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On the Probability Stability of Discrete-Time Control
Systems

Zoran Jovanovi¢ and Bratislav Dankovié¢

Abstract: The problem of probability stability discrete-time control system is con-
sidered. A method for stability estimation of the arbitrary order systems is given.
Probability stability discrete-time control systems with random parameters are also
analyzed.
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1 Introduction

In chemical industry, plastic industry and especially in rubber industry, there are
many systems with stochastic parameters. For instance, processes with plasticity
and/or elasticity properties may have random parameters. A well-known fact is
that, the value of system parameters is determining the stability of the. In case of
the systems with determined parameters, the systems can be stable or unstable. In
case of the systems with random parameters, the systems can be stable, unstable or
stable with some probability. This paper deals with determined probability stability
of the system with random parameters. There are several modes of stochastic sta-
bility: stability of probability, stability of the K-th moment, almost certain stability,
Lyapunov average stability, exponential stability in the K-th moment, monotonic
entropy stability, asymptotic entropy stability etc. For all definitions of stochas-
tic stability it is necessary to for probability stability to be p = 1. Caughey and
Gray [1, 2] have determined almost certain stability of linear dynamic systems with
stochastic coefficients. Khasminski [3], Kozin [4, 5] and Pinsky [6] gave various
definitions and properties of stochastic stability of ordinary differential equations.
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Necessary and sufficient conditions guaranteeing the average square stability were
obtained by Sawaragi [7]. In researching stochastic stability of systems with ran-
dom parameters, we have also considered the systems with random time-varying
parameters by Gaussian distribution [8]. Stochastic stability of systems with ran-
dom imperfection is considered in [9, 10]. Probability stability estimation of the
linear systems with random parameters is considered in [11] for continuous sys-
tems, and in [12, 13] for discrete-time systems. In [14], the geometrical imperfec-
tion is interpreted as having spatially fluctuating structural properties with respect
to a perfect geometry. In [15], the failure probability of the systems has been con-
sidered. This probability is computed by integration of the probability density f (¥)
of random variable vector Y over the failure domain F [15]

py= [ 1. ()
F

In this paper we considered stability probability of the systems with imperfect
parameters. This probability is computed by integration of the probability density
of the random parameters over the stability domain S in the parametric space

mz/ﬂ@w- ®)
14

A method for calculation probability stability of discrete-time control systems is
given. In addition, for third order discrete-time control system is exactly deter-
mined probability stability. Formulas for estimated probability stability for arbi-
trary order discrete-time control systems are performed.

2 Determining of Probability Stability of the Control Systems

Let the mathematical model of discrete-time control system be given by difference
equation

iaix(k—i):u(k—n),aozl, 3)
i=0

or transfer function

Z—n

o ltaz 4 ta, 707D g,z

W (z)

The system stability (3) is determined by zero of characteristic equation

1 +az '+ +a, 7" Dgaz"=0. 4)
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Note that the coefficients of characteristic equation are random variables. In the
case when the parameters are constant system (3) is stable or not stable, depending
of the values of parameters. In the case when the parameters are random system (3)
may be stable with probability stability p. The aim of this paper is determining the
probability stability p. It is well known that the system (3) is stable, if all roots of
the equation (4) are located inside the unit circle. Using the bilinear transformation,

7= %{ , and after rearrangement, we obtain new equation

s+, " o5+, =0, (5)

where @; are functions of parameters a,a, ...,a,. For instance, in the case of the
second order system we have

1+az "' +a,72=0, (6)
and using z ! = (s+1)/(s — 1) we obtain
s*(14+a,+a,)+2s(1—a,)+1-a,+a, =0, (7)

then
Qo=1-a,—ay,, ¢ =2(1-a,), ¢@,=1-a,+a,. ®)
System (3) is stable if the all zeros of (5) are in the left half of s plane. It is well-

known that polynomial (5) has all zeros in the left half of s plane, if all diagonal
minors of D; determinant

(pn—l (pn—3 (pnfS 0
(p" (pn—Z (pn—4 0
0 (pn—l (pn—3 0
Dn = 0 Oy (pn_2 0 ) (9)
0o 0 0 y
are positive, i.e.
_ | Oy Pps
D =¢ >0, D,=| 1 %n3]50
1= P 2 ‘ O P,
(pnfl (pn73 (pn—S (10)
D2 — (p}’l (le*Z (pn74 > 0, e and Dn > 0.

0 (pn—l (pn—3

Stability region of the system (3) is determined by inequalities (10) in parametric
space. For the first order system stability region is given by

—1<a <1 (1D
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For the second order system stability region V, in the parametric plane a,, a, is

given by (8)
l—a,+a, >0,
I+a,+a, >0, (12)
a, <1,

as shown in Fig. 1. Using previous method, for the third order system and also

a, A

N
\ . /
-2 -\ /l 2 4
1

Fig. 1. Stability region - second order system.

using (10) we obtain stability region in the parametric space (al, ay, a3)
a,+a,+az>—1,
a,—a,+ay <1, (13)
ajaz+1>a, -I-ag.

The stability region V; in the parametric space (al, a,, a3) is given in Fig. 2.

Fig. 2. Stability region - third order system.

For the n-th order systems stability region is also determined by using inequalities
(10). Let multidimensional density probability parameters a,, a,, ..., a, be

f(a):f(alaaz""aan)- (14)
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Thus probability stability of the system (3) is

P:‘[.../f(al,...,an)dal...dan. (15)

In the case of the n-th order systems, determination of the stability region V,, is
very complicated. We can estimate the stability region of the system (3) using the
following theorems [12, 9].

Theorem 1 If
|lay |+ |as| + ..+ an| < 1, (16)

then all zeros of the polynomial (4) are located within the unit circle, i.e.
lz;| <1, i=12,...,n. a7

These are necessary but not sufficient conditions for stability of the system (3).

The region ‘a1| + |a2‘ +...4+]an| < 1 in n-th order parametric space is denoted
with V,,,.

Theorem 2 A Necessary condition for the polynomial (4), is to have all zeros of
the polynomial (4) located within the unit circle.

la| < (”) i=1,2,....n. (18)

l

Condition (18) is not sufficient, for the stability of the system (3).

The region (), i = 1,2,...,n in n-th order parametric space is denoted with V.
Using the Theorems 1 and 2 we obtain

V(m € Vn € Vpn- (19)
The probability stability for the n-th order system can be determined by

Do :Vf [ f(ay,...,an)da, ---day,,
ppZVf [ flay,-.yan)day - - - day, (20)
pn

Po <P < Pp,
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In case of the Gaussian probability density function

| (“*‘2)2
— 20+
fila;) = Vars C
: L ey ey
— i - i=1 29
f(a17a27-" an) zI:TIfL( i (\/ﬁ)"Hﬁ,e )

using (18) and (20) the probability stability can be determined by

Py~ (%)nﬁ{erf[(?@_ji] —erf[_%;ai] 3 (22)

i=1

where erf is the error function.
In the case of the uniform distribution

1
——, for a7 <a;<dqf
fi=q % 4% (23)
0, for af <a;<af
Using (18), (20) and (23) we obtain
ey = Dierlller + Ol =la = (=l + Ol lar =},

2Ty (af —ay)
Using (16), (20) and (23) we obtain

L(at +af+..+af —1)"+ ..+ (af +a5 +..+a; —1)"]

SR (0 —ap)
(25)
3 Examples
First order system is given by mathematical model
x((k+1)T)+ax(kT) = u(kT). (26)
For 7=1 characteristics polynomial is
z+a; =0, (27)

where stability domain is ‘al | < 1. Leta, is random parameter with Gaussian prob-
ability function (o = 1,a = 0.7)

fla) = e T, (28)
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Probability stability (20) is

1  (a-07)
p= Tﬂ:/e " da, = 0.573. (29)

See in Fig.3.

Fig. 3. Probability stability - first order system.

Let us compare our result with stochastic stability. Necessary condition for
stability of the system (26) is

oo

1+ Y E () <o (30)
k=1
For 6 =1, a; = 0.7 we obtain
E (a}) = 1.903, E(a) =4.851,  E(af) =18.497,
E (a}) = 92.915, E (al%) = 576.341,

E (a}?’) =4.455 x 107.

Thus system (26) is unstable. This is not in the contradictory with respect to
our result (29), because for stochastic stability it is necessary to be p=1. In our case
p=0.573 , i.e. the system maybe stable with probability stability p.

In the case of the uniform distribution

1
a) pra— for a7 <a, <af 1)
a)=43"1 "
0, for af <a, <a;

for a; and af > 0, probability stability is

1, for ay <a; <1
l—ay _ n
— for a <1<aj (32)

ap — 4

0, for 1<ay <af
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For stochastic stability in the case of the uniform distribution we have

L2k k4l
E (o) = "1 (33)
(2k+1) (a}L - al_)

it is obvious that the system (30) is stochastic stable when 0 < aj < a;r < 1 and
unstable when af > 1, that in accordance with (32).
The second order system is given by

x((k+2)T)+ax((k+1)T)+a,x(kT) = u(kT). (34)

For 7=1 characteristics polynomial is
z2+alz—|—a2 =0. (35)

Let a; and a, are random parameters with Gaussian probability density function
(0,=1,a,=0.7,0,=1, a,=0.7)

L[]

f (anaz) % (36)
Probability stability is
Latl i 07 (ay-07)
1 B B ) I
P=75- / / e }.dalda2:0.333 37)

—la,—1

See Fig. 4.

Let discrete-time control system where are a,, a,, a; random parameters with
Gaussian probability density function where: a, = 0.5, a, = 0.3, a; = 0.2 and
0,=04, 0,=0.2, 05=0.5.

Mathematical model of the given system is

x((k+3)T)+ax((k+2)T)+ax((k+1)T)+ax(kT) = u(kT). (33)
For T=1 characteristics polynomial is
24a? +azt+a; =0. (39)

Using (13) and (15) we obtain exact value for probability stability: p = 0.937.
Using (21), for n = 3 estimated probability stability P, is

e s B —a —() -4
N gn{erf[\/_TGi] —erf[TGi] 3 (40)

ie. P, ~0.948. Thus p < p,, that is expected result.
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Fig. 4. Probability stability - second order system.

4 Conclusion

A method for probability stability and reliability estimation discrete-time control
system with random parameters is presented. As we can see, the exact determina-
tion of probability stability is very difficult for the high order systems. The formu-
las, for estimation probability stability and reliability for high order discrete-time
system, are also given.
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