
FACTA UNIVERSITATIS (NIŠ)
SER.: ELEC. ENERG. vol. 17, August 2004, 199-208

A Visualization Environment for Superscalar
Machines

This paper is dedicated to Prof. K. Tröndle on the occasion of his retirement

Axel Böttcher

Abstract: In this paper, we introduce an environment to visualize the internal activ-
ities of superscalar processors. This seems currently to be the dominating class of
processors on the market.

A programmer or a compiler can produce optimized code only with a thorough
understanding of the internal structures. This usefulness of this environment is then
demonstrated for two aspects of program opimization: loop unrolling in situations
with cold or perfectly warmed cache and instruction ordering. We use matrix multi-
plication as representative example to reflect signal processing code.

Keywords: Superscalar processors, signal processing, loop-unrolling, data depen-
dencies, instruction ordering.

1 Introduction

With the increasing complexity of modern superscalar processors, the coding of
efficient programs becomes more and more difficult. The ability of processors
to simultaneously fetch several instructions and dispatch them to many parallel
execution units, as well as elaborated branch prediction schemes and multilevel
caches have an almost incomprehensible impact on the performance. Although the
execution is nevertheless deterministic. For example, Intel has long ago stopped the
publication of detailed instruction timings for their processors. Efficient compilers
can only be written when the exact behavior of the target hardware is known.

The use of simulation has proven useful in performance evaluation. However,
the complexity of superscalar machines demands for visualization of the internal

Manuscript received December 10, 2003.
The author is with Munich University of Applied Sciences, Department of Computer Sci-

ence/Mathematics, Lothstraße 34, D-80335 Munich, Germany (ab@cs.fhm.edu).

199

200 A. Böttcher:

structures to better understand the processor’s behavior, see e.g. [1, 2]. In this pa-
per we present a visualization environment for the pipeline simulator of Donald
Knuth’s MMIX-processor. This virtual processor has mainly been designed for ed-
ucational purposes. However, the existing pipeline-simulator – which simulates a
machine on a clock cycle basis – can be freely configured an thus be used to simu-
late realistic models of existing machines. This is also an ideal platform to derive
perfectly reproducable results and to learn a lot about state-of-the-art hardware [3].

We tried to deduce rules for program optimization from simulation of a few
situations considered as typical and representative especially for many applications
in the area of signal processing.

First we will present this visualization environment. Then we will use the tool
to investigate the behavior of simple iterative loops. A goal is to determine rules
for program optimization that can be used in compiler design as well as for hand
coding.

2 The Visualization Environment

During execution of a program, the pipeline simulator [4] can display a large
amount of information as text output. Depending on the information requested,
this can amount to many kilobytes per clock cycle. So there is a need for a post-
processor to get the most use out of that information. We used the open source
Eclipse platform [5] to implement a visualization environment. Eclipse is a lean
development platform written in Java. It can be extended by own contributions in
an extremely flexible manner.

At the moment the pipeline visualization consists of two main views: First, an
overview of the configuration – see Figure 1 – showing in detail from left to right:

� The fetch buffer content, i.e. those instructions that have already been loaded
but are not yet being executed.

� The execution units with all instructions being currently executed. Instruc-
tions are taken from the fetch buffer in strict program order and scheduled to
the units. However, the next instruction can only be scheduled when there
is a unit available that is able to execute this type of instruction. Execu-
tion itself will start as soon as all the operands are available. Those units
for loading/storing (LSU) and for floating point operations (FPU) are them-
selves pipelined [4]. Thus a new instruction can be scheduled as soon as the
previous one has entered the second stage.

� The reorder buffer (ROB) containing all instructions that are being executed
or have finished execution but have not yet been committed. Execution of

Understanding and Optimizing Programs for Superscalar Machines 201

instructions can end out of order, because – once on a unit – some may
stall due to long execution times, or unavailability of operands (e.g. dur-
ing memory accesses). In Figure 1 we see three completed instructions in
the ROB (those with dark grey background) and three in execution (the sec-
ond to fourth). Finally instructions are committed and thus are leaving the
ROB in strict program order.

� The state of important resources like number of available rename registers,
write buffer entries, or the program counter.

Furthermore an activity view window gives an overview of the reorder buffer’s
content versus time. Each pixel in the diagram of Figure 2 corresponds to one
clock cycle. So the figure shows about 150 cycles (corresponding to 150ns when
we assume a clock speed of 1GHz!). The bar graph in the upper half just represents
the number of instructions in the ROB. Coloring is as above: dark gray for finished
instructions – light gray for still executing instructions. The involved execution
units can not yet be determined from this view; a double-click on the required cycle
shows the details in the other window. The lower part of that figure shows activity
of the memory interface which is the main reason for stalls in the pipelining. We
omit the details here concerning by which line can be concluded for what reason
the memory interface is busy (e.g. filling of data/code/secondary cache or write
back).

In detail, Figure 2 shows the following main steps:

1. Although the pipeline is stalled due to a load operation, the memory interface
is busy loading new instructions. This has just been started before the load
was issued.

2. The requested data are supplied from the cache. The instructions just loaded
are scheduled, some are committed and again new instructions have to be
fetched from main memory.

3. A few new instructions arrive but the fetch of further instructions immedi-
ately stalls the pipeline again.

4. Some new instructions have been fetched. But same as above: new instruc-
tions are being fetched just before the issue of a load operation.

3 Investigation of Unrolled Loops

3.1 Test configuration

We have configured the simulator to behave as far as possible like the PowerPC 970
processor [6]. Since there are no timing characteristics for access to main memory

202 A. Böttcher:

Fig. 1. Visualization of the processor configuration. Instructions will proceed from
left to right.

Understanding and Optimizing Programs for Superscalar Machines 203

}

P i p e l i n e
a c t i v i t y

M e m o r y
i n t e r f a c e
a c t i v i t y t i m e

1 0

1 2 3 4
Fig. 2. Overview of the activity on the execution units and on the memory interface. The
memory interface shows (top to bottom) three types of activity in this example: filling of
instruction cache, filling of secondary cache, and filling of data cache.

available, we assumed three cycles to address memory and ten to read/write data.

3.2 Effects of loop unrolling

In a first step we analyzed the effects of unrolled loops which is known to be a
standard compiler technique [7]. Unrolling loops results in large code but reduces
the number of conditional jumps and penalty due to mispredicted branches. As
example we used multiplication of two integer matrices to a floating point matrix
result: C � A � B and implemented it in a straightforward manner:

ci j �
N

∑
k � 1

aik � bk j � (1)

This is known not to be the optimum solution with respect to cache performance [7].
However, the standard implementation contains three nested loops, thus forming a
good basis to study loop unrolling in three incremental steps.

The inner loop contains a sequence of instructions containing the following
program fragment to compute one element aik � bk j:

1 LDO x,A,AOff Load first 8-byte integer: aik
2 LDO y,B,BOff Load bk j
3 FLOT x,x convert to float
4 FLOT y,y
5 INCL AOff,ADelta increase the offsets
6 INCL BOff,BDelta
7 FMUL x,x,y multiply..
8 FADD c,c,x ...and add

Between the loop elements, the result ci j has to be stored and the next step has
to be initialized:

204 A. Böttcher:

9 STO c,C,COff
10 INCL COff,8
11 SET AOff,0*3*8 depends on position
12 SET BOff,1*8 depends on position
13 SET c,0 init for next iteration

Please note, that there is no Multiply-And-Add-Instruction for MMIX.
In a first step we multiplied two 5 � 5 matrices and ran each multiplication

twice. In the first run none of the data are initially cached and in the second run
all data will be found in the cache. This is called cache-warming. So the effects
of cache entry replacement are excluded, which would be a study of its own [1].
Table 1 shows the results in terms of running time (in cycles) and code size. An
unrolled loop causes an increased code size. In the first run this means that no

Table 1. Program performance for several levels of unrolled loops. Results are
shown for cold and warm data cache.

code size runtime (cycles)
program (instructions) cold D-cache warm D-cache
no unrolling 26 2967 1137
one loop unrolled 55 3318 1126
two loops unrolled 231 5111 1028
completely unrolled 1126 15333 1012

instruction can be found in the code cache whereas without or with reduced rate
of unrolling the code cache gets warmed up more or less quickly. The results
clearly show that the effect of unrolling can only be used efficiently when the loop
is repeated several times after the code cache has warmed.

3.3 Effects of instruction ordering

A further optimization strategy is the influence of the order in which instructions
are assembled.

Once the instrucions to do the job are determined (in this example represented
by the above code snippet), they can be rearranged in any order that respects all
dependencies between them. Those dependencies can be modeled by a directed
acyclic graph (DAG), as shown, for this example, in Figure 3. The vertices of that
graph are labelled with line numbers of the program. Here we have to deal with
two types of dependencies [7]:

1. Forwarding of results (e.g. the addition in line 8 depends on a result in line 7),
known as Read After Write (RAW) dependency.

2. Preventing still required values in their registers from being overwritten,
known as Write After Read (WAR) dependency. This case causes the de-

Understanding and Optimizing Programs for Superscalar Machines 205

3 '5 ' 4 ' 6 '

1

35

2

4 6

7

8

1 ' 2 '

7 '

8 '

S t e p a bi , k k , j
S t e p a bi , k + 1 k + 1 , j

Fig. 3. The data dependency graph corresponding to the above code.

pendency between instruction in line 8 and instruction in line 1 of the next
iteration (labeled 1

�
in Figure 3). Using registers more generously, gener-

ally leaves more options to order the instructions: in the example we could
remove the dependency from 8 to 1

�
by replacing register x with an auxiliary

register in lines 7 and 8 to forward the result. This would influence the order
in which instructions will be scheduled to execution units, but not necessarily
the order in which they will finally execute. This fact is due to the availabil-
ity of rename registers available, that will store such intermediate values in
WAR situations. Therefore such an instruction can overtake a dependent one.

The programmer (or a compiler) may arrange the instructions in any order such that
the data dependencies are met. In the dependency graph, an arc from a to b means
that instruction a has to be performed before instruction b because b depends on a
either by RAW or WAR.

Examining the graph from Figure 3, possible orderings of the instructions are�
1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 	 or

�
2 � 6 � 1 � 3 � 4 � 7 � 8 � 5 	 . But not

�
1 � 3 � 5 � 7 � 2 � 4 � 6 � 8 	 because the

dependency between 4 and 7 would be violated.
In this case, we come up with 98 possibilities to order the instructions within

one iteration step to compute aik � bk j (cf. Figure 3), excluding symmetries with
respect to instructions 1, 3, 5 and 2, 4, 6. The runtimes with warmed data cache
for several of these orderings are listed in Tablee 2. There are only two different

206 A. Böttcher:

Table 2. Runtime (cycles) of one single iteration for different orderings.

instruction order pattern runtime (cycles)�
1 � 3 � 2 � 4 � 5 � 7 � 6 � 8 	 LFLFIFIF 1012 see Fig. 4a.)�
1 � 3 � 2 � 4 � 7 � 8 � 5 � 6 	 LFLFFFII 1012�
1 � 3 � 2 � 5 � 4 � 6 � 7 � 8 	 LFLIFIFF 1012�
1 � 5 � 3 � 2 � 6 � 4 � 7 � 8 	 LIFLIFFF 1012�
1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 	 LLFFIIFF 1108 see Fig. 4b.)�
1 � 2 � 3 � 5 � 4 � 6 � 7 � 8 	 LLFIFIFF 1108�
1 � 5 � 2 � 6 � 4 � 3 � 7 � 8 	 LILIFFFF 1108 see Fig. 4c.)

results to be observed which differ by roughly 10%. This Table also lists a pattern
for each ordering that gives the type of each instruction: L for a load, I for an
integer and F for a floating point operation. A strategy for ordering instructions
that works in many cases, is to schedule long running operations (L and F) as early
as possible and to mix the type of scheduled instruction to increase the chance that
a unit is available. The situation in this particular example, however, is a bit more
sophisticated.

�
1 � 3 � 2 � 4 � 5 � 7 � 6 � 8 	 a.)

�
1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 	 b.)

�
1 � 5 � 2 � 6 � 4 � 3 � 7 � 8 	 c.)

Fig. 4. Activity diagrams for three of the orderings in Table 2.

It is easy to spot in Figure 4 the instruction sequences where the processor load
peaks – suggesting a closer inspection of these particular regions. Figure 5 zooms
into time slices of 21 clock cycles each, highlighting details from Figure 4. Using
the complete display of the processor (cf. Figure 1), careful investigations show
that the difference in runtime stems from the Store Operation (line 9) at the end

Understanding and Optimizing Programs for Superscalar Machines 207

of each iteration of the inner loop. The store stalls on LSU1 in its second pipeline
stage for 10 cycles. When the next iteration’s load instructions are scheduled si-
multaneously – as in case b.) at time t1 – or with a distance of one clock cycle – as
in c.) – one of them will be scheduled to LSU1 and will delay until the store com-
pletes. The latter situation can be clearly seen in Figure 1. In case a.), the loads are
scheduled with two cycles in between at t1
� t2 and will go both to LSU2 — thus
overtaking the store in LSU1.

a .) b .)

S t o r e
r u n n i n g

S t o r e
r u n n i n g

t 1 t 2 t 1
S t o r e
r u n n i n g

t 1 t 2

c .)

F i n i s h e d i n s t r u c t i o n s
C u r r e n t l y e x e c u t i n g i n s t r u c t i o n s

Fig. 5. Details from Figure 4a.), ab.), and c.) highlighting 21 clock cycles each. Loads
are scheduled at t1 �� t2 in a.) and simultaneously at t1 in b.).

In general, it is inevitable to perform simulations or measurements to study and
optimize the program behavior in detail.

4 Conclusions and further work

A simple piece of program for a superscalar microprocessor has been studied with
respect to cache effects and instruction ordering. Understanding the details of the

208 A. Böttcher:

execution on a clock cycle basis is quite a tricky task and all but straightforward.
It demonstrated that unrolling of nested loops has to be done carefully. The visual-
ization environment greatly supports the analysis. Trouble spots are easier to detect
giving greater focus to the investigation.

The visualization environment shall be extended to cover cache details and to
display more detailed information in the activity diagrams (e.g. types of instruc-
tions that are currently being executed) as well as the state of more resources. e.g.
write buffers.

From mmix-plugin.sourceforge.net, the plugin to visualize the MMIX-
pipeline for the eclipse platform can be downloaded. Eclipse itself is located at
eclipse.org.

This visualization environment is also a good basis to learn a lot about hard-
ware. It has been successfully used in the author’s lectures on computer structures.

Acknowledgements

The author wishes to thank Donald E. Knuth for the nice MMIX-processor and for
having motivated this work, and Martin Ruckert for many helpful discussions

References

[1] E. van der Deijl, G. Kanbier, O. Teman, and E. D. Granston, “A cache visualization
tool,” IEEE Computer, vol. 30, pp. 71–78, 1997.

[2] R. P. Bosch, “Using visualization to understand the behavior of computer systems,”
Ph.D. dissertation, Stanford University, Berkeley, CA., 2001.

[3] H. Anlauff, A. Böttcher, and M. Ruckert, Das MMIX-Buch – Eine praxisnahe
Einführung in die Informatik. Heidelberg: Springer Verlag, 1 ed., 2002.

[4] D. E. Knuth, MMIXware: A RISC Computer for the Third Millennium. Berlin, Hei-
delberg: Springer-Verlag, 1 ed., 1999.

[5] E. Gamma and K. Beck, Contributing to eclipse – Principles, Patterns, and Plug-Ins.
Addison-Wesley, 1 ed., 2004.

[6] P. Sandon, “Powerpc 970: First in a new family of 64-bit high performance powerpc
processors,” IBM, Tech. Rep., 2002.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture – A Quantitative Approach.
San Francisco, CA.: Morgan Kaufmann Publishers, 3 ed., 2003.

