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Abstract: In this paper we presented an iteration algorithm using genetic program-
ming (GP) to get the Wiener model of a nonlinear system and then to compensate the
nonlinear distortion. The GP is used to identify the linear time-invariant (LTI) part
and memoryless nonlinear (MLNL) part of the Wiener model of the object system.
By means of iteration, the identification precision will be improved gradually with
the iteration steps. In order to compensate the nonlinearity a distortion compensation
function (DCF) will be estimated also by means of GP. If the object system can be
well described using Wiener model, this algorithm converges. The experiment results
show that the compensation precision is fairly high.
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1 Introduction

System identification means model building for the object system so that the model
is equivalent to the system concerning their inputs and outputs. As shown in Fig. 1
x
�
t � is the input of the object system and the system model, y

�
t � and �y � t � are out-

puts of the object system and system model respectively. If the energy of the error
signal e

�
t ��� y

�
t �����y � t � is small enough, it is said that the model and the system are

equivalent. Obviously the precision of the system model depends on the a priori
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knowledge to the object system. Accordingly there are black-box, grey-box and
white-box methods. With a black-box method no a prior-knowledge is available,
so it is improbable to obtain a good result. With a Grey-box method a good result
may be obtained. With a White-box method it is quite sure that a good result can
be obtained [1]. Of course the performance of system identification depends also
on the complexity of the object system and the computation amount of the identi-
fication process. A LTI system identification can achieve good result using simple
methods. Unfortunately, most of the natural systems are not LTI systems but non-
linear time-variant systems (NLTV). Although a NLTV system can be generally
described using a volterra model [2], but this model is too complicated to be used
in system identification. In practice, nonlinear systems are investigated under some
simplified conditions. For example, weak nonlinearity, time-invariance, etc.. The
Wiener model can describe a special class of the nonlinear time-invariant system
[2]. In this paper, only such systems are considered. A Wiener model is com-
posed of a linear time-invariant (LTI) part cascaded with a memoryless nonlinear
time-invariant (MLNL) part. In many applications, the nonlinearity of the system
results in signal distortion, this degrades the system performance. A compensator
is usually needed to equalize the distortion.

2 Wiener Model and Compensation of Nonlinear Distortion

A finite memory nonlinear system can be modelled by a linear time-invariant sys-
tem (LTI) with finite memory in cascade with a memoryless nonlinear system
(MLNL) [2]. This model is called Wiener model shown in Fig. 1.
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Fig. 1. System identification using Wiener model

It is quite common to let the dynamics of a system be included in a linear
system, and the nonlinearities be static [2]. This will be the case if actuators are
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Fig. 2. Identification of compensation function
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Fig. 3. Compensation of nonlinear distortion using identified DCF

nonlinear due to saturation, or if audio amplifiers have a nonlinear characteristic.
Using a Wiener model post-compensation will be applied. If the characteristic
function of the MLNL sub-model in a Wiener model is invertible, the nonlinear
distortion of the whole system is theoretically compensable. In this case the ideal
compensation of nonlinear distortion is realized if �z � k 	 z as in Fig. 3. In practical
situation, signa z is unknown, so if � �z � k 	
�z, it is assumed that the distortion is
compensated, as shown in Fig. 2. k is a constant, typically, k=1.

3 Precision of System Identification and Distortion Compensation

System identification is the prerequisite of compensation. As long as the LTI sub-
model and the MLNL sub-model are precisely identified, an inverse MLNL system
can be built to compensate the nonlinear distortion. The compensation precision
depends on the precision of the system identification. In order to evaluate the iden-
tification precision and compensation precision and for the sake of convergence
analysis the following relative errors are defined.

LTI sub-model identification precision in ith iteration step:

ρl
�
i ���

��
�� �zi
�
t �����zi � 1

�
t ��� 2dt

1
2
� 
�� �z2

i

�
t �����z2

i � 1

�
t ��� dt

; i � 2 � 3 � 4 ����� (1)

where � is time period of the training data, �zi is the output of LTI sub-model in ith
step.

LTI sub-model identification precision:

ρl � lim
i � ∞

ρl
�
i � (2)
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Identification precision of nonlinear sub-model in ith iteration step:

ρnl
�
i ���

� � � �fi
�
z �!� �fi � 1

�
z ��� 2dz

1
2

�"� � �f 2
i

�
z ��� �f 2

i � 1

�
z ��� dz

; i � 2 � 3 � 4 ����� (3)

where � fi is the identified characteristic function of the MLNL sub-model in ith step,#
is the input value space.

Identification precision of nonlinear sub-model:

ρnl � lim
i � ∞

ρnl
�
i � (4)

Identification precision of the whole system in ith iteration step:

ρs
�
i ���

� 
��
y
�
t ���$�yi

�
t ��� 2dt�%


y2
�
t � dt

; i � 2 � 3 � 4 ����� (5)

where y
�
t � is the output of the object system, �yi is the output of system model in ith

step.

Identification precision of the whole system:

ρs � lim
i � ∞

ρs
�
i � (6)

Compensation precision of ith iteration step:

ρc
�
i ���

�%
�� �zi
�
t �����zi

�
t ��� 2dt

1
2
��
�� �z2

i

�
t ���&�z2

i

�
t �'� dt

; i � 2 � 3 � 4 ����� (7)

where �zi the compensated output using DCF in ith step.

Compensation precision:
ρc � lim

i � ∞
ρc

�
i � (8)

4 Iterative Identification Algorithm

As shown in Fig. 2, the Wiener model consists of two sub-models. According to
our fundamental experiments GP can easily identify the sub-models, if the inputs
and outputs of the corresponding sub-systems are known. The problem is that the
interstage signal z is unknown. To overcome this problem, an algorithm that can
somehow meet in the middle is proposed. The basic idea is that an initial LTI sub-
model is at first supposed. With the LTI sub-model we can get the �z1 as the first



An algorithm using genetic programming ... 223

estimate of z. With �z1 and y we identify the MLNL sub-model �f1. With MLNL
sub-model we can identify the DCF �f � 1

1 . With DCF we can get the compensated
signal � �z1, which will be assigned as the estimate of z in the second iteration step. So
the iteration is running. If the iteration process converges, it is said that the system
model is found and the DCF can compensate the nonlinear distortion.

The complete algorithm can be described in the following steps:

1. Initiation of LTI sub-model h0.

2. With x and LTI sub-model hi the interstage signal �zi will be identified

3. With �zi and y the MLNL sub-model �fi will be identified.

4. Constants optimization of LTI sub-model and MLNL sub-model.

5. If the identification is precise enough go to 12, otherwise go to 6 .

6. With the identified MLNL sub-model �fi the DCF �f � 1
i will be identified.

7. Constants optimization for DCF.

8. With the identified DCF � �zi will be calculated.

9. Let �zi ( 1 � � �zi.

10. With x and �zi ( 1 LTI sub-model hi ( 1 will be identified.

11. Go to 2.

12. Convert the DCF into a simplified form with extended polynomial grammar
in GP.

13. Constants optimization of DCF

14. If the precision of DCF is satisfied, go to 15, otherwise go to 12.

15. stop.

The Fig. 4 shows the flowchart of the algorithm. In GP evolution the selection
of the surviving LTI sub-models is relatively free. But the selection of the surviv-
ing characteristic function of the MLNL sub-models should satisfy the following
conditions.

1. Fitness value is small.

2. Characteristic function is smooth.

3. Characteristic function should be invertible.

The criteria that the identification process to be stopped is that the relative errors
ρl

�
i � , ρnl

�
i � and ρs

�
i � are all small enough, e.g. ) 10 � 3.
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Fig. 4. The flowchart of the algorithm

5 GP Grammar and Constants Optimization

Generally, GP grammar defines the searching space of the GP programs. This
searching space includes two sets, namely the operation set and the variable set.
For example, the variable set of a LTI GP grammar is the set of all the past inputs
and outputs and its operation set includes only addition and constant-multiplication.
That means only functions with the form y

�
t �*� ∑M

i + 0 aix
�
t � τi ��� ∑N

j + 1 b jy
�
t � τ j �

are allowed. A MLNL GP grammar may be more complicated, since its operation
set can include all possible functions, like sin � cos � log � exp � etc.. A simple MLNL
grammar is the extended polynomial GP grammar, it limits GP to search the char-
acteristic function only in the form of f

�
x �,� ∑K

i - 0 aix
i

∑L
j - 0 b jx

j . This grammar is acceptable

but not unique for the identification of a characteristic function and a DCF. With
such a grammar GP may obtain a simple-formed result with less computation than
with a grammar containing complicated functions.

Optimization of constants will not change the structure of the system but im-
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prove the identification precision and the compensation precision.

The Compensation precision depends also strongly on the assumption of the
initial LTI sub-model. The following information can help to determine the initial
sub-model.

1. A priori knowledge of the object system.

2. The expected object linear system.

3. The training data.

6 Experiment and Results

In this section a test object system whose LTI and MLNL parts are described by
Eq. (9) and Eq. (10) is supposed. The nonlinear function Eq. (10) is invertible in
z . � � 2 � 2 � .

z
�
t �/� 0 � 3x

�
t �!� 0 � 13x

�
t � 1 ��� 2 � 5x

�
t � 2 ��� 0 � 9x

�
t � 3 ��� 0 � 4x

�
t � 4 �

� 0 � 2x
�
t � 5 ��� 0 � 1x

�
t � 6 ��� 1 � 5z

�
t � 1 ��� 0 � 7z

�
t � 2 �

� 0 � 9z
�
t � 3 �!� 1 � 3z

�
t � 4 � (9)

y � f
�
z �*� z � 0 � 8z2 � 0 � 4z3 � 0 � 2z4 (10)

In the experiment the input signal is a zero-mean white noise. The data length
is 500 samples. For each GP searching process, 20 independent runs are carried
out. Tab. 1 shows the parameters for controlling GP runs.

Table 1. Parameters for controlling the GP Run

Population size 10000
Maximum of generation 60
Prob. of crossover pc 0.9
Prob. of reproduction pr 0.1
Prob. of mutation pm 0.3
Grammar limitation LTI-Grammar for searching LTI sub-model

sin 0 log 0 exp, polynomial for MLNL sub-model
Extended polynomial for simplified DCF

Weighting fitness For searching MLNL sub-model and DCF
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The characteristic function found by GP algorithm described in section 4 is

�y � �f � �z �1� 1 � 0026�z � 0 � 7711�z2 � 0 � 3998�z3 � 0 � 1907�z4 (11)

The simplified compensation function found by GP using extended polynomial
grammar:

�z � �f � 1 � y ��� 17 � 4423y3 � 107 � 9088y
� 1 � 2951y3 � 51 � 7418y2 � 36 � 5536y � 92 � 1343

(12)

Fig. 5 shows the convergence process of the identified characteristic function
of the MLNL sub-model.

Model

Model

Model

Model

Model

Model

Model

Fig. 5. Iterative convergence of identified MLNL sub-model

Fig. 6 shows the identification precision of the whole system in different itera-
tion steps. The final relative error is 2 � 75 	 10 � 4.

To verify the algorithm, we compare the output of the real linear system and the
compensated system. Fig. 7 shows both the outputs of linear sub-system and the
compensated signal with white noise as input. The final relative error is 9 � 88 	 10 � 4 .

Fig. 8 shows both the outputs of linear sub-system and the compensated signal
with sine-wave as input. The final relative error is 5 � 06 	 10 � 4.
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Fig. 6. Identification precision of the whole system at each iteration step

Fig. 7. Compensation effect with white noise input
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7 Conclusion

A iteration algorithm using genetic programming for the compensation of nonlinear
distortion is proposed. The requirements for this algorithm working well are:

1. The object system can be described or approximated using a Wiener model.

2. The identified characteristic function of the MLNL sub-model is invertible.

Fig. 8. Compensation effect with sine-wave input.

The compensation precision depends on the precision of system identification,
that will be determined by the following factors:

1. A priori knowledge to the object system.

2. Limitation on the GP grammar.

3. Computation resources.

Compared to the traditional system identification methods and distortion com-
pensation methods, the advantage of this algorithm is the compensation precision.
However the compensation functions are usually complicated. To overcome it,
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again GP is used to simplify the compensation function in a form of extended poly-
nomial. Another advantage is that theoretically GP needs no a priori knowledge to
the object system apart from the measurement data, but GP may not converge as a
result of unsuitable initialization and searching space. Adequate a priori knowledge
to the object system can avoid this disadvantage.[2].
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