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Abstract: A new method for efficient digitizing analog signals while preserving the
original waveform as close as possible with respect to the relative quantization error is
presented. Logarithmic quantization is applied to short vectors of samples represented
in sphere coordinates. The resulting advantages, i.e. a constant Signal-to-Noise Ratio
over a very high dynamic range at a small loss with respect to rate-distortion theory
are discussed. In order to increase the Signal-to-Noise Ratio (SNR) by exploitation
of correlations within the source signal, a method of combining differential pulse-
codemodulation (DPCM) with spherical logarithmic quantization is presented. The
resulting technique achieves an efficient digital representation of waveforms with a
high longterm as well as segmental SNR at an extrem low delay of the signal.

Keywords: DPCM, spherical logaritmic quantization, quantization noise, signal-to-
noise ratio, gradient descent algorithm.

1 Introduction

For efficient and robust transmission, processing or storage of analog waveforms,
digital representation offers lots of advantages. For this purpose the analog signal
usually is quantized and digitized. The development towards digital representation
of analog signals had been pioneered in Germany by the textbook on pulsecode-
modulation (PCM) of K. Tröndle and Weiß [2] in early days. After PCM-encoding
usually data compression methods are applied exploiting redundancy within the
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source signal and irrelevance due to special properties of the consumer of the sig-
nal. By this, efficient digital transmission or storage at a tolerable data rate is
combined with a sufficient quality of the reconstructed analog waveform.

The numerous different methods for digitizing analog signals may be subdi-
vided into two basic categories:

i) methods where the reconstructed waveform approximates the original one
closely, i.e. no exploitation of irrelevance. Here we use the expression
“waveform conserving” instead of the often applied term “lossless” wave-
form coding, because digitizing analog signals at a finite data rate is not
“lossless” in principle (i.e. infinite entropy of a continuous random variable).

ii) non-waveform conserving methods. These approaches are very important in
audio signal and video compression, as long as only the subjective quality
of the signal at the receiver output is relevant (e.g. exploitation of psychoa-
coustic masking). Usually signal processing for exploitation of irrelevance
produces a reconstructed waveform quite far away from the original one and
additionally introduces a high signal delay (e.g. due to spectral transforms
or equivalent block based operations). The quality of these waveform coding
methods cannot be expressed by a Signal-to-Noise Ratio (SNR) in the clas-
sical sense; it rather has to be determined in complex performance tests by
well-trained persons. But in many applications, such as processing of mea-
surement data, recording of waveforms for further signal processing, real
time signal transmission using digital modulation schemes without tolerance
of a noticeable signal delay as e.g. for cordless digital stage microphones,
non-waveform conserving signal coding schemes are completely useless.

In this paper a new waveform conserving method, spherical logarithmic quanti-
zation, is proposed in order to meet the following requirements: a) low data rate
by exploitation of favorite packing properties of multidimensional lattices (vector
quantization), b) extreme high dynamic range, i.e. preservation of a constant high
SNR for variations of 60 dB and more of the short time variance of the analog
source signal, c) high segmental SNR for short segments of waveform samples,
d) insensitivity to special signal parameters such as segmental probability density
function etc., and most important e) introduction of an extreme low signal delay in
the order of a few (up to 10) samples.

2 Logarithmic Quantization

The intention of logarithmic quantization is a high dynamic range. This implies
a wide range of the signal level where the SNR and thus the maximum relative
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quantization error
�
∆qi � 2 � ��� ri � is constant. Here, let ∆qi denote the width of the

i-th quantization interval and ri the corresponding reconstruction value. This leads
us to the well-known logarithmic quantization e.g. according to the � -law, which
is in use for many years in telecommunications [2]. Regarding a medium signal
level and R � 1 the SNR can be expressed by:

10log10
�
SNR ��� R 	 6 
 02 dB � 10log10

3�
1 � ln

� ���� 2 (1)

where R denotes the average bits per sample (rate) and � the usual parameter of
this logarithmic quantization. This quantization provides a constant relative max-
imum quantization error for samples with an absolute value � 1 � � (referred to a
signal range of the quantization from -1 to +1). The parameter � specifies the quo-
tient of the maximum to the minimum width of quantization intervals. Therefore,
signals with power levels greater than� B1 : � 20log10

1� dB (2)

are quantized and reconstructed at a SNR given by (1). B1 characterizes the dy-
namic range of scalar logarithmic quantization. Within this dynamic range, the
SNR is independent of the probability density function (pdf) of the signal which
provides an universal applicability of this method. Comparing (1) to the result for
an uniformly distributed source signal and using an uniform quantizer or to the
rate distortion function for independent, identically distributed (i.i.d.) Gaussian
random variables, the term 10log10

�
3 � � 1 � ln

� ���� 2 � represents a “SNR-loss” by
companding, which has obviously to be paid for a wide dynamic range.

3 Quantization in Sphere Coordinates

3.1 Sphere coordinates in DDD dimensions

Spherical logarithmic quantization belongs to the family of vector quantization
methods (of e.g. [3, 4]). It is well known that the property of dense sphere packing
in multidimensional lattices offers some gains for quantization, even if there are
no statistical interdependencies within the samples combined to a vector. A vector
xxx : � � x1 � 
�
�
 � xD � of D samples in Cartesian coordinates at first is expressed by po-
lar coordinates uuu : � � ϕ1 � 
�
�
 � ϕD � 1 � r). The D � 1 angles ϕi as well as the radius r
are given by the following equations ( j: imaginary unit, arg

� 	�� : argument-function
delivering the angle of a complex number in rad):
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ϕ1 � arg
�
x1 � jx2 ����� � π � � π � (3)

ϕi � arg

�
i

∑
l � 1

x2
l � jxi � 1 � ��� � π

2 � π2  � i �"! 2 � 
�
�
 � D � 1 # � (4)

r2 � D

∑
l � 1

x2
l (5)

The reconstruction of the Cartesian components from vector uuu is obtained from

xi � r 	 bi � 1 	 sin
�
ϕi � 1 � � i �$! D � 
%
%
 � 2 # (6)

x1 � r 	 b1 	 cos
�
ϕ1 ��� r 	 b0 (7)

with the radii bi of the “circles of latitude” of a unit sphere (radius 1):

bD � 1 � 1 (8)

bi � D � 1

∏
l � i � 1

cos
�
ϕl � � i �"! D � 2 � 
%
%
 � 0 #&
 (9)

The recursions for this transformations forward and backward may be efficiently
implemented using the well-known CORDIC-algorithm [5] with low complexity.

3.2 Spherical logarithmic quantization

In contrast to usual vector quantization, individual, i.e. mutually independent,
quantization of the polar coordinates is applied for saving complexity. This is be-
cause, under the requirements stated in section 1, a “true vector quantization” would
offer only marginal further gains which we waive in favour of reduced complexity.
In order to preserve the properties of a logarithmic quantization, i.e. independence
of the SNR of the signal variance and its special (short time) pdf, we propose to
apply usual logarithmic quantization according to the � -law for the radius (magni-
tude). For the angle variables ϕi we simply apply individual uniform quantization
but with quantization intervals being functions of the quantized angle variables'
ϕl , l �$! i � 1 � i � 2 � 
%
%
 � D � 1 # of higher orders, used for reconstruction.

Thus, a very simple implementation of the quantization and signal reconstruc-
tion is achieved, where the iterative procedure according eqs. (3) to (9) allows the
processing of the coordinates step by step in the same way as in the case of a scalar
quantization.

Because of the proportionality of a circular arc segment to the radius, the feature
of logarithmic quantization, i.e. the proportionality of the width of a quantization
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interval to the signal value, is already present for uniform quantization of the angles,
see Fig. 1 for a simple example of two dimensions (D � 2). Thus, the second
term in eq. (1) for logarithmic quantization has to be paid only for one out of D
dimensions. This is the essential source of the gains due to spherical logarithmic
quantization.

Dr r·Dj

PSfrag replacements

small radius

large radius

Fig. 1. Proportionality of a circular arc
segment to the radius

The uniform quantization of the angles corresponds to a quantization of the
surface of a D-dimensional sphere roughly into

�
D � 1 � -dimensional (hyper-) cubes

(e.g. ordinary squares for D � 3) as long as the number of quantization cells is very
large.

We will show in section 3.3 that this suboptimal quantization of the surface of
the sphere results in a loss of only 10log10

�
πe � 6 �(� 1.53 dB for D ) ∞, which

corresponds to a rate loss of about 1/4 bit/sample, which we accept for the benefit
of low complexity.

In the following, we will discuss how to split the MD (i.e. M : � 2R) quantization
levels (which are available per quantization step) into quantization intervals for the
radius r and the surface of a D-dimensional unit (hyper-)sphere in an optimum way.

In the logarithmic area r0 � �+* r * r0 of � -Law companding the following
compression function is applied for the radius as usual:

k
�
r �,� r0 - c 	 ln r

r0
� 1 . with c : � 1

1 � ln � 
 (10)

Its derivative is:

k / � r � : � dk
�
r �

dr
� c 	 r0

r

 (11)

As mentioned above, � is the parameter of the � -Law and r0 describes a scale
factor which will be fixed in the next paragraph. If we assume MD quantization
intervals for the radius (Dth component of the vector uuu), the width of a quantization
cell in radial direction reads

∆r
�
r �,0 r0

MD 	 k / � r � � 1
MD 	 c 	 r 
 (12)
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Notice, that ∆r
�
r � is independent of r0 in the considered logarithmic area.

In order to achieve a similar performance of the quantization in polar coor-
dinates as in cartesian coordinates with respect to overloading the quantizer, we
normalize the maximum value r0 of the radius in that manner that the volume of
the corresponding D-dimensional sphere equals the volume of a D-dimensional
cube with edge length 2 (quantization range xi ��� � 1;1 1 in every dimension), i.e.

Vsphere
!� Vcube:

αD 	 rD
0

!� 2D

with the volume αD of the unit sphere in D dimensions [6]:

αD � π D
2

Γ
� D

2 � 1 � 
 (13)

Here Γ
� 	�� denotes the usual Gamma-Function

�
Γ
�
x � 1 �2� x! � x �43 � � . This leads

to:
r0 � 2

α
1
D

D

with r0 � 1 5 D �768
 (14)

Simplifying the calculation of the SNR, we chose r � 1 in the following, i.e.
we consider the quantization cells covering the surface of the unit sphere. This is
possible without loss of generality because the SNR does not depend on the radius
within r0 � �9* r * r0 due to its logarithmic quantization and the natural scaling of
arc segments with the radius. The width of the quantization cells with respect to
the quantization of the radius here reads:

∆ : � 1
MD 	 c (15)

By uniformly quantizing the angles, the surface of the D-dimensional unit
sphere is divided into Mϕ cells resembling (D � 1)-dimensional cubes as long as
the number of cells is high. The surface of a sphere in D dimensions is given by
[6]:

S � βD 	 rD � 1 with βD � D 	 αD 
 (16)

For a fair partitioning of the number of MD quantization cells for radius and surface
of the unit sphere following considerations hold: regarding our approximation of
cubic quantization cells, i.e. enforcing an approximately equal width of quantiza-
tion cells in all dimensions (radius and circular arc segments), the surface of the
unit sphere has to be subdivided into Mϕ equal cubes in

�
D � 1 � dimensions with

the same edge length ∆ as the radius for r � 1:

S � βD
!� Mϕ 	 ∆D � 1 
 (17)
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This construction establishes a fair split of quantization intervals between radius
and angles. As we have M � 2R intervals per sample, additionally

Mϕ 	 MD
!� MD (18)

has to be claimed.
With (15), (17) and (18) the number of intervals that are available for the quan-

tization of the radius, can now be represented by

MD : � M 	 1

β
1
D

D

1

c D : 1
D

 (19)

In Fig. 2 quotients MD � � M � 2 � of the number of quantization cells devoted to
the radius normalized to the number of cells per absolute value of a sample in scalar
quantization

�
D � 1 � are given versus number of dimensions for several examples

of the parameter � of the � -law companding. The values of � are chosen in that
way, that applying � -law companding results in smallest quantization intervals
being by factor 2∆n, ∆n ��6 smaller than for uniform quantization at the same
entire number of intervals:

∆r
�
r * 1 � �;��� 2 � ∆n 1

MD
� (20)

i.e.

2∆n � �
1 � ln � 
 (21)

Thus, resolution for small values of r is increased by ∆n bit.
Fig. 2 shows that spherical logarithmic quantization devotes up to more than

factor 8 more intervals to the radius than a scalar quantization with equivalent res-
olution of very small signal values! Thus, we find a gain of 3 bit/sample or 18 dB
for spherical logarithmic quantization in this area!

Using (15) we get for the width of the quantization cells on the surface of the
unit sphere:

∆ � 1
M
	 - βD

c
. 1

D 
 (22)

The constant c is determined by the selected dynamic range, see eqs. (2) and
(10).

The actual uniform quantizations of the angle variables for equal circular arc
segments on the unit sphere follow from the recursion eqs. (8) and (9). We have Mi
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Fig. 2. Number of quantization cells devoted to the radius normalized to the
number of calls per absolute value of a sample in scalar quantization

intervals for the coordinate ϕi:

MD � 1 � K π
∆ L (23)

Mi
� '
ϕi � 1 � 
�
�
 � 'ϕD � 1 �M� N π 	 'bi

∆ O � for i � D � 2 � D � 3 � 
�
�
 � 2 (24)

M1
� '
ϕ2 � 
�
�
 � 'ϕD � 1 �M� N 2π

'
b1

∆ O (25)

with P x QR�S6 : largest integer * x with x �43 � and
'
bi corresponding to eqs. (8) and

(9) for quantized angles
'
ϕi.

Please notice, that the numbers Mi of quantization intervals in dimension i is a
function of the selected quantization cell in dimension i � 1 � 
%
%
 � D � 1 and therefore
can be calculated iteratively starting with MD � 1. Calculation in advance is not
possible.

An assignment of an index N �T! 0 � 1 � 
%
%
 � MD � 1 # to the actual quantization cell
and reconstruction may be performed by application of nested look-up tables as
known from Shell Mapping, e.g., cf. [7]:

The assignment of an index to the radius is independent of the index of the cell
on the unit sphere. Therefore we can concentrate on the problem to assign indices
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to the cells on the unit sphere.
The starting number of the index is 0, the maximum ending index number is

Mϕ � 1 which equals the number of quantization cells on the surface of the unit
sphere. MD � 1 is the number of subspheres of dimensionality D � 1 and can be
obtained from eq. (23). For the benefit of a fast implementation, a first-level lookup-
table with MD � 1 entries N0 � 
%
%
 � NMD : 1 � 1 is used. Here the number Ni denotes the

smallest index of all cells corresponding to the ith quantization interval for angle'
ϕD � 1:

N0 � 0

Ni � 1 � i

∑
ν � 0

MD � 2 U 'ϕD � 1 � ν
π
∆  � i �"! 0 � 
�
�
 � � MD � 1

� 2 �V# (26)

Thus, there exist Ni � 1
� Ni cells for fixed ith value of

'
ϕD � 1. For each Ni, a second-

level lookup-table is calculated containing the index numbers Oi W j denoting the
smallest index of all cells corresponding to the j th quantization interval for angle'
ϕD � 2 within the (D � 1)-dimensional subsphere which Ni is referred to.

Oi W 0 � 0 �
Oi W j � 1 � j

∑
ν � 0

MD � 3 U 'ϕD � 2 � ν
π
∆ � 'ϕD � 1 � i

π
∆  �

i �X! 0 � 
�
�
 � � MD � 1
� 1 �V# �

j �ZY 0 � 
�
�
 � U MD � 2 U 'ϕD � 1 � i 	 π
∆  � 2  \[

(27)

Proceeding in this manner leads to D � 2 levels of nested lookup-tables for
indexing the D � 1 angles, because the lookup-table of level D � 1 (angle

'
ϕ1) holds

subsequent cell indices and therefore does not need to be tabularized.

3.3 Quantization noise and SNR

As long as there is a sufficiently high number of quantization cells in D dimensions,
the usual approximation of an uniformly distributed quantization error within these
cubic cells, each of it represented by its center point, may be applied. Thus, the
noise variance for a signal vector with radius r is:

∆2 � r �
12

D 
 (28)

Spherical logarithmic quantization enforces ∆
�
r �2� ∆ 	 r in all dimensions for
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r0 � �9* r * r0, thus we have

SNR � r2

∆2 	 r2 D
12

� F
�
D � M2 (29)

with

F
�
D � : � 12

D - c
βD
. 2

D � (30)

see eq. (22). As designed, the SNR is independent of the variance of the signal in
this area.

Inserting (13) and (16) yields:

F
�
D �2� 12

π
1

D
D ] 2

D

���
D � 2 � ! � 2

D c
2
D 
 (31)

Looking at (29), F
�
D � may be considered as the loss with regard to the rate-

distortion-bound for i.i.d. Gaussian random variables (6 dB-per-bit-rule). It is pre-
sented in Fig. 3 for different values of � .
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Using Stirling’s approximation x! 0ji 2πx
�
x � e � x the limit

lim
D k ∞

F
�
D �2� 6

πe
'� � 1 
 53dB (32)
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follows, which represents the loss with respect to the rate-distortion-bound caused
by the suboptimal cubical quantization cells (instead of (D � 1)-dimensional hyper-
spheres for quantization of the surface of a D-dimensional unit sphere and D ) ∞).
In other words: By using spherical logarithmic quantization, it is possible to com-
pensate the loss due to companding described in (1) up to a residual margin of
1 
 53dB. Therefore, it is possible in principle to choose the parameters � and D
in that way that an infinite dynamic range is achieved without having to accept a
noticeable loss in the maximum attainable SNR.

The asymptotic SNR-loss of 1.53 dB corresponds to a rate loss of 1/4 bit/sample
which we accept for the advantage of an extreme reduction in complexity. Our
requirement does not allow to have detailed knowledge on the pdf of the source
signal, as such a knowledge would not be compatible with the claims for a high
dynamic range of the quantizer and high segmental SNRs for nonstationary source
signals. On the other hand the rate-distortion-function for Gaussian i.i.d. random
variables is an upper bound on the minimum achievable rate (distortion, resp.) at a
given distortion (rate, resp.) (Berger’s upper bound of the rate-distortion-function
[8]). Therefore, further improvements beyond 1.53 dB or 1/4 bit/sample, resp., are
not possible at all under the given constraints and requirements. Furthermore, the
approach towards the rate-distortion-function for Gaussian i.i.d. random variables
within 1.53 dB is achieved without any knowledge on the source signal. No trans-
mission of side information for amplitude scaling etc. is necessary as long as over-
load is avoided, which is no problem at all because of the extreme high dynamic
range of spherical logarithmic quantization.

Fig. 4 shows the distance between the SNR and the rate-distortion-bound R 	 6dB
depending on the average signal level (10 log10

�
variance � ) of i.i.d. Gaussian ran-

dom variables for the example choosing �l� 48270 versus dimensionality of the
spherical logarithmic quantization. These simulation results meet exactly the the-
oretical analysis according to Fig. 3. At a first glance, the extreme high values for� , chosen for the examples in Fig. 3 and 4 and additionally in the examples of sec-
tion 5 may look quite unrealistic and not implementable. But please notice that usu-
ally much more than M intervals are devoted by eq. (19) to the quantization of the
radius (MD m M � 2), see Fig. 2. Even for extreme low rates, e.g. R � 4 bit/sample
very fine quantization intervals still exist for the radius. Additionally, eq. (10) rep-
resents an invertible function for any value of �n� 1 and therefore is well suited for
specification of a certain nonuniform quantizer in any case. On the other hand, this
approach for true waveform coding at an extreme low delay of the signal should
not be applied for rates below 3 bit/sample.

Furthermore it becomes apparent from Fig. 4 that the dynamic range expands
by increasing dimensionality at a constant � due to two effects. First, the scal-
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Fig. 4. SNR of i.i.d. Gaussian distributed signal values using spherical
logarithmic quantization ( hr 48270, B1 = 93.7 dB, R s 1 bit/sample)

ing factor r0 increases and second, the limitations of the logarithmic compression
only apply to a single dimension (the radius) whereas for the other D � 1 dimen-
sions the proportionality of the width of the quantization cells to the signal value is
maintained even for smallest signal values. Thus the dynamic range expands in D
dimensions approximately to

BD 0 B1 � 20log10
�
r0 �t� 10log10

�
D �u
 (33)

Moreover, because of the averaging effect of combining D samples, the robustness
to overload increases which results in a further expansion of the dynamic range. In
the limit D ) ∞, an infinite dynamic range is offered for any value of � .

The structural delay of spherical logarithmic quantization is, as for any vector
quantization method, exactly D samples. As to be seen from Fig. 3 and 4, the
major portion of the possible gain is already achieved at very small values of D (up
to 5).

4 Combination of Spherical Logarithmic Quantization and DPCM

Correlations of waveform samples q � k 1 are efficiently exploited by differential PCM
(DPCM), see Fig. 5. A prediction error signal x � k 1 is formed by the subtraction of
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predicted samples which are generated out of reconstructed waveform samples
'
q � k 1

via a linear prediction filter HP
�
z �v	 z � 1. For an ideal predictor, the prediction error

sequence x � k 1 shows a white power spectral density (psd) and minimum variance.
Usually this prediction filter is adaptive in order to track a nonstationary source.
Here, examples are presented only for a fixed prediction filter because we want to
describe its interaction with spherical logarithmic quantization as simple as possi-
ble for high readability. Regarding audio signals for example, even very short fixed
prediction error filters (designed w.r.t. a compromise criterion) usually offer aver-
age gains of more than 18 dB at a sampling frequency of 44.1 kHz. Even segmental
gains, averaged over 6000 samples (0.136 s), lower than 15 dB can be observed only
very rarely, see Fig. 7 in comparison with Fig. 3. Additionally, when signal delay
is rather restricted to a few samples the gain due to adaptive prediction is limited, if
noticeable effects generated by coefficient updates have strictly to be avoided. Of
course, the subsequent material can immediately be generalized to adaptive predic-
tion. Please notice that a SNR gain, expressed by a decrease of the mean squared
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Fig. 5. Block diagram: DPCM-Encoder using backward prediction

error between original and reconstructed samples, is only possible for application
of the so-called backward prediction as shown in Fig. 5. It is well known that for
logarithmic quantization the SNR for the prediction error signal x � k 1 is independent
of its variance or equivalently the power of the quantization noise is proportional
to the signal power, the prediction gain, i.e. the quotient of the variances of q � k 1
and x � k 1 is directly transformed into a SNR gain. Thus, logarithmic quantization
is a favorite choice for DPCM. Additionally no further signal delay is introduced
by DPCM w.r.t. PCM, because an optimum prediction error filter for maximum
prediction gain is causal and strictly minimum phase in principle [9] and therefore
invertible without any structural delay.

4.1 Gradient descent algorithm

For the application of spherical log. quantization to DPCM with backward predic-
tion the same problem arises as of any vector quantization method: for calculation
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of the actual prediction error sample x � k 1 all previous reconstructed samples
'
q � k � i 1 ,

i � 1 � 2 � 
�
�
 have to be available and for a high prediction gain the most recent values
(i � 1 � i � 2) are undeniable. But this claim is inconsistent with quantizing blocks
of length D of samples.

For solutions of this problem any method mentioned in literature for combining
vector quantization with DPCM can be applied. Here, we address a method very
closely related to the principle “analysis by synthesis” well known from CELP
waveform coding methods [10] and we combine this approach with a very simple
discrete step gradient descent algorithm.

In order to tackle the contradiction between DPCM and vector quantization the
squared Euclidean distance between the vector of samples

qqq � l 1w� � q � l 	 D 1 � q � l 	 D � 1 1 � 
�
�
 � q � l 	 D � D � 1 1x� (34)

and a corresponding reconstruction vector
'
qqq � l 1 is minimized, l �IP k � D Q . Please

notice that besides spherical log. quantization, the calculation of the corresponding
prediction error signal and the inversion of the prediction error filter have to be
appropriately included in the computation of a pair qqq,

'
qqq whereas previously selected

reconstruction vectors
'
qqq � l � m 1 , m � 1 � 2 � 
�
�
 are addressed but remain fixed. The

aim of the algorithm is to find that quantization cell for xxx � l 1 for which the metric

d2 � qqq � 'qqq ��� D � 1

∑
i � 0

�
q �D 	 l � i 1 � q̂ �D 	 l � i 1x� 2 
 (35)

is minimized. For finding a well suited starting point for the algorithm we pro-
pose to begin with a forward prediction for the actual D samples; i.e. to dis-
able the chain ADC and DAC in Fig. 5 or equivalently, to feed q � k 1 , k � l 	 D,
l 	 D � 1 � 
�
�
 � l 	 D � D � 1 into the prediction filter (of Fig. 5) instead of

'
q � k 1 . Sub-

sequently, spherical log. quantization is applied to the resulting vector xxx generating
an initial vector yyy from which a vector

'
qqq follows by usual inversion of the prediction

error filter (DPCM-receiver structure). Thus, metric calculation for a given quan-
tized vector yyyi is straight forward. Given a certain actual reconstruction vector yyyi, all
2D nearest neighbor reconstruction vectors yyy j y i z in D dimensions are addressed and
the corresponding metrics (eq. (35)) are compared. The vector with the smallest
metric is selected for the next iteration, i.e. arg min j d2 � qqq � 'qqq j y i z � provides an update
for i with

'
qqqi corresponding to the quantized vector yyyi via inversion of the prediction

error filter. If there is none, the algorithm stops and delivers the index of yyyi to be
transmitted.

Notice that the neighboring cells usually have quite different indices and it is
not trivial to identify these cells. For example, regarding D � 3 the angles of the
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azimuth (ϕ1) at large elevations (ϕ2 near { π � 2) will be quantized more coarsely
than at small elevations (ϕ2 near 0), because the latter have a larger circle of latitude
on the surface of the sphere. Therefore, the indices of the neighboring cells may
be stored in a ROM for all cells for a fast implementation as long as Mϕ is not too
high. Because linear prediction is incorporated into the optimization process the
resulting SNR sometimes is higher than predicted by adding the gains (in dB) due
to spherical logarithmic quantization and prediction (DPCM). Especially for low
rates (e.g. R | 5 bit/sample) remarkable additional SNR gains are observable, see
section 5 and Fig. 6.

An analytic result for the SNR achievable by this algorithm is yet not known to
the authors.

Simulations have shown that the average number of iterations is about 0.25 (per
D samples) and that there is no significant SNR-loss in comparison to unlimited
search even if the maximum number of iterations is restricted to three. Therefore,
a realtime implementation seems to be feasible. Additionally, small values of D
already offer a high gain, cf. Figs. 3 and 6.

Regarding the receiver side, there are no differences to usual DPCM. Notice
that the overall delay of the transmission system is only D samples and thus this
method is excellent for situations that have to cope with an extreme low signal
delay.

4.2 Variants

Performing the search for the quantization cell which leads to the minimum dis-
tortion according to eq. (35) all algorithms for so-called lattice-decoding, resp. the
search for a maximum-likelihood-codeword (channel decoding) are applicable in
order to speed up the search in principle, see e.g. [11] and the references therein.
Of course, the lattice decoding methods have to be transformed to polar coordinates
for this purpose.

A variant without any iterative search of the quantization cell arises by non-
uniform quantization of the angle coordinates instead of exploiting correlations
within the actual D samples by means of DPCM whereas correlations of these D
samples to previous samples may be exploited by DPCM as before. This leads to
an update of the prediction filter every D steps.

We propose to maintain the logarithmic quantization of the radius and to nor-
malize the signal vector to radius 1. This enables an analytical calculation of the
probability density function of the signal points on the surface of the unit sphere,
e.g. by the assumption of a Gaussian process and exploiting the autocorrelation
function of the source signal or by means of a direct experimental determination of
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the relative frequency of the signal points on the surface of the sphere, resp.
For that purpose it is possible to develop a non-uniform cubic quantization

using the optimization strategy proposed in [12] as long as we assume M � 1.
This approach enforces that the average contribution of every quantization cell to
the quantization noise should be identical. With the ∆i representing the width of
a
�
D � 1 � -dimensional cubic quantization cell and zzzi the corresponding center, as

well als f
�
vvv � ; vvv : � � ϕ1 � 
�
�
 � ϕD � 1 � representing the joint probability density function

or relative frequency of angles, resp., the following condition has to be satisfied:�
D � 1 � ∆2

i

12
f
�
zzzi � ∆D � 1

i � const 
 (36)

with the constraint
Mϕ

∑
i � 1

∆D � 1
i � βD 
 (37)

This leads immediately to a
�
D � 1 � -dimensional compressor function kkk

�
vvv � which

determines a non-uniform quantization of the surface of the sphere. The non-
uniform quantization can be performed e.g. like in the one-dimensional case by
a nonlinear mapping of the vector vvv into a vector zzz : � kkk

�
vvv � and a subsequent uni-

form quantization which leads to the vector zzzi as we showed in section 3.2. The
application of the inverse function yields the reconstruction vector

'
vvv : � kkk � 1 � zzzi � .

The resulting
�
D � 1 � -dimensional compressor function can be either approxi-

mated by an analytic function or by
�
D � 2 � -dimensional partial plains. This re-

sembles the well-known approximation by straight lines (e.g. the 13-segment-
characteristic) as it is used for one-dimensional compression. By using an or-
thogonal raster for this approximation concerning the D � 1 angles in the space� � π � 2 � π � 2 1 D � 2 } � � π � π 1 , an easy implementation of the compressor function is
achievable.

5 Simulation Results

The simulation of spherical locarithmic quantization in combination with DPCM
according to chapter 4 was performed for the ouverture and the aria “Der Vo-
gelfänger bin ich ja” of the opera “Zauberflöte” of Wolfgang Amadeus Mozart
[13]. Fig. 6 shows simulation results for R � 3, R � 4 and R � 7 bit/sample at�l� 102726, �l� 48270, �l� 4858 and various numbers of dimensions D. First
the signal was coded, then decoded and the SNR was calculated by comparison
with the original CD-signal. Here the Signal-to-Noise Ratio is averaged on the
whole pieces of music. At the low rates the SNR increases even steeper with D
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- - -“Der Vogelfänger bin ich ja”, (W. A. Mozart), [13] Track 3,
Time = 3:02 min, � 32.15 dB, P=2.

R rS� 7 � 4 � 3 � bit/sample, h�r4� 4858 � 48270 � 102726 � .
when compared to Fig. 3. Notice the different values for � while comparing the
results. The aria “Vogelfänger” is stored at a mean signal level of � 32 
 15dB and
offers a challenging example for audio coding due to signal dynamic and timbres
(prelude, singing, reed pipe). Using an universal prediction filter of low prediction
order (P � 2), these simulation results can be considered as representative for a
multiplicity of audio signals.

From a comparison of Fig. 3 (or eq. (1)) and Fig. 6 at D � 1, R � 7 it is obvious
that the average prediction gain is about 20 dB to 23 dB for this simple predictor
(sampling frequency 44.1 kHz!). For R � 7 the overall gain is well approximated
by the sum of both individual gains by spherical logarithmic quantization and pre-
diction at all values of D, whereas for R � 4 this is only true for D � 5. (Of course,
eq. (1) is not applicable for R � 3 or R � 4 and D � 1, �l� 48270.)

The mean signal level of the ouvertuere is � 27 
 20dB; it is characterized by a
wide dynamic range from below -70 dB up to -17 dB, see also Fig. 7.

In Fig. 7 segmental signal level and segmental SNRs are plotted for the ex-
ample ouvertuere; each segment consists of 6000 samples, i.e. 0.136 s. Spherical
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log. quantization in D � 3 dimensions with �l� 1014 and �l� 4858 as well as
in D � 6 dimensions with �l� 48270 and the same compromise predictor with
degree P � 2 as in the first example are applied. The upper curve shows the high
dynamics which are caused by well known long heavy tones separated by general
pauses over entire bars at the beginning and in the middle of this popular piece of
music. The curves for �l� 1014 and ��� 4858 show the benefit of an increas-
ing � regarding the segmental SNR especially for the general pauses. The lower
curve in Fig. 7 demonstrates this aspect for a further increase of � in combina-
tion with another 3 dB gain in SNR due to the higher dimensionality of D � 6
(see also Fig. 3). Please notice, that despite of the low rate R � 4 bit/sample a
10 log10

�
SNR � m 35 dB (w.r.t. the original CD) is even maintained during this gen-

eral pauses.
The value �l� 48270 corresponds to a compression of 12 bits, e.g. for D � 1,

R � 12 a resolution corresponding to 24 bits is achieved for very small samples. Of
course, for D � 1, R � 4 a resolution according to 16 bit is never present because
of the low number of intervals. But applying spherical logarithmic quantization
in 6 dimensions the extreme high value �l� 48270 indeed is well designed for
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maximum minima of the segmental SNR. Here the resolution is even as high as
that of the original CD-data for the segments with a signal level of -70 dB and
lower. No person – even if familiar with audio coding artifacts – have been found
yet, who were able to hear any difference between the quantized signal at R � 4,
D � 6, �l� 48270 and the original one with high reliability. The interested reader
is invited to evaluate these audio examples [14] by himself.

6 Conclusion

We presented a waveform-conserving digitizing scheme for analog source signals,
which on the one hand side combines gains from multidimensional and logarithmic
quantization at a tolerable complexity for implementation and on the other hand
side is capable of further SNR gains by means of linear prediction. Finally we want
to emphasize that besides an advantageous tradeoff between rate and distortion this
method is particularly characterized by its extreme high dynamic range and a very
low structural signal delay of only a few sample periods.
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