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Scaffolding Answer Explanation in a Data Normalization
Tutor

Antonija Mitrović

Abstract: Self-explanation is one of the most effective learning strategies, resulting in
deep knowledge. In this paper, we discuss how NORMIT supports self-explanation.
NORMIT is a constraint-based tutor that teaches data normalization. We present the
system first, and then discuss how it supports self-explanation. We hypothesized the
self-explanation support in NORMIT would result in increased problem solving skills
and better conceptual knowledge. An evaluation study of the system was performed,
the results of which show that both problem-solving performance and the understand-
ing of the domain of students who self-explained increased. We also discuss our plans
for future research.
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1 Introduction

Intelligent educational systems (IES) are knowledge-based systems that mimic the
behaviour of expert human teachers by tailoring instructional sessions towards
knowledge, abilities and needs of each individual student. IESs result in signif-
icant learning gains, particularly in the domains of Mathematics [1], Physics [2]
and Computer Science [3], [4], [5]. However, some empirical studies indicate that
even in the most effective systems, some students acquire shallow knowledge. Ex-
amples include situations when the student can guess the correct answer, instead of
using the domain theory to derive the solution. Aleven et al. [6] illustrate situations
when students guess the sizes of angles based on their appearance. As the result,
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students have difficulties in transferring knowledge to novel situations, even though
they obtain passing grades on tests.

The goal of IESs is to enable students to acquire deep, robust knowledge, which
they can use to solve different kinds of problems, and to develop effective meta-
cognitive skills. Psychological studies [7], [8] show that self-explanation is one
of the most effective learning strategies. In self-explanation, the student solves
a problem (or explains a solved problem) by specifying why a particular action
is needed, how it contributes toward the solution of the problem, and what basic
principles of the domain were used to perform the action.

This paper presents the support for self-explanation in NORMIT, a data nor-
malization tutor. Section 2 reviews related work. Section 3 overviews the learning
task, while the architecture of the system is given in Section 4. Support for self-
explanation is discussed in Section 5. The results of an evaluation study of NOR-
MIT are presented in Section 6. Finally, the conclusions and avenues for future
research are given in the final section.

2 Related Work

Metacognition includes processes involved with awareness of, reasoning and re-
flecting about, and controlling one’s cognitive skills and processes. Metacognitive
skills can be taught [9], and result in improved problem solving and better learning
[6], [10]. Of all metacognitive skills, self-explanation has attracted most interest
within the ITS community. By explaining to themselves, students integrate new
knowledge with existing knowledge. Furthermore, psychological studies show that
self-explanation helps students to correct their misconceptions [7]. Although many
students do not spontaneously self-explain, most will do so when prompted [7] and
can learn to do it effectively [9].

SE-Coach [10] is a physics tutor that supports students while they study solved
examples. The authors claim that self-explanation is better supported this way, than
asking for explanation while solving problems, as the latter may put too big a bur-
den on the student. In this system, students are prompted to explain a given solution
for a problem. Different parts of the solution are covered with boxes, which dis-
appear when the mouse is positioned over them. This masking mechanism allows
the system to track how much time the student spends on each part of the solution.
The system controls the process by modelling the self-explanation skills using a
Bayesian network. If there is evidence that the student has not self-explained a
particular part of the example, the system will require the student to specify why
a certain step is correct and why it is useful for solving the current problem. Em-
pirical studies performed show that this structured support is beneficial in early



Scaffolding Answer Explanation in a Data Normalization Tutor 153

learning stages.
On the other hand, Aleven and Koedinger [6] explore how students explain

their own solutions. In the PACT Geometry tutor, as students solve problems,
they specify the reason for each action taken, by selecting a relevant theorem or
a definition from a glossary. The performed evaluation study shows that such ex-
planations improve students problem-solving and self-explanation skills and also
result in transferable knowledge. In Geometry Explanation Tutor [11], students ex-
plain in natural language, and the system evaluates their explanations and provides
feedback. The system contains a hierarchy of 149 explanation categories [12],
which is a library of common explanations, including incorrect/incomplete ones.
The system matches the student’s explanation to those in the library, and generates
feedback, which helps the student to improve his/her explanation.

In a recent project [13], we looked at the effect of self-explanation in KERMIT,
a database design tutor [5], [14]. In contrast to the previous two systems, KERMIT
teaches an open-ended task. In geometry and physics, domain knowledge is clearly
defined, and it is possible to offer a glossary of terms and definitions to the student.
Conceptual database design is a very different domain. As in other design tasks,
there is no algorithm to use to derive the final solution. In KERMIT, we ask the
student to self-explain only in the case their solution is erroneous. The system
decides on which errors to initiate a self-explanation dialogue, and asks a series of
question until the student gives the correct answer. The student may interrupt the
dialogue at any time, and correct the solution. We have performed an experiment
recently, the results of which show that students who self-explain acquire more
conceptual knowledge than their peers.

3 Learning Data Normalization in NORMIT

Database normalization is the process of refining a relational database schema in
order to ensure that all tables are of high quality [15]. Normalization is usually
taught in introductory database courses in a series of lectures that define all the
necessary concepts, and later practised on paper by looking at specific databases
and applying the definitions.

Like other constraint-based tutors [4], [5], [14], [16], NORMIT is a problem-
solving environment, which complements traditional classroom instruction [17].
The emphasis is therefore on problem solving, not on providing information. After
logging in, the student selects a problem to work on.

Database normalization is a procedural task: the student goes through a num-
ber of steps to analyze the quality of a database. NORMIT requires the student to
determine candidate keys (Figure 1), the closure of a set of attributes and prime
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Fig. 1. A screenshot from NORMIT

attributes, simplify functional dependencies, determine normal forms, and, if nec-
essary, decompose the table. The sequence is fixed: the student will only see a
Web page corresponding to the current task. The student may submit a solution
or request a new problem at any time. He/she may also review the history of the
session, or examine the student model.

When the student submits the solution, the system analyses it and offers feed-
back. The first submission receives only a general feedback, specifying whether the
solution is correct or not (as in Figure 1). If there are errors in the solution, the in-
correct parts of the solution are shown in red. In Figure 1, for example, the student
has specified A as the key of the given relation, which is incorrect. On the second
submission, NORMIT provides a general description of the error, specifying what
general domain principles have been violated. On the third submission, the system
provides a more detailed message, by providing a hint as to how the student should
change the solution. The student can also get a hint for every error. The correct
solution is only available on request.

4 The Architecture of NORMIT

NORMIT is a Web-enabled tutor with a centralized architecture (Figure 2). All
tutoring functions are performed on the server side, where student models are also
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kept. NORMIT is developed in AllegroServe Web server, an extensible server pro-
vided with Allegro Common Lisp. At the beginning of interaction, a student is
required to enter his/her name, which is necessary in order to establish a session.
The session manager requires the student modeller to retrieve the model for the stu-
dent, if there is one, or to create a new model for a new student. NORMIT identifies
students by their login name, which is embedded in a hidden tag of HTML forms.
Each action a student performs is sent to the session manager, as it has to link it to
the appropriate session and store it in the student’s log. Then, the action is sent to
the pedagogical module (PM). If the submitted action is a solution to the current
step, PM sends it to the student modeller, which diagnoses the solution, updates the
student model, and sends the result of the diagnosis back to PM, which generates
feedback.

Domain knowledge consists of a set of constraints. Constraint-Based Modeling
(CBM) [4], [18] is a student modeling approach that is not interested in the exact
sequence of states in the problem space the student has traversed, but in what state
he/she is in currently. As long as the student never reaches a state that is known
to be wrong, they are free to perform whatever actions they please. The domain
model is a collection of state descriptions of the form:

If �relevance condition� is true, then �satisfaction condition� had
better also be true, otherwise something has gone wrong.

NORMIT currently contains 81 problem-independent constraints that describe
the basic principles of the domain. Some constraints check the syntax of the solu-
tion, while others check the semantics, by comparing the student’s solution to the
ideal solution, generated by the problem solver. In order to identify constraints, we
studied material in textbooks [15], and also used our own experience in teaching
database normalization.

The constraints are written in Lisp, and can contain built-in functions as well
as domain-specific functions. Figure 3 illustrates constraint 10.Each constraint has
a unique number, followed by the relevance and satisfaction conditions. The rel-
evance condition of constraint 10 tests whether the current task is the candidate
keys task, and then it checks whether the student has specified any candidate keys.
Finally, it binds variable k to each specified candidate key, thus forming a multiple
binding list. The satisfaction part consists of a single test, which is applied to each
binding of variable k. If the specified candidate key is a superkey, constraint 10 is
satisfied. In the opposite case, the student will be given feedback. The next element
specifies the task the constraint applies to, followed by two feedback messages in
each constraint, which are given to the student if his/her solution is incorrect. The
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Fig. 2. The architecture of NORMIT

first message is shorter, and tells the student what is wrong with the solution. If the
student still cannot correct the solution after this message, NORMIT will present
the second message, which explains why the specified set of attributes is not a can-
didate key. The last element of the constraint specifies the part of the solution that
is incorrect (in this case, that is the attribute to which variable k is bound). This
binding is used for highlighting the error.

The short-term student model consists of a list of violated and a list of satisfied
constraints for the current attempt. The long-term model records the history of us-
age for each constraint. This information is used to select problems of appropriate
complexity for the student, and generate feedback.

5 Supporting Self-Explanation

NORMIT is a problem-solving environment, and therefore we ask students to self-
explain while they solve problems. In contrast to other ITSs that support self-
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(10 (and (equalp (current-task sol) ’candkeys)
(not (null (candkeys sol)))
(bind-all ?k (candkeys sol) bindings))

(superkeyp TS (quote ?k) (problem sol))
”CANDIDATE KEYS”
”You have specified candidate key(s) incorrectly!”
”A candidate key you specified does not determine all other attributes. The
closure of the candidate key must contain all other attributes of the relation. ”
(?k ”candkeys”))

Fig. 3. An example constraint

explanation, we do not expect students to self-explain every problem-solving step.
Instead, NORMIT will require an explanation for each action that is performed for
the first time. For the subsequent actions of the same type, explanation is required
only if the action is performed incorrectly. We believe that this strategy will reduce
the burden on the more able students (by not asking them to provide the same
explanation every time an action is performed correctly), and also that the system
would provide enough situations for students to develop and improve their self-
explanation skills.

Similar to the PACT Geometry Tutor and SE-Coach, NORMIT supports self-
explanation by prompting the student to explain by selecting one of the offered
options. In Figure 1, the student specified A as the candidate key incorrectly. NOR-
MIT then asks the following question1:

This set of attributes is a candidate key because:

� It is a minimal set of attributes

� Every value is unique

� It is a minimal set of attributes that determine all attributes in the table

� It determines the values of all other attributes

� All attributes are keys

� Its closure contains all attributes of the table

Note that the options offered are not strict definitions from the textbook, and the stu-
dent needs to reason about them to select the correct one for the particular state of
the problem. If the student’s explanation is incorrect, he/she will be given another
question, asking to define the underlying domain concept (i. e. candidate keys).
For the same situation, the student will get the following question after giving an
incorrect reason for specifying A as the candidate key:

1The order in which the options are given is random, to minimize guessing
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A candidate key is:

� an attribute with unique values

� an attribute or a set of attributes that determines the values of all other at-
tributes

� a minimal set of attributes that determine all other attributes in the table

� a set of attributes the closure of which contains all attributes of the table

� a minimal superkey

� a superkey

� a key other than the primary key

� A candidate key is an attribute or a set of attributes that determine all other
attributes in the table and is minimal. The second condition means that it is
not possible to remove any attributes from the set, and still have the remain-
ing attributes to determine the other attributes in the table.

In contrast to the first question, which was problem-specific, the second ques-
tion is general. If the student selects the correct option, he/she will resume with
problem solving. In the opposite case, NORMIT will provide the correct definition
of the concept.

In addition to the model of the student’s knowledge, NORMIT also models the
student’s self-explanation skills. For each constraint, the student model contains
information about the student’s explanations related to that constraint. The student
model also stores the history of student’s explanation of each domain concept.

6 Experiment

We performed an evaluation study with the students enrolled in an introductory
database course at the University of Canterbury. Our hypothesis was that self-
explanation would have positive effects on both procedural knowledge (i. e. prob-
lem solving skills) and conceptual knowledge. Prior to the experiment, the students
had four lectures and one tutorial on data normalization. The system was demon-
strated in a lecture on October 14, 2003 (during the last week of the course), and
was open to the students a day later. The students in the control group used the basic
version of the system, while the experimental group used NORMIT-SE, the version
of the system that supports self-explanation. The participation was voluntary, and
31 out of 125 students enrolled in the course used the system. The students were
free to use NORMIT when and for how long they wanted.

The pre-test was administered on-line at the beginning of the first session. The
post-test was also administered on-line, the first time a student logged on to the
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system on or after October 29, 2003. The date for the post-test was chosen to be
just one day before the exam. We developed two tests, each having four multichoice
questions. The first two questions required students to identify the correct solution
for a given problem, while for the other two students needed to identify the correct
definition of a given concept. These two tests were randomly used as the pre/post
test.

We collected data about each session, including the type and timing of each
action performed by the student, and the feedback obtained from NORMIT. Two
students who have not attempted any problems, and we excluded their logs from
analyses. The results on the pre- and post-tests are given in Table 1.

Table 1. Mean system interaction details (standard deviations given in parentheses)

NORMIT NORMIT-SE
Students 14 15
Sessions 2.29 (1.38) 1.27 (0.59)
Time spent on problem solving (min. ) 144.64 (131.24) 90.27 (166.83)
Attempted problems 14.29 (10.84) 7 (10.13)
Completed problems (%) 54.60 (40.13) 38.29 (46.19))
Pre-test (%) 60.71 (23.44) 55 (31.62)
Post-test (%) 58.33 (8.19) 66.67 (4.43)

The groups are comparable, as there is no significant difference on the pre-test.
The average mark on the pre-test for all students was 57.76% (sd = 27.63), while the
average for the post-test was 62.5% (sd = 26.22). Therefore, students did improve
on the post-test, but the improvement is not significant. Only three students from
each group sat the post-test, and we have not analysed the improvements between
the groups, as the sample was too small. We believe the small number of submitted
post-tests was due to the timing of the study. As stated earlier, NORMIT was
demonstrated to the student in the last week of lectures, and they were supposed to
use the system on their own, after the lectures were finished. 70% of the students
had their first session with NORMIT on or after October 25, 2003, just four days
before the post-test. Four students tried the system for the first time on the last
day of the study. The longest session was 470 minutes long, and the number of
sessions ranged from 1 to 5. The total time spent with NORMIT ranged from only
three to 653 minutes. Therefore, the total time they spent with the system is quite
low, and significant learning gains cannot be expected. The number of attempted
problems ranged from 1 to 30, with the average of 10.5, and the percentage of
solved problems from 1 to 100%. Eleven students attempted some problems, but
completed none of them. The remaining students solved at least one problem, with
the maximum of 29 solved problems. On average, the control group students had
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more sessions, spent more time and attempted and solved more problems. However,
the experimental group students had improved on the post-test, while the control
group did worse than in the pre-test, which seems to support our hypothesis that
self-explanation results in improved knowledge.

Figure 4 shows how students learnt constraints. We looked at the proportion
of violated constraints following the nth occasion when a constraint was relevant,
averaged across all students and all constraints. The R2 fit to the power curve is
good for the experimental group, but is quite poor for the control group students.
However, we must note that the number of students was fairly low, thus allowing
for statistical effects.

Fig. 4. Learning constraints

Figure 5. a shows the probability of giving an incorrect answer to the first self-
explanation question. As can be seen, this probability varies over occasions, but
always stays quite high, above 0.5. Therefore, students find it hard to give reasons
for their actions in the context of the current problem. Some concepts are much
more difficult for students to learn than others. For example, out of the total of
49 situations when students who were asked to explain why a set of attributes is a
candidate key, the correct answer was given in only 13 cases. Figure 5. b shows
the same probability for the question asking to define a domain concept, and the
students were better at that. In the case of candidate keys, although students were
pretty bad in justifying their choice of candidate key in a particular situation (when
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the correct answer was given in 26.5% of the cases), when asked to define a candi-
date key, they were correct in 70% of the cases. The sudden increase at occasion
five in Figure 5. b is due to the increasing complexities of the problems students
encounter around that time. The likelihood of erroneous answers however contin-
ues to decrease after this. Therefore there is evidence that students do improve their
declarative knowledge by answering these questions.

Fig. 5. Student’s performance on self-explanation

We also have data on students’ performance on a written test, which included
one question on data normalization. When comparing the marks of all students who
used NORMIT to the other students in the class, there was no significant difference.
However, there was a significant difference (p � 0�02) between the students who
have not used NORMIT and the students who have used NORMIT for more than
90 minutes. Due to the small number of participants and the timing of the study,
we are not able to compare the performance of the two groups of students on the
post-test, and therefore plan to conduct a bigger study.

7 Conclusions

Self-explanation is known to be an effective learning strategy. Since intelligent
tutoring systems aim to support good learning practices, it is not surprising that
researches have started providing support for self-explanation. In this paper, we
present NORMIT, a data normalization tutor, and describe how it supports self-
explanation. NORMIT is a problem-solving environment, and students are asked
to explain their actions while solving problems. The student must explain every
action that is performed for the first time. However, we do not require the student
to explain every action, as that would put too much of a burden on the student and
reduce motivation. NORMIT requires explanations in cases of erroneous solutions.
The student is asked to specify the reason for the action, and, if the reason is incor-
rect, to define the domain concept that is related to the current task. If the student
is not able to identify the correct definition from a menu, the system provides the
definition of the concept. NORMIT was used in a real course for the first time in
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2002, and in 2003 we performed an evaluation study. The results of the study seem
to support our hypothesis: students who self-explained improved.

At the moment, the student model in NORMIT contains a lot of information
about the student’s self-explanation skills that is not used. We plan to use this
information to identify domain concepts for which the student needs more instruc-
tion. Furthermore, the self-explanation support itself may be made adaptive, so
that different support would be offered to students who are poor self-explainer in
contrast to students who are good at it. Finally, we plan to perform a bigger evalu-
ation study, in order to be able to assess the effects of the self-explanation support
properly.
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