
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 18, No. 2, August 2005, 165-180

Project-Based Learning in Student Teams in Computer
Science Education

Andreas Breiter, Görschwin Fey, and Rolf Drechsler

Abstract: Designing information systems according to user requirements is crucial for
software developers. In computer science education, acquiring necessary social skills
to elicit and define those requirements is underdeveloped. We introduce a student-
centered, project-based learning approach with a student team project, which tries to
support these learning processes. Based on existing examples for project-based learn-
ing in other disciplines, the didactical concept and the integration into the curriculum
are explained. Using two exemplary student team projects, the core learning processes
are described. This approach allows students to explore methods for project manage-
ment as well as requirements analysis and participatory design with real end-users.
The results of the project according to student evaluation are presented and conclu-
sions about the value added of student team projects for computer science education
are drawn.

Keywords: Computer science education, Project-Based Learning

1 Introduction

Trends in Information Technology (IT) industry call for substantial changes in com-
puter science education. After the decrease of dot-com-businesses, higher compe-
tition among graduates has reached computer science, too. In this situation, it is
necessary that computer science students will be well prepared for entering the
workforce. Future employers ask for real-world experience of their potential em-
ployees. In addition to factual knowledge and skills in the traditional curriculum,
“soft skills” such as project management, communication and social competencies
become more and more important. Nevertheless, they are still underrepresented

Manuscript received February 9, 2005
The authors are with University of Bremen, Department for Computer Science, Am Fallturm 1,

28359 Bremen (e-mail: abreiter@informatik.uni-bremen.de).

165



166 A. Breiter, G. Fey, and R. Drechsler:

in computer science and software engineering curricula. Project-based learning is
regarded as a suitable approach for more authentic, student-centered learning to
acquire these skills. There are already documented efforts and results of project-
based learning in engineering, and increasingly in computer science, which will
be reflected later. Especially for the first phases of software development more
social than technical skills are necessary. Requirements analysis is regarded as a
key activity that includes eliciting, structuring, and representing clients’ and users’
expectations. Hence, there is a need for social and communicative skills, which are
traditionally not well developed by software system engineers, nor are they integral
part of computer science education.

At our Faculty of Mathematics and Computer Science at the University of
Bremen, students have to participate in a four-semester team project that ideally
follows the software development cycle from requirements analysis and defini-
tion to specification, coding, implementing, and usability testing. Student team
projects are an integral part of the curriculum. We assume that software engi-
neering needs social skills that can best be learned in authentic, student-centered
and team-oriented projects. The paper describes the general curricular concept of
project-based learning in student teams. In two examples, one from applied com-
puter science and one from technical computer science, the goals and objectives as
well as the organization will be described. The focus of this paper is on the learning
process for project students, not on the software product they have developed.

2 Necessary Skills for Computer Science Graduates

According to studies and job ads, employers in IT industry are seeking computer
science graduates who possess high order thinking skills and communicative abil-
ities. Each year, the National Association of Colleges and Employers (NACE)
conducts a “Job outlook survey” to determine what qualifications employers con-
sider most important in applicants seeking employment [1]. In 2003, the top three
factors were (on a scale from 1 to 5): 1. Communication skills (4.7 average);
2. Honesty/integrity (4.7); 3. Teamwork skills (4.6). We can assume that many
approaches to systems development expect communicative skills and, additionally,
the use of ethnographic methods from system developers. Such as ethnographers
try to observe groups, communities or individuals, software developers need to be
specifically aware of the social and organizational context in which their system
might be used. Participatory design was originally developed in Scandinavia to
balance the interests of workers (unions) and management in software implemen-
tation projects [2], [3]. Qualitative methods are still in their infancy in software
engineering – good examples and methods from social sciences are adopted slowly



Project-Based Learning in Student Teams in Computer Science Edu... 167

[4]. In order to move from abstract user requirements to more concrete system
specification, prototypes and extreme programming have also been investigated in
software engineering over the last decade [5], [6], [7]. Both can be regarded as ad-
vantageous compared to other software development models when there is a need
in finding missing, previously unknown requirements during development.

On the other hand, adjusting system specifications continuously to randomly
changing interests (tastes) of users could cause problems and slow down the devel-
opment process, which requires communicative skills on both sides. Additionally,
it cannot be taken for granted that users can always state explicitly their tasks and
workflows. It is important to have in mind language barriers between systems de-
signers and end-users. The more the requirements analysis is using example tasks
(scenarios) from real life and small models of the future product (prototypes), the
more the product fits into user’s workflows and meets their expectations (see fig. 1).

Fig. 1. Adapted from [8], p. 21

In addition to concrete technical knowledge, the curricula have to be extended
with these contents. In 1998, the “Computer Science and Software Engineering
Education Relevance Survey” identified that “Requirements Gathering & Analysis”
is under-taught in university education [9], [10]. The study pointed out, that the
expectations from future employers are much higher than the actual skills acquired
at the university. Many scholars agree, that there is a growing need for innovative
approaches to software engineering education [11], [12]. The 2001 Computing
Curricula (CC2001) [13] reflect these principles as well as the “Strawman Draft of
Computing Curricula 2004“ [14]:

“CC2001 must include professional practice as an integral component of the



168 A. Breiter, G. Fey, and R. Drechsler:

undergraduate curriculum. These practices encompass a wide range of activities
including management, ethics and values, written and oral communication, work-
ing as part of a team, and remaining current in a rapidly changing discipline” [13].

“Today, the information systems specialist plays a key role in determining the
requirements for an organization’s information systems and is active in their specifi-
cation, design, and implementation. As a result, such professionals require a sound
understanding of organizational principles and practices so that they can serve as
an effective bridge between the technical and management communities within an
organization, enabling them to work in harmony to ensure that the organization
has the information and the systems it needs to support its operations. [. . . ] Such
skill sets include interpersonal communication skills, team skills, and management
skills as appropriate to the discipline. To have value, learning experiences must
build such skills (not just convey that they are important) and teach skills that are
transferable to new situations.” [14]

With the changing environment for graduates, it is clear that students need both
knowledge and skills to succeed. This need driven by workforce demands for high-
performance employees who can plan strategically, collaborate and communicate
in teams. Additionally, graduates need to learn social responsibility and understand
their roles as responsible citizens in a globalized economy and society.

3 Project-based Learning in Computer Science Education

Project-based learning is a model that organizes learning around projects. Ac-
cording to the definitions found in handbooks, projects are complex tasks, based
on challenging questions or problems, that involve students in design, problem-
solving, decision making, or investigative activities; give students the opportunity
to work relatively autonomously over extended periods of time; and culminate in
realistic products or presentations. Other features found in the literature include
authentic content, authentic assessment, teacher facilitation (coaching) but not di-
rection, cooperative learning, and reflection (e.g. [15, 16, 17]).

”Doing projects” is a long-standing tradition in educational settings, incorpo-
rating ”hands-on” activities, developing interdisciplinary themes, conducting field
trips, and implementing laboratory investigations. Project-based learning has strong
ties to this tradition. Additionally, it uses new insights from research in neuro-
science and psychology. There, it has become clear that knowledge, thinking, do-
ing, and the contexts for learning are inextricably tied. Learning is partly a social
activity; it takes place within the context of culture, community, and past experi-
ences. Constructivists believe that the most effective way for project students to
acquire knowledge is to apply information or instruction to assessing and resolving



Project-Based Learning in Student Teams in Computer Science Edu... 169

problems that are common to their experience. With each new application, learn-
ers are forced to either modify existing knowledge concepts or develop new ones.
Hence, it is crucial that learning occurs in its actual settings that are relevant to
today’s real world problems and to the project students’ lived experiences. This
didactical concept is referred to as authentic learning. Authentic learning implies
that learning is centered round authentic tasks and is guided with teacher scaf-
folding, that students are engaged in exploration and inquiry, and that they have
opportunities for social discourse. Furthermore multiple resources should be avail-
able to students as they try to solve meaningful problems. Authentic learning is
student-driven and therefore demands creativity and discovery in and outside the
classroom. In constructivist learning models it is essential, that content knowledge
is embedded in the situation in which it is used.

3.1 Examples for Project-based Learning

The first documented effort can be found in the engineering curriculum at the Uni-
versity of Aalborg (Denmark). Since 1974, project-based learning is the core of the
curriculum. This kind of learning environment demands a high degree of supervi-
sion and space for the project students. Accordingly, the continuous feedback loops
requires lectures to be changed and renewed. In Aalborg, experience and research
has shown that the combination of problem-based learning is effective and it pro-
duces readily adaptable graduates with strong qualities in high-order thinking skills,
such as problem solving, communication and generic technical knowledge [18].
Project-based learning is particularly strong in engineering. In 1995, the EPICS
(Engineering Projects In Community Service) program at Purdue University (see
http://epics.ecn.purdue.edu) was created as a team-based project for undergraduate
engineering students [19]. Its aim is to create partnerships between student teams
and local community organizations. In this joint project, engineering-based prob-
lems in the community should be solved. EPICS tries to include experience with
design as a start-to-finish process by defining, designing, building, testing, deploy-
ing, and supporting real systems. Within the long-term projects that span several
semesters, the idea is to bring engineering expertise to community organizations,
which are affordable. More examples in project-based learning in engineering are
documented in the “Guide for Problem Based Learning in Engineering” [20] with
12 case studies from the UK. The observed benefits are that students can apply their
theoretical knowledge to practical situations, which helps them to better understand
the theory and to develop new and powerful skills. According to the evaluation, the
motivation of both students and staff is higher [20].

Some of these concepts are also adopted in computer science courses like EP-



170 A. Breiter, G. Fey, and R. Drechsler:

CoS (Effective Projectwork in Computer Science) in the UK [21] or at the Uni-
versity of Hamburg [22]. Although there is a high demand for team project work,
managing project work is difficult as computer science projects are:

expensive, demanding considerable supervision as well as technical resources;

complex, combining different aspects to satisfy various objectives ranging from
technical skills to presentation skills;

continually demanding, set in the context of a rapidly changing technology which
affects technical objectives and demands ever-evolving skills in both students and
supervisors [23].

In summary, the academic community obviously regards team project work as
a crucial component of any computer science degree. The discipline’s professional
societies emphasize projects and group work as an important preparation for pro-
fessional practice. Project work, especially in groups, has many educational and
social benefits, in particular involving students in active learning processes.

3.2 Student Team-projects for Participatory Design in a Computer Science
Curriculum

At the University of Bremen, the academic year is divided into two semesters. One
semester consists of 14 weeks of lectures, followed by twelve weeks for exams.
We offer three types of courses (see fig. 2) : Diploma (9 semester), Bachelor (6
semester) and Master (4 semester).

Within the curricula, project-based learning has a long tradition. In the Diploma
program, students chose a two-year team project in 3rd and 4th year after finishing
the basic courses and a software engineering class. In the recently introduced Bach-
elor and Master program, the student team project (Bachelor or Master Project) is
one year. In this paper, we will just refer to the Diploma project. It counts for 40
out of 270 credit points within the European Credit Transfer System (ECTS, every
CP is worth 30 weekly work hours), and is usually followed by a diploma thesis
(Diplomarbeit) which topic is often built on results of the team project.

In our case, we use project-based learning in a student group-project over two
years. Similarly to EPICS, student team projects ideally follows the traditional
software life cycle from requirements analysis, specification, design, to test, eval-
uation and support. The topics of the team projects differ every year. They range
from programming a virtual soccer team to the development of geographical in-
formation systems or specific test tools for hardware design. Students select their
projects according to their interest. This is supported by a project presentation day,
which takes place six months before the actual start. In most student team projects,
we are mainly interested in projects that are connected to workplace experience.



Project-Based Learning in Student Teams in Computer Science Edu... 171

Fig. 2. Computer Science Curriculum Framework (Diploma, Bachelor and Master)

We will illustrate the concept according to two examples:

Project “learnweb”: Building a web-based system for collaborative work in
schools

Project “FunTaskIC”: Building a design environment for integrated circuits

During two years, a group of approximately 20 project students is responsible
for their own project management, and they have to produce a final report with all
systems specifications, as well as implementing and testing the software system.
The student teams get their own room and in some cases receive funding for equip-
ment according to a business plan they have to develop during the first weeks of
the first project semester. Project students exclusively work in teams. They orga-
nize and document their own work processes. Usually, the student team projects
are subdivided in smaller teams, which perform subtasks (e.g. software modules).



172 A. Breiter, G. Fey, and R. Drechsler:

Each project defines its own project management team and they take care of the
work progress, time management, the plenary sessions that are held weekly and
external relations to partners. The academic staff defines the guiding framework in
which the project should take place. They work as coaches and facilitate the learn-
ing process. They provide input and help for specific topics. One day per week
for four to six hours is reserved in the schedule just for the student project. We ex-
pect from students to invest at least the same amount of time outside the scheduled
hours, running up to 15 hours of workload per week. Once a week, a plenary ses-
sion is scheduled. They are used to discuss organizational tasks and to reflect the
work process. Plenary sessions as well as lectures are regarded as working session,
just as meetings are in industry. Additional accompanying courses (lectures and
seminars) are offered to build the theoretical basis for the project students. Usu-
ally, project student present their work at plenary sessions, where they get feedback
from course organizers. At the end of each term the individual performance of each
student is evaluated. The quality of their presentations and work-in-progress count
for their overall mark. After the two years, the student team projects present their
results at a faculty-wide event where staff, students and public are present. The
student team projects usually run once with the same topic but some are modular
and the next generation of project students build upon previous work.

3.3 Example Project 1: Learnweb

Goals and objectives

The goal, which the project students developed together with the course or-
ganizers in the starting phase of the project, was to build a web-based groupware
system for public schools. The final result of the project was a software tool (pro-
totype).

Participants

The project team was composed of 21 students (7 female), 15 of them were
from the same semester.

Similar to EPICS (see chapter 3.1), the approach was to provide community or-
ganizations with high quality but inexpensive software tools. We have selected
as partners three schools (secondary, vocational and adult education) in a city
school district with different histories in using technology for collaboration be-
tween schoolteachers and their students, between administrators and parents. The
project and the participating schools signed a contract in which both parties agreed
on the project goals, milestones and time budget.

Process

The course organizers offered accompanying seminars on learning theory, group-



Project-Based Learning in Student Teams in Computer Science Edu... 173

ware, e-learning development strategies as well as usability and accessibility. The
project students gave presentations, which were marked respectively. External re-
searchers and developers were invited to exchange ideas. In cooperation with an
external software company, the project students received help in professional tools
for software development. A communication trainer introduced key concepts for
teamwork and for project management. During the project, project students offered
voluntarily tutorials to their fellow project students, e.g. about special issues in web
programming or methods for code testing.

Our project-based approach allowed students to experiment with requirements
analysis and offered new insights about a methodology for user participation. De-
veloping a comprehensive picture of the system requirements within the organiza-
tional setting of schools, it was necessary to understand the objectives, tasks and
processes of key stakeholders. In order to model workflows of client students, ad-
ministrators and schoolteachers, classroom activities as well as after-school activi-
ties were observed. With the help of qualitative methods, such as semi-structured
interviews and participant observations, schoolteachers’ practices and collabora-
tive activities were identified. The project students, divided in sub-groups of six to
eight, worked closely together with their partner schools. They developed scenar-
ios and defined interview guidelines [24], [25]. All requirements were summarized
in a report (available in German language on request). The project students had
to understand schoolteachers and client students’ needs. Therefore a detailed task
analysis was conducted by the project students, looking at (digital) tools, forms
of information distribution between the different stakeholders and communication
channels. The task analysis included questions about the amount of time invested
and the problems occurred. The second step was to take a detailed look at all
documents that are used in the school environment. The results were fixed in a
requirements document, which was then negotiated with the end-users.

Product

After the phase of requirements analysis and definition, different prototypes
were built and then discussed with end-users (see figure 3 for a screenshot of the
portal page).

The software system, fully implemented in Java with Java Server pages (JSP)
contains the following modules:

Personalized portal (MyLearning/MyTeaching)

Resource Management (for rooms, hardware, books etc.)

Communication Tools (E-Mail, bulletin boards, chat)

Group calendar

Document management (with version control, limited access)



174 A. Breiter, G. Fey, and R. Drechsler:

Fig. 3. Screenshot of the Groupware System (www.learnweb-bremen.de)

Project students conducted usability tests, which created more changes. These
changes were included in the next prototype. After several iterations, a pre-final
prototype was presented to the staff in all schools, including an intensive train-
ing for teachers. Following the contract, this was the final step of the project and
the product was handed over to the schools, and continuous technical support was
negotiated.

Results

There are obvious success indicators as employment after graduation or a tan-
gible software product. Additionally, self-assessment of students’ learning pro-
cesses can play an important role. Continuous feedback by course directors and
external project partners build additional empirical evidence for students’ learning
progress. Evaluating such a course is difficult as we follow a moving target. The
course spreads over four semesters with many checkpoints, presentations and user
inquiries. Hence, continuous feedback is necessary for the project students. During
the two years of the course, every semester ended with individual assessments inter-
views about all aspects of the project (quality of code and documentation, design,
management, marketing, team work, social skills etc.). The project students had the
chance to explain their contribution to the overall project and the course organizers
gave individual feedback. Additionally, project student performance was weighted



Project-Based Learning in Student Teams in Computer Science Edu... 175

according to their individual presentations and research papers. At the end of the
project, a quantum of 20 per cent of their final mark was negotiated within the team.
Every project student graded her or his fellow project student respectively.

It has to be noted, that the project students who selected this project were specif-
ically interested in acquiring “managerial skills”. In all feedback conversations,
they emphasized their interest in working as project managers rather than as pro-
grammers.

Positive Negative

� Goal-oriented

� Team spirit

� Contact with end-users

� Open learning environment
(course organizers as modera-
tors)

� Peer-grading

� Project management

� Peer-tutoring (“best way of
learning programming skills”)

� Acquired skills (both social and
technical) valuable for future
jobs

� Overambitious, especially con-
versations and tiring negotia-
tions with schools

� Gap between active and lazy
project students

� Very time and labor intensive

� Less structured – more intro-
ductory lectures required

� Difficult to judge fellow project
students

Table 1. Results of project student interviews

A very strong and elaborated feedback came from the project partners, i.e.
schoolteachers and project students (pupils). They gave an indirect rating of the
project by using the product, indicating its usefulness. At the same time, schoolteach-
ers appraised the performance of project student groups after presentations and
trainings. They reported directly to project students and course organizers. In the
progress of the project, the project students’ abilities to present their own work and
to discuss requirements and specifications with end-user increased significantly.
The forms of communication within the team developed from chaotic meetings to



176 A. Breiter, G. Fey, and R. Drechsler:

a professional work atmosphere with binding agreements, milestones and internal
review phases.

3.4 Example Project 2: FunTaskIC

Goals and objectives

The overall goal was the development of an environment for the design of in-
tegrated circuits and systems. During the project the students with the help of the
organizers further refined this goal and determined details like the design language
that should be used.

Participants

The project started with 17 students (1 female), all of them from the same
semester. While the project was running three participants left the project due to
personal reasons. These students left the project after the first, within the second
and after the fourth semester, respectively.

Process

Accompanying lectures and seminars were given throughout the project by the
organizers. These courses covered the design flow for integrated circuits in general
and also deepened particular stages of this flow. Additionally, in the first semester
of the project the students themselves presented tutorials on different aspects rang-
ing from professional development tools to techniques and algorithms for circuit
design. This guaranteed that every participant had the basic technical knowledge
for the project. Key issues for team projects were also discussed in tutorials pre-
pared by the students. This knowledge was deepened for two students per project
in a one-day workshop held by an external communication trainer.

During the second semester the specification of the final system was deter-
mined. This included the general discussion on the hardware description language
to use, the software development language, but also the detailed analysis of the
requirements for an integrated development environment. The Unified Modeling
Language (UML) was used to aid the textual specification of the system. Mile-
stones were discussed and set by the student team to enforce the product devel-
opment. At this stage the team was split into five subgroups, one of them was
responsible for project organization, the other four subgroups covered individual
stages of the design process: entry, synthesis, verification and test. These groups
had to interact tightly to specify common interfaces and file-formats, and to design
the overall graphical user interface for the development environment.

Starting in the second semester the implementation of the individual stages was
carried out by the subgroups. Within the third and fourth semester the different
modules were assembled to form the complete system.



Project-Based Learning in Student Teams in Computer Science Edu... 177

Product

So far there are only a few tools that support handling of the new hardware
description language SystemC.

The final system contains modules corresponding to the different design stages:

Graphical design entry

Conversion to SystemC

Logic synthesis of SystemC code

Equivalence checking of the resulting logic representation

Test pattern generation for post-production correctness check

All modules can be controlled from a single graphical front-end (see Figure 4).

Fig. 4. Screenshot of the FunTaskIC design environment

Results

Interviews were regularly held with each student to evaluate the individual per-
formance, but to reflect different aspects related to the project. These included –
but were not limited to – the overall performance of the team, the relations and
problems within the subgroup and between students, respectively.



178 A. Breiter, G. Fey, and R. Drechsler:

For most participants the motivation to choose this project was the interest in
computer architecture and to gather insight into the technical process of developing
integrated circuits. These expectations were satisfied. But after the project the stu-
dents also stressed the importance of the social experience. Some of the subgroups
managed difficult situations. For example the leader of an industrial project is usu-
ally in a senior position compared to the project members. But the organizing group
was confronted with the difficulty of having to manage a project without being in
a superior position. Another difficulty for the whole team was that of members
leaving the project. In that case the group had to compensate the loss of knowl-
edge and working resources. Other problems were arising from misunderstandings
in the communication, different levels of programming skills, diverging opinions
about approaches for realizing ideas.

The final grades were given by the lecturers based on the individual students’
effort. This was evident from regular reports, quality of tutorials and the participa-
tion in discussions as well as programming work.

4 Conclusions

In summary, our assumptions about learning effectiveness in respect to acquir-
ing social and technical skills with student projects were positively supported and
were in accordance to previous findings (see chapter 3.1). Although student team
projects are more complex and costlier than other forms of teaching and learning as
laid out in chapter 3.2, the outcomes are convincing. Most project students gained
practical experience in fields that were supported by theory. Building their own
project with authentic users, goals and objectives, using adequate methods, qual-
ity management and user involvement gave them the opportunity to self-directed
authentic learning in a relatively ”safe” environment.

At least at our university, there is a growing interest from project students to
understand the early stages of systems development and to develop necessary skills
as well as to learn the required programming techniques. These are technical skills
that could be taught in ordinary lectures. Even more important are the social com-
petences learned in the project. This is a major advantage, as many project students
will become rather software project managers than programmers - being respon-
sible for future software developments. The traditional curriculum for computer
science does not include any management courses, to teach the social competences
necessary for leading a real-world software project. Moreover, we believe that
learning-by-doing is the most suitable way to prepare the students for such job
challenges.



Project-Based Learning in Student Teams in Computer Science Edu... 179

References

[1] NACE, Job Outlook Survey,” National Association of Colleges and Employers.
NACE, 2003.

[2] A. Clement and P. v. d.] Besselaar, “A retrospective look at pd projects,” Communi-
cations of the ACM, vol. 36, pp. 29–39, 1993.

[3] C. Floyd, W.-M. Mehl, F.-M. Reisin, G. Schmidt, and G. Wolf, “Out of scandi-
navia: Alternative approaches to software design and system development,” Human-
Computer Interaction, vol. 4, pp. 253–350, 1989.

[4] E. M. Trauth, “The choice of qualitative methods in is research,” in Qualitative Re-
search in IS: Issues and Trends, E. M. Trauth, Ed. Hershey, PA: IDEA, 2001, pp.
1–19.

[5] R. Budde, K. Kautz, K. Kuhlenkamp, and H. Züllighoven, Prototyping: An Approach
to Evolutionary System Development. New York, NY: Springer, 1992.

[6] D. Schuler and A. Namioka, Participatory Design. Principles and practices. Hills-
dale, NJ: Lawrence Erlbaum, 1993.

[7] K. Beck, Extreme Programming Explained: Embrace Change. Reading, MA:
Addison-Wesley, 2000.

[8] J. Beer, “Systemspezifikation,” in Softwaretechnik. Praxiswissen für Software-
Ingenieure, P. Brössler and J. Siedersleben, Eds. München: Hanser, 2000, pp.
21–49.

[9] T. C. Lethbridge, “What knowledge is important to a software professional?” IEEE
Computer, vol. 33, pp. 44–50, 2000.

[10] ——, “Priorities for the education and training of software engineers,” Journal of
Systems and Software, vol. 53, pp. 53–71, 2000.

[11] J. Z. Lavi, D. Dalcher, M. Mannion, and R. Gallant, “Engineering of computer-based
systems - a proposed curriculum for a degree program at bachelor level,” IEEE Trans-
actions on Education, vol. 47, pp. 247– 253, 2004.

[12] F. C. Berry, P. S. DiPiazza, and S. L. Sauer, “The future of electrical and computer en-
gineering education,” IEEE Transactions on Education, vol. 46, pp. 467–476, 2003.

[13] ACM/IEEE, Final Report of the Joint ACM/IEEE-CS Task Force on Computing Cur-
ricula 2001 for Computer Science. ACM/IEEE, 2001.

[14] JTFCC, Overview Report including a Guide to Undergraduate Degree Programs in
Computing for undergraduate degree programs in Computer Engineering, Computer
Science, Information Systems, Information Technology, Software Engineering. Straw-
man Draft. Joint Task Force for Computing Curricula (JTFCC). A cooperative
project of The Association for Computing (ACM), The Association for Information
Systems (AIS), The Computer Society (IEEE-CS), June 1 st 2004.

[15] J. W. Thomas, J. R. Mergendoller, and A. Michaelson, Project-based learning: A
handbook for middle and high school teachers. Novato, CA: The Buck Institute for
Education, 1999.



180 A. Breiter, G. Fey, and R. Drechsler:

[16] W. Diehl, T. Grobe, H. Lopez, and C. Cabral, Project-based learning: A strategy for
teaching and learning. Boston, MA: Center for Youth Development and Education,
Corporation for Business, Work, and Learning, 1999.

[17] F. M. Newmann and G. Wehlage, “Five standards of authentic instruction,” Education
Leadership, vol. 50, pp. 8–12, 1993.

[18] F. Kjersdam and S. Enemark, The Aalborg Experiment. Project Innovation in Uni-
versity Education. Aalborg: Aalborg University, 1994.

[19] L. Jamieson, W. C. Oakes, and E. J. Coyle, “Epics: Serving the community through
engineering design projects,” in Learning to Serve: Promoting Civil Society Through
Service Learning, L. A. K. Simon, M. Kenny, K. Brabeck, and R. M. Lerner, Eds.
Norwell, MA: Kluwer Academic Publishers, 2001.

[20] PBLE, A Guide to Learning Engineering Through Projects. Nottingham: University
of Nottingham, 2003.

[21] P. K. Linos, S. Herman, and J. Lally, “Service-learning program for computer sci-
ence and software engineering,” in Innovation and Technology In Computer Science
Education, ITiCSE Conference, Thessaloniki, 2003.

[22] M. Janneck and W.-G. Bleek, “Project-based learning with commsy,” in Conference
on Computer Supported Cooperative Learning, Boulder, CO, 2002.

[23] S. Fincher and M. Petre, “Project-based learning practices in computer science edu-
cation,” in Frontiers in Education Conference, Tempe, AZ, 1998.

[24] J. M. Carroll, Scenario-Based Design: Envisioning Work and Technology in Systems
Development. New York: Wiley, 1995.

[25] K. Holtzblatt and S. Jones, “Contextual inquiry: A participatory technique for sys-
tems design,” in Participatory Design: Principles and Practices, D. Schuler and
A. Namioka, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1993, pp. 177–210.


