
FACTA UNIVERSITATIS (NIŠ)
SER.: ELEC. ENERG. vol. 17, April 2004, 69-79

On VHDL Synthesis of Self-Checking Two-Level
Combinational Circuits

Tatjana R. Stanković, Mile K. Stojčev, and Goran Lj. Djordjević

Abstract: Concurrent error detection (CED) is an important technique in the design
of system in which dependability and data integrity are important. Using the separable
code for CED has the advantage that no decoding is needed to get the normal output
bits. In this paper, we address the problem of synthesizing totally self-checking two-
level combinational circuits starting from a VHDL description. Three schemes for
CED are proposed. The first scheme uses duplication of a combinational logic with the
addition of a totally self-checking comparator. The second scheme for synthesizing
combinational circuits with CED uses Bose-Lin code. The third scheme is based
on parity codes on the outputs of a combinational circuit. The area overheads and
operating speed decreases for seven combinational circuits of standard architecture
are reported in this paper.

Keywords: Concurrent error detection, totally self-checking circuits, error-detecting
codes, VHDL.

1 Introduction

A digital system consists of logic circuits that can fail during normal operation.
After a system fails, engineers must identify any faulty circuits and replace them.
An ideal solution to dealing with faulty systems is to be able to rapidly identify a
fault and have a backup system to take over. To implement this solution at macro-
level, we would use combinational circuits that are self-checking.

Self-checking circuits (SCCs) are intended to: 1) detect the presence of inter-
mittent, transient and permanent faults; and 2) signal the presence of errors at the
output of the circuit immediately after their occurrence, thus preventing their prop-
agation throughout the system [1]. The SCC, see Fig. 1, consists of a functional

Manuscript received 23 December, 2003.
The authors are with Faculty of Electronic Engineering, University of Niš, Beogradska 14, 18000

Niš, Serbia and Montenegro (e-mail: [tatjanas,stojcev,gdjordj]@elfak.ni.ac.yu).

69



70 T. Stanković, M. Stojčev, and G. Djordjević:

circuits, F , which produces encoded output vectors, and a checker, C, which checks
the vector to determine if an error has occurred. In particular, F should be designed
in such a way that, in the fault free case, its output belongs to a chosen error de-
tecting code, while C should verify whether or not this is the case. The functional
circuit can be either combinational or sequential. A self-checking system consists
of an interconnection of SCCs [2, 3, 4].

 

Function
logic

Check symbol
generator

Functional
circuit (F)

input data
n

data part

check part
p

k

Checker
(C)

p

q

outputs

indication

error

Fig. 1. General structure of self-checking circuit for separable code

The concept of self-checking is formalized by several definitions (see Section
2.) out of which those of totally self-checking (TSC) [1] and strongly fault-secure
(SFS) circuits [5] have played a basic role. In fact, it has been demonstrated that, as
far as single stuck-at faults are concerned, for a SCC to behave correctly (i.e., either
to produce the correct functional output or to give an error message), C should be
TSC, while F should be SFS with respect to internal faults. The stuck-at fault error
as the most common type of unidirectional error in VLSI ICs [4] is said to occur
when there are multiple transitions in either 0r1 or the 1r0 direction, but not both.
As a consequence, different works have been dedicated to design rules and coding
techniques making combinational [2, 6, 7] and sequential [2, 7] functional circuits
SFS, and the checkers TSC [1, 7, 8] with respect to stack-at faults.

In the present paper, we have considered implementation of three different cod-
ing techniques (duplication of function, parity check codes, and Bose-Lin codes),
for the purpose of concurrent error detection (CED), into seven combinational cir-
cuits with standard architecture in order to make these circuits self-checking. In
addition, the practicality of the design in term of area overhead, maximal operating
frequency, and suitability to implement the self-checking system with FPGA and
CPLD VLSI ICs using VHDL - Active HDL V. 3.5 and Xilinx Project Navigator
V. 4.2WP2.x as tools for designing, synthesizing and simulating these circuits is
discussed.

2 Background

Concurrent (on-line) error detection techniques used in digital systems can be di-
vided into two classes: circuit-level and system-level techniques. The use of single



On VHDL Synthesis of Self-Checking Two-Level Combinational Circuits 71

error correcting and double error detecting codes for memories, parity bits for data
buses, residue (codes), Berger (codes), Bose-Line (codes) and m-out-of-n codes
for arithmetic, and self-checking sequential-circuits, are all examples of circuit-
level techniques. Capability-based addressing, watchdog timers, fault-tolerant data
structure and use of replication, such as FTMP and SIFT, and N-version program-
ming are some of the examples of the techniques used to detect errors at the system
level [2, 9, 10].

Usually, incorporation of techniques for concurrent error detection at the sys-
tem level lead to considerable hardware overhead, performance degradation, or er-
ror detection latency. In particular, their impact on circuit speed may not be tolera-
ble for high performance applications [10]. In designs using circuit-level technique
the correctness and complexity of the overall operation critically depends on the
correctness of the control logic and the self-checking circuit. A lot of work has been
done in the area of self-checking checker design for different codes [1, 2, 3, 6, 11].

The process of appending check bits to the information bits is called encoding,
while the opposite process-extracting the original information bits from a code-
word- is known as decoding. In general, any set of objects can be represented
by a set of bit strings within which the different bit strings represent the different
objects. The set of bit string is called a code, and a particular bit string is called
a code-word. Any given n-bit code can be regarded as a subset of all possible n-
bit strings. Strings, included in that particular subset are called code-words while
strings not included are called noncode-words. A code is called an error-detecting
code if it has the property that certain types of errors that affect bits of a code-word
will change the code-word into a noncode-word.

In addition, code can be classified as either separable or nonseparable. A sep-
arable code (also called systematic code) is a code in which code-words are con-
structed by appending check bits to the normal output bits. Three types of system-
atic codes that are used for concurrent error detection are Bose-Lin codes, Berger
codes and parity-check codes. The separable nature of these codes facilitates the
derivation of efficient self-checking checkers. In general, the Berger coding design
technique for the purpose of the concurrent error detection utilizes a set of full-
adder modules providing summation of the information bits to produce the binary
representation of the number of ones (zeros) in the information. Bose-Lin codes are
an efficient solution for providing detection of up to t unidirectional errors. They
are systematic codes and require a fixed number of check bits, independent of the
number of information bits. These two properties make Bose-Lin codes an effi-
cient solution for synthesizing arbitrary circuits with CED capability. The codes
are constructed by counting the number of ones or zeroes, similar to Berger codes.
The count is then modified depending on code parameter t. For t=2 and t=3, the
counts are performed by modulo 4 and 8, resulting in 2 and 3 check bits, respec-



72 T. Stanković, M. Stojčev, and G. Djordjević:

tively [11]. Bose-Lin codes with check-bits greater than 3 are explained in details
in [1]. Bose-Lin checkers have a simple structure as they are based on modulo
operations [8, 11]. Parity check-code is a code with the single parity bit equal to
the check part of the code-word. Parity checker uses a simple structure that is re-
alized as a combinational digital network which computes the sum modulo 2 of the
code-word bits.

3 Definition of Self-Checking Circuits

SCCs are increasingly becoming a suitable approach to the design of complex VLSI
ICs, to cope with the growing difficulty of on-line and off-line testing. SCCs are
class of circuits in which occurrence of fault can be determined by observation of
the outputs of the circuits. An important subclass of these self-checking circuit is
known as ”totally self-checking” (TSC) circuits. The fault model assumed for this
paper recalls some basic definitions on the design of TSC circuits and the properties
that need to be guaranteed [1]:

Definition 1 A combinational circuit is self-testing for a fault set F if and only
if (iff), for every fault in F, the circuit produces a noncode-word output during
normal operation for at least one input code-word. Namely, if during normal circuit
operation any fault occurs this property guaranties an error indication.

Definition 2 A combinational circuit is strongly-fault-secure (SFS) for a fault set F
iff, for every fault in F, the circuit never produces an incorrect output code-word.

Definition 3 A combinational circuit is SCC for a fault set F iff, for every fault
in F, the circuit is both self-testing and strongly-fault-secure.

Definition 4 A circuit is code-disjoint for a fault set F iff input code-words map
onto output code-words and input noncode-words map onto output noncode-words.
Self-checking can be defined as the ability to verify on-line whether there is any
faults in control logic (within the VLSI IC) without the need for externally applied
test stimuli.

Definition 5 A TSC circuit is a TSC checker for a fault set F iff, for every fault in
F, the circuit is self-testing, strongly-fault-secure, and code-disjoint. Namely, the
checker is said to be TSC circuit iff, under the fault model assumed: a) The output
of checker is 01, or 10 whenever the input is a code-word (strongly-fault-secure
property); b) The output is 00 or 11 whenever the input is not a code-word (code-
disjoint property); and c) Fault in the checker are detectable by test inputs that
are code-words and under fault-free condition, for at least two inputs X and Y , the



On VHDL Synthesis of Self-Checking Two-Level Combinational Circuits 73

checker outputs are 01 and 10, respectively (self-testing property). Furthermore,
the output of the checker is 00 or 11 whenever a fault is said to be detected by an
input.

4 Design Strategies

Hardware-, information- and time-redundancy are three widespread strategies for
VLSI ICs with concurrent error detection properties [10].

Information-redundancy, as a first approach, involves the use of coding tech-
niques that enhance circuit capability for reliable operation. Memory-, data com-
munication-, arithmetic-, and control-modules can be made reliable through the
use of error detecting and correcting codes. Numerous codes such as Berger codes,
Bose-Lin codes, residue codes, parity check codes, cyclic codes and others, have
been proposed for storage-, data transfer-, data manipulating-, and data control-
functions [10]. In some cases where performance is not a bottleneck, a second
approach called time-redundancy can be used. It involves the use of the same hard-
ware repeatedly in time for the same inputs and comparing the results. Examples
of such approaches are recomputing with shifted operands, alternating logic, etc.
[10]. In fact these are restricted approaches applicable to only certain specific op-
erations. A third approach to increases the reliability of circuits is to use hardware
redundancy. The simplest hardware redundancy approach to designing a TSC cir-
cuit is duplication. Typically, the design implements two copies of the same circuit.
The second copy produces output values complementing the value of the first copy,
and a tree of two-rail code (TRC) checkers makes a bitwise comparison of the out-
puts. Whenever the natural and complementary outputs configurations differ from
each other, or whenever a fault affects one of the self-checking TRC checkers, the
error signal reports the presence of fault. The advantage of this approach is that is
applicable to any general function. Unfortunately, with duplication and comparison
the area overheads are too high (more than 100%).

The simplest scheme for error detection is parity checking. Synthesis tech-
niques for generating multilevel circuits with concurrent error detection based on
parity check codes were presented in [2, 9, 12, 13]. Efficient schemes have been
developed for concurrent error detection in circuits with regular structures, as for
example adders [14], and multipliers [9].

In [11] a procedure for synthesizing multilevel circuits with concurrent error
detection based on Bose-Lin codes was considered. There are two structural con-
straints on the circuit that, if satisfied will guarantee detection of all internal faults
with a Bose-Lin code. The first constraint is that the circuit must be inverter-free so
that only unidirectional errors can occur. The second constraint is that no non-input



74 T. Stanković, M. Stojčev, and G. Djordjević:

node in the circuit can have a path to more than t outputs if a t unidirectional error
detecting Bose-Lin code is used. Synthesis and layout of combinational circuits
with CED based on Bose-Lin codes show low hardware overheads, making it a
practical solution [11].

In this paper we use a methodology to design of totally self-checking systems
specified in VHDL. At the start the proposed method requires from a user to specify
the logical function of the original logic module in Boolean form. Then we enrich
the functional specification with check symbol generator and checker parts. After
that the expanded specification is converted into VHDL description and synthesized
with commercial tools. For implementation FPGA or CPLD technology is used.

5 Implementation

The procedure for synthesizing totally self-checking combinational logic circuits
derived from VHDL specification has been implemented by making modifications
to the following seven representatives: i) BINBCD6/8/12 - 6/8/12 bits binary to
BCD converter based on SN74185A; ii) COMPAR - 4 bits magnitude comparator
based on SN7485; iii) DEMUX38 - 3-line to 8-line decoder/demultiplexer based on
SN74AHC138; iv) DIS18SG - 18 segment solid state alphanumeric display HDSP-
6300; v) MULTIPL - 4 bits multiplier.

A. Duplication and comparison: For a given combinational logic circuit we
synthesize duplicate circuit (see for example Fig. 2). The original part of the

TRC

checker circuit

primary outputs

primary

primary

signal

outputs

inputs
error

TRC

TRC

function
logic

copy 2

function
logic

copy 1

(complement)

Fig. 2. Duplication of the function

circuit has true, while its copy complemented output values. Then the logic for the
TSC comparator is synthesized. The procedure for generating logic for totally self-
checking comparator is adapted to the number of signals to be compared. Finally
the duplicated logic and the TSC equality comparator are technology mapped to
VLSI ICs from Xilinx FPGA and CPLD families.



On VHDL Synthesis of Self-Checking Two-Level Combinational Circuits 75

B. Using Bose-Lin code: In this scheme the Bose-Lin code as an efficient so-
lution for providing concurrent detection of all unidirectional errors is used. The
circuit (Fig. 3) with included logic for Bose-Lin code generation with order to de-
tect any single fault inside the circuit is used. The circuit for totally self-checking
equality comparator is also generated. Then the entire circuit is technology mapped
to Xilinx FPGA and CPLD family chips.

check bits
generator

TSC double-rail checker

. . .

 
XP

 
XP

Px (check bits) Ix (information bits)

codeword input

g f

Fig. 3. TSC checker for Bose-Lin code

C. Using parity code: Given a combinational logic circuit we first partition
the outputs using synthesis scheme based on the use of parity codes on the output
signals of the circuit. We assume that primary inputs are fault free. Single-parity
(pov) and multiple-parity-group synthesis techniques (pg2 and pg4) are used. To
make the circuit self-checking for all internal single stuck-at-faults, logic cannot be
shared between two outputs in the same parity group because when a fault occurs
in the shared logic, the error could propagate to both outputs causing a two bit
error which would not be detected by the parity checker. The more parity groups
there are, the more logic sharing is possible, however more parity groups require
more parity predict logic to generate the check bits. Therefore a tradeoff exist
between the number of parity groups (i.e. check bit) and the constraints on logic
sharing between outputs. The circuits for parity check bit generator is synthesized,
and after that the circuit for TSC equality comparator is synthesized too. Then
the entire circuit is technology mapped to Xilinx FPGA and CPLD family chips.
Block diagram of self-checking circuit that combines four pairs of TSC outputs into
a single pair error signal is sketched in Fig. 4.



76 T. Stanković, M. Stojčev, and G. Djordjević:

 

Z1
Z2
Z3
Z4
C1

Z5
Z6
Z7
Z8
C2

Z9
Z10
Z11
Z12
C3

Z13
Z14
Z15
Z16
C4

outputs

inputs
n

TSC4
parity

TSC3
parity

TSC2
parity

TSC1
parity

Functional
block

T
SC

 tw
o-

ra
il 

ch
ec

ke
r

w
ith

 fo
ur

 in
pu

t p
ai

rs


f2
g2

g3

g4

g1

f4

f3

f1

f

g

in
di

ca
tio

n
er

ro
r

Combinati-
onal logic

with
n-inputs

(x1,…, xn)
and

16-outputs
(z1,…, z16)

 &
4-central
check bits
(c1,…, c4)

Fig. 4. Self-checking circuits for 16-bit data plus 4 parity bits

6 Results

The goal of the synthesis procedure was to select the code that will require the least
area to implement self-checking principle at maximal operating frequency. The
area of the circuit is equal to the sum of the area of the original function logic, CED
logic, and checker. The area required by the original function logic depends on
how much logic sharing is possible. The area required by the CED logic depends
on the size of the checking function that must be implemented for each code. The
area required by the checker depends on how many checking groups there are.

We have applied our schemes on seven different combinational circuits with
standard architecture. All circuits are specified as two-level combinational logic
circuits. In Table 1, the information on various circuits are presented. It relates
to the case when all seven circuits of standard architecture are technology mapped
to Xilinx FPGA circuit XC2S100-5 as typical representative of Spartan 2 series,
and Xilinx CPLD circuit XCR3384XL-7-TQ144 as representative of CoolRunner
XPLA3CPLD series. Results, presented in Table 1, that relate to the CPLD circuit
are given in brackets.

We report on the results of the area overhead for all seven synthesized cir-
cuits in Table 1 with respect to the number of FPGA-slices/CPLD-macrocells, i.e.
#slc/#mcl, used to implement the required scheme. We want to emphasize here
the fact that, all the necessary checkers that are needed for the different schemes
are generated, and the area required to implement them are included in the data



On VHDL Synthesis of Self-Checking Two-Level Combinational Circuits 77

presented in Table 1. Details related to the speed of operation for all circuits of
standard architecture in a form of maximum delay (pad to pad (tPD) delay) for
both technology mapped variants are given in Table 1, also.

Table 1. Implementation of self-checking technique on FPGA XC2S100-5 device from Spartan2 and
CPLD XCR3384XL-7-TQ144 device from CoolRunner XPLA3CPLD family. Notice: orig - original
circuit; dup - duplication of function; Blin - Bose-Lin code; pov - single parity; pg2 - two-bit parity
group; pg4 - four-bit parity group.

circuit #slc(#mcl) Max. Delay Area Speed
[ns] Overhead (%) Decreasing (%)

orig 6(8) 11.545(13.6) 0(0) 0(0)
dup 19(19) 18.283(38.0) 216.7(137.5) 58.4(179.4)

BINBCD6 Blin 17(43) 18.322(38.0) 183.3(437.5) 58.7(179.4)
pov 9(12) 13.335(25.3) 50(50) 15.5(86)
pg2 18(18) 15.986(31.9) 200(125) 38.5(134.5)
pg4 13(39) 14.521(19.7) 116.7(387.5) 25.8(44.8)
orig 14(15) 15.469(31.9) 0(0) 0(0)
dup 37(33) 25.860(74.6) 164.3(120) 67.2(133.8)

BINBCD8 Blin 57(54) 31.607(110.7) 307.1(260) 104.3(247)
pov 30(33) 17.793(80.7) 114.3(120) 15(153)
pg2 35(37) 22.589(68.5) 150(146.7) 46(114.7)
pg4 32(36) 20.076(68.5) 128.6(140) 29.8(114.7)
orig 40(48) 22.327(68.5) 0(0) 0(0)
dup 96(90) 38.476(141.7) 140(87.5) 72.3(106.9)

BINBCD12 Blin 128(145) 40.483(165.6) 220(202.1) 81.3(141.8)
pov 87(100) 28.060(141.7) 117.5(108.3) 25.7(106.9)
pg2 93(88) 33.335(123.4) 132.5(83.3) 49.3(80.1)
pg4 88(101) 31.131(141.7) 120(110.4) 39.4(106.9)
orig 3(3) 11.267(7.5) 0(0) 0(0)
dup 9(7) 14.722(19.2) 200(133.3) 30.7(156)

COMPAR Blin 6(8) 13.516(24.8) 100(166.7) 20(230.7)
pov 4(5) 11.417(13.6) 33.3(66.7) 1.3(81.3)
pg2 6(5) 12.505(13.6) 100(66.7) 11(81.3)
pg4 - - - -
orig 5(8) 12.078(7.0) 0(0) 0(0)
dup 17(10) 19.131(13.1) 240(25) 58.4(87.1)

DEMUX38 Blin 21(14) 22.655(31.4) 320(75) 87.6(348.6)
pov 10(12) 14.922(25.3) 100(50) 23.5(261.4)
pg2 13(13) 16.971(19.2) 160(62.5) 40.5(174.3)
pg4 7(12) 15.285(19.2) 40(50) 26.5(174.3)
orig 66(26) 22.234(18.7) 0(0) 0(0)
dup 179(57) 43.667(62.4) 171.2(119.2) 96.4(233.7)

DIS18SG Blin 136(160) 41.910(98.0) 106.1(515.4) 88.5(424.1)
pov 165(94) 27.786(49.7) 150(261.5) 25(165.8)
pg2 124(99) 34.575(50.2) 87.9(280.8) 55.5(168.4)
pg4 107(92) 31.288(37.5) 62.1(253.8) 40.7(100.5)



78 T. Stanković, M. Stojčev, and G. Djordjević:

Table 1. continue

circuit #slc(#mcl) Max. Delay Area Speed
[ns] Overhead (%) Decreasing (%)

orig 14(10) 16.734(19.7) 0(0) 0(0)
dup 38(29) 21.759(38.0) 171.4(190) 30(92.9)

MULTIPL Blin 53(45) 25.342(68.5) 278.6(350) 51.4(247.7)
pov 32(33) 20.396(56.3) 128.6(230) 21.9(185.8)
pg2 33(37) 22.172(62.4) 135.7(270) 32.5(216.8)
pg4 40(33) 20.492(44.1) 185.7(230) 22.5(123.9)
orig - - 0(0) 0(0)
dup - - 186.2(116.1) 59.1(141.4)

AVERAGE Blin - - 216.4(286.7) 70.3(259.9)
pov - - 99.1(126.6) 18.3(148.6)
pg2 - - 138(147.9) 39(138.6)
pg4 - - 108.8(195.3) 30.8(110.8)

On the average, the duplication scheme needed 186.2(116.1)% area overhead,
the scheme with Bose-Lin code needed 216.4(286.7)% area overhead, and the
scheme with parity prediction needed 99.1(126.6)% for pov, 138(147.9)% for pg2,
and 108.8(195.3)% for pg4 of area overhead.

7 Conclusion

This paper describes a suitable approach for generating two-level combinational
circuits with concurrent error detection based on duplication of function, parity-
check codes and Bose-Lin codes. We describe an approach for insertion of con-
current error detection in synthesizable VHDL RTL description and then use a
commercial synthesis tool to generate the implementation into FPGA or CPLD
technology that allows easy tradeoff between overhead and fault coverage. An ad-
vantage of having a VHDL RTL description of the design is that it can be used for
fast RTL simulation, and it provides a high-level, easy to understand documenta-
tion of the design’s function. We insert the concurrent error detection circuitry at
the RTL level rather than at the gate level because insertion at the front-end of the
synthesis process has the following advantages:

a) The synthesis tool can take the error detection circuitry into account when
satisfying timing constraints (as well as other constraints on power, testabil-
ity, etc.)

b) Inserting the error detection circuitry at the RTL level can be easily and seam-
lessly incorporated into the standard flow.



On VHDL Synthesis of Self-Checking Two-Level Combinational Circuits 79

References

[1] M. J. Ashjaee and S. M. Reddy, “On totally self-checking checkers for separable
codes,” IEEE Trans. on Computers, vol. C-26, pp. 737–744, Aug. 1977.

[2] P. K. Lala, Self-checking and fault-tolerant digital system design. San Francisco:
Morgan Kaufman Publishers, 2001.

[3] N. Jha and S. J. Wang, “Design and synthesis of self-checking VLSI circuits,” IEEE
Trans. on CAD, vol. 12, pp. 878–887, June 1993.

[4] D. K. Pradhan and J. J. Stiffer, “Error correcting codes and self-checking circuits in
fault tolerant computers,” IEEE Computer, vol. 13, no. 3, pp. 27–37, Mar. 1980.

[5] J. E. Smith and G. Metze, “Strongly fault secure logic networks,” IEEE Trans. on
Computers, vol. C-27, pp. 491–499, June 1978.

[6] N. A. Touba and E. J. McCluskey, “Logic synthesis of multilevel circuits with con-
current error detection,” IEEE Transaction on CAD, vol. 16, pp. 783–789, 1977.

[7] K. De and et al., “RSYN: A system for automated synthesis of reliable multilevel
circuits,” IEEE Trans. on VLSI systems, vol. 2, pp. 186–195, June 1994.

[8] N. Jha, “Totaly self-checking checker design for Bose-Lin, Bose, and Blaum codes,”
IEEE Trans. on CAD, vol. 10, pp. 136–143, Jan. 1991.

[9] Y. Tohma, “Coding techniques in fault-tolerant, self-checking, and fail-safe circuits,”
in Fault-Tolerant Computing: Theory and Techniques, Volume 1, Pradhan, Ed. New
Jersey: Prentice-Hall, 1986, pp. 336–415.

[10] B. W. Johnson, Design and Analysis of Fault Tolerant Systems. Reading, MA, USA:
Addison Wesley, 1990.

[11] D. Das and N. A. Touba, “Synthesis of circuits with low-cost concurrent error detec-
tion based on Bose-Lin codes,” Journal on Electronic Testing: Theory and Applica-
tions (JETTA), vol. 15, pp. 145–155, Aug. 1999.

[12] N. A. Touba and E. McCluskey, “Logic synthesis techniques for reduced area im-
plementation of multilevel circuits with concurrent error detection,” in Proc. of
ACM/IEEE Int. Conference on Computer-Aided Design (ICCAD), San Jose, CA,
Nov. 1994, pp. 651–654.

[13] K. Mohanram et al., “A methodology for automated insertion of concurrent error
detection hardware in synthesizable Verilog RTL,” in Proc. of IEEE International
Symposium on Circuits and Systems, Scottsdale, Arizona, USA, 2002, pp. 577–580.

[14] J. C. Lo et al., “An SFS Berger check prediction ALU and its application to self-
checking processor designs,” IEEE Trans. on Computer Aided-Design, vol. 11, pp.
525–540, Apr. 1992.


