is passed to the linker. Process of converting the generated target code into
a format that is directly executable on a given machine, running a given operating
system is known as linking.

2 Overview of parsing and tools

As already discussed lexical analysis, or tokenization, is the process of decom-
posing input text into discrete tokens. In general sense, a token is something that
represents something else. The task of the tokenization is to scan through the char-
acters of the source text and assemble tokens, either one at a time or all from file,
and feed these to the parser. This is done by Finite State Automaton (FSA). Use-
ful way to express tokens formally is by regular expression. Grammar is formal
generative mechanism for describing language. Standardized and formal form for
defining grammars of class 2 in the Chomsky Grammar Hierarchy is Backus-Naur
form. Expressed purely in Backus-Naur form grammars do not specify how a given
parser goes about determining if a given sequence of tokens satisfies the rules ex-
pressed by that grammar. In practise, there are two main approaches to doing this:
from the top down, and from the bottom up.

Time-consuming work on language design and development until 1975 was
greatly simplified after Lesk [3] and Johnson [4] published papers on Lex and Yacc.
Implementation details for Lex and Yacc can be found in [1]. Nowadays there
are tools for support and speedup process. Some of them are concerned only on
tokenizing process and some on the tokenizing and parsing. They take token or
grammar definition as input and produce scanners or parsers, or both of them. Also
we noticed that although LR(1) parsing generator is the most general type of parse,
LALR(1) parsing is widely used, because of the complexity of the construction
process to obtain an LR parser. Traditional, widely used, and in UNIX de facto
standard, Yacc is the most famed parser generator and is based on LALR(1). There
are few variants of Yacc, some of them are free like GNU Bison, and some of them
are commercial, like high quality Mortice Kern Systems Yacc. Also can be found



302

more LALR(1) based parser generators like: ANTLR, Grammatica, Spirit, GOLD
Parser Builder written by Devin Cook which are free. There is even a LALR(k)
parser generator Visual Parse which is commercial. Those tools work on mainly
three different manners:

1. Compiler-compiler: takes grammar as input, then produces parser tables and
mixes them with source code of parser engines in target programming languages.
This approach is basic and allows developers to add some of theirs code. Yacc is
based on this idea.

2. Component: takes grammar as input, then produces ActiveX component
with parser tables. Approach is used by commercial applications Visual Parse and
Clear Parse.

3. Creates parser tables only: This approach is newest and produces all tables
needed for parsing and stores them in a file. Later, user should read all tables from
file, build them and build parser engine, and he is able to parse input. Approach is
used by GOLD Parser Builder [5] and a file is called compiled grammar file.

Next table shaw different programming languages and parsing systems which
support them:

Table 1. Parser comparison.

Language GOLD YACC/Bison ANTLR Grammatica Spirit
ANSI C

� �
C++

� � � � �
C#

� � �
Delphi 5& 6

�
Java

� �
Python

�
Visual Basic 6

�
Visual Basic .NET

�
All .NET Lang.

�
All ActiveX Lang.

�

3 Requests for parsing

A software practise and development applications in many areas, such as typeset-
ting, communication protocols, XML database querying, math expression evalua-
tion, graphics description languages - any application that must process text files fits
into compiler architecture. As noticed in applications that work on other program



303

code in software engineering in subfields like software metrics, software testing,
code reformatting and beautifying, code documenting must behave like compilers
and collect information. Also need for creating interpreters and scripting languages
arises in different areas.

Requests appear from fields with great diversity and those fields have already
established different software development environment and programming languages.
In that case parsing should be done in them. To accomplish this task first oppor-
tunity is to port generated parsing tables and engines from one programming lan-
guage to another. It is not easy and is error prone. Problems can arise later if the
grammar will changed so the whole difficult and tedious process must be repeated.
Second opportunity is to use ActiveX component and commercial solutions. Third
opportunity is to use GOLD Parser Builder which is language independent. The
sense of language independency presented here is in using file with parser tables
generated by this tool.

4 GOLD Parser Builder

GOLD is an acronym for Generalized Object-oriented Language Developer. Ac-
cording to words of Devin Cook, the author of the tool, the GOLD Parser is a
free, pseudo-open-source parser generator that you can use to develop your own
programming languages, scripting languages and interpreters. The actual LALR
and DFA algorithms are easy to implement since they rely on tables to determine
actions and to move between states. Consequently, it is the computation of these
tables that is both time-consuming and complex. Unlike usual practise established
in common compiler-compilers, the GOLD Parser does not require developer to
embed source code directly into the grammar and mix them. Instead, they stay
separated, the application analyzes the grammar and then saves the parse tables to
a separate file called compiled grammar file. This file can be subsequently loaded
by the actual parser engine and used to parse input. Since the parse tables are
programming language independent, the parser engine can be implemented in dif-
ferent programming languages. As a result, the GOLD Parser supports a myriad of
programming languages and can be used on multiple platforms.

The tool has many advantages. We want to point out some of them:

� Windows standard feel and look.

� Support the full Basic Multi-lingual Plane of the Unicode characters and as
a result parser is not limited to 256 characters in ASCII.

� Export complete tables and sets in HTML format.

� Test the grammar. GOLD Parser Builder offers interactively testing capabil-
ities. You are aloud to entering an input string to test the grammar. Further-



304

more it builds and draws the syntax tree in case of success.

� Input grammar is written using regular expression and is expected in Backus-
Naur form .

� It is free.

As disadvantages we can notice:

� A lack of %left %right %nonassoc notations for operator precedence and
associativity that exist in Yacc. Operator precedence actually consists of a
series of rules. In the case with Yacc, the extra rules needed to implement
the proper logic are created ”behind the scene”. This makes sense for YACC
since the additional rules can be hidden from the programmer and the special
logic needed for the parser engine is already implemented.

� A lack of actions accompanying rule which consist of code executed each
time an instance of rule is recognized as it exists in Yacc. GOLD Parser
Builder does not support such code as it basic intention to be generator of
tables, and not of code.

5 Experience

We have used in Compiler construction course classical tool Lex and Yacc, and
recently GOLD Parser. We find that GOLD Parser is applicable and very grateful in
teaching process and more. It supports interactively writing grammar rules, refining
them and checking and reporting ambiguities. Also, students can see DFA and
LALR states, transitions among them and shift and reduce actions during parsing
inputs in table based report. In case of success in parsing an input, the tool offers
graphical representation of a reduction tree with left to right direction transformed
to top to bottom direction. Students is able to recognize reduced rules as well as
tokens. The interface of GOLD Parser with generated reduction tree is shown on
figure 2. Figure show the reduction tree of the input f �x�y�z� � x� y� xz

2
.

We develop our parsing engine based on GOLD Parser Builder. The engine
is written in C++. We are planning to port the engine in other programming lan-
guages, Java as first. With this we are enabled to take over full control on parsing
process and to add some of well known and very useful properties of Yacc like
actions. It overthrows the lack of mixed code with grammar rules since the devel-
oper can call a function or do something else when a rule is reduced. We develop
our grammar aimed for parsing mathematical expression, more precisely parsing
explicitly defined functions. Our grammar is added in appendix and can be used
as an example of achieving left to right associativity, right to left associativity and
operator precedence using Backus-Naur form.



305

Fig. 2. GOLD Parser Builder.

6 Appendix

Grammar for definition explicit function of n variables written in Backus-Naur form
follows:

”Name” � Function Definition Example
”Version” � Example
”About” � This grammar demonstrates explicit function definitions
”Case Sensitive” � True
”Start Symbol” � � Function �



306

E � ’E’
Pi � ’Pi’
I � ’I’
SinL � ’Sin(’
CosL � ’Cos(’
TanL � ’Tan(’
CtgL � ’Ctg(’
LogL � ’Log(’
LnL � ’Ln(’
ArcsinL � ’Arcsin(’
ArccosL � ’Arccos(’
ArctanL � ’Arctan(’
ArcctgL � ’Arcctg(’
SinHL � ’Sh(’
CosHL � ’Ch(’
Id � LetterAlphaNumeric* Integer = Digit+
Racional1 � Digit+’.’Digit*
Racional2 � Digit+’.’Digit*’E’[’-”+’]?Digit?Digit?
� Function � ::� Id � ArgListBrace ����� Expression �
� ArgListBrace � ::� ��� � ArgListVar � ���

�
� ArgListVar � ::� Id ����ArgListVar �

� Id
� Expression � ::� � Expression � ��� � Mult Exp �

� � Expression � ��� � Mult Exp �
� � Mult Exp �

� Mult Exp � ::� � Mult Exp � ��� � Pow Exp �
� � Mult Exp � ��� � Pow Exp �
� � Pow Exp �

� Pow Exp � ::� � UnaryMP Exp � �
�

� � Pow Exp �
� � UnaryMP Exp �

� UnaryMP Exp � ::� � Negate Exp �
� � Plus Exp �

� Plus Exp � ::� � UnaryPlus ��Value �
� � Value �

� Negate Exp � ::� � UnaryMinus ��Value �
� Value � ::� Id



307

� Integer
� � Racional �
� ��� � Expression � ���

� � UniArgF �
� � Constant �

�UnaryMinus � ::� ���

�UnaryPlus � ::� ���

� Racional � ::� Racional1
� Racional2

�UniArgF � ::� SinL � Expression � ���

� CosL � Expression � ���

� TanL � Expression � ���

� CtgL � Expression � ���

� LogL � Expression � ���

� LnL � Expression � ���

� ArcsinL � Expression � ���

� ArccosL � Expression � ���

� ArctanL � Expression � ���

� ArcctgL � Expression � ���

� SinHL � Expression � ���

� CosHL � Expression � ���

� Constant � ::� E
� Pi
� I

References

[1] A. Alfred, R. Sethi, and U. Jeffrey, Compilers, Principles, Techniques and Tools.
Reading, Massachusetts: Addison-Wesley, 1986.

[2] Jean-Paul Tremblay and P.G. Sorenson, The Theory and Practice of Compiler Writing.
New York - St. Louis - San Francisco: McGraw-Hill Book Company, 1985.

[3] M. E. Lesk and E. Schmidt, “Lex - a lexical analyzer generator,” Computing Science
Tehnical Report, No. 39, Bell Laboratories, New Jersey, 1975.

[4] J. Stephen, “Yacc: Yet another compiler compiler,” Computing Science Tehnical Re-
port, No. 32, Bell Laboratories, New Jersey, 1975.

[5] D. Cook. Gold parser builder. [Online]. Available: www.devincook.com/goldparser


