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Two Theorems on Controllability Preserving
Decomposition of Complex Symmetry Nonlinear Systems
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Gugulovska, and Georgi M. Dimirovski

Abstract: In this paper the problems on isomorphic decomposition and controllability
of a class of nonlinear systems possessing symmetries on basis of quotient systems is
studied. The isomorphic decomposition formations of these systems are drawn. Fi-
nally, it is shown that controllability of the original systems can be determined by
that of the subsystems, which are obtained through isomorphic decomposition. Corre-
sponding sufficient and necessary conditions in terms of two new theorems have been
derived.
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nonlinear systems.

1 Introduction

The differential geometric approach [1, 2, 3] to the study of general nonlinear and
other complex systems has enabled the discovery of entirely new insight into the
theory of systems and control [4, 5]. Since the seminal paper by Isidori and his co-
authors [6] appeared, the early works [7, 8, 9, 10] have paved the way in this field.
Following these discoveries, during the recent years, a remarkable progress has
been made [11, 12] in the study of systems possessing symmetries in the structure
[13] as well as of interconnected and complex systems [4, 5]. In general, general
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non-linear systems are extremely difficult to study compared to the linear ones be-
cause of the complexity of the system structure [13, 14, 15], and not surprisingly the
design is even much more difficult [5, 16, 17]. Hence a number of system-theoretic
analyses have been carried out and this line of research is continuing. By and large,
researchers have focused their attention on systems having somewhat special struc-
ture, and certain systems possessing symmetries and similarities just represent such
classes of systems. In fact, the symmetric structure is rather fundamental in physics
and engineering [2, 13], and it can bring about a great convenience for theoretical
studies as well as enhance their application. The approach via differential- geomet-
ric techniques has been successfully applied by a many scholars [6]-[12],[10, 17],
albeit beginning with the linear case first [12].

The concept of symmetry for general non-linear controlled systems was first
presented by Grizzle and Marcus [7] in 1985. They have dealt with some problems
on symmetric systems also including their local and global decompositions. Since
then studies in this area have been more expanded. The specific features of con-
trollability of systems possessing symmetries has hardly been studied in the past
couple of decades. Zhao and Zhang [15] first used the concept of general sym-
metry and discussed the problem of controllability. However, they did not include
into their study the controllability issue by system decomposition. The information
about subsystems was not therefore used to its full.

On the grounds of the results in [11, 15] and the general theoretical study by
Zhang [12], in this paper a concept referred to as solvable general symmetric sys-
tems is presented first and then exploited in the sequel for controllability preserving,
isomorphic decomposition. The relationship between isomorphic decomposition
and controllability has been investigated. It has been explored from the observation
angle of quotient systems and, in particular, studied from the viewpoint of feed-
back quotient systems. Corresponding sufficient and necessary conditions between
original and decomposed systems are derived via these two points of view.

2 Problem Statement and Relevant Mathematical Definitions

Consider the following complex system represented by the general model of non-
linear, controlled dynamic systems

ẋ � f
�
x � u � (1)

where x � M, u � U is a smooth manifold with n-dimensions, U is a manifold of
admissible controls of appropriate simension, and system function is differentiable
with respect to its variables. The system mapping and functions are assumed to
be smooth and related by commutative diagram in Figure 1; the latter property is
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prerequisite for system (1) to have a symmetry. In this paper, smooth will always
mean the class of functions C∞.
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�T M TM

M � U M � U

M M
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π π
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πM πM

ff

T Φg

Fig. 1. The commutative diagram of system mappings.

A left action (or G-action) of a connected Lie group G (with k-dimensions) on
is a smooth mapping Φ : G 
 M � M such that

(i) for all x � M, Φ
�
e � x � � x;

(ii) for each g � h � G � Φ
�
g � Φ �

h � x ��� � Φ
�
gh � x � for all x � M.

The other left-action is a smooth mapping θ : G 
 M 
 U � M 
 G,
�
g � x � u ����

θg
�
x � u ��� θ : G 
 M 
 U � M 
 U � � g � x � u ���� θg

�
x � u ��� Mapping Φ is free and

proper. So and M � G and Gx � � Φgx : g � G � are n � k-dimensional and k-
dimensional manifolds respectively. Suppose further that p : M � G � M admits
a cross section σ . Set R � 1 � � x � denotes a reachable collective (of system (1)) at point
x, and d0 � R � 1 � � σ � means that each x

� � σ � can reach d0.
Below the necessary the definitions and concepts [12] for dealing with system

decomposition problem, some compiled from the literature[7, 12] and some novel
ones introduced, are presented. Concepts such as manifolds, bundles, diffeomor-
phisms and distributions are not defined in the paper as they are now standard in
systems and control literature [6]-[12]; some of standard mathematical references
are [1, 3]. The following definitions (see Figure 1) are needed in here.

Definition 2.1 [7]: Let θ and Φ be actions of G on M 
 U and M respectively.
Then the system (1) has symmetry

�
G � θ � Φ � if the associated mappings satisfy the

commutative diagram for all g � G, where T Φg is the tangent map of Φg, π is a
smooth fiber bundle and πM is the natural projection of TM on M.

Definition 2.2 [7]
�
G � Φ � is a state-space symmetry of system (1) if

�
G � θ � Φ � is a

symmetry of system (1) for θg
� �

Φg � IDU � :
�
x � u ���� �

Φg
�
x ��� u � .
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Definition 2.3 [12]
�
G � Φ � q � is a general symmetry of system (1) if there exists a

smooth mapping q : G 
 U � U,
�
g � u ���� q

�
u � g � such that

�
Φg ��� f

�
x � u � � f

�
Φgx � q � u � g ��� (2)

Definition 2.4 [12] A smooth mapping q : G 
 U � U,
�
g � u ���� q

�
u � g � is solvable

if there exists u  � q � � u � g �!� U such that

q
�
u  � g � � u �#" u � U � g � G $ (3)

Definition 2.5 [12] System (1) is solvable general symmetry if
�
G � Φ � q � is general

symmetry of the system (1) and q is solvable.

Definition 2.6 The quotient system of the system (1) is the system

ẏ � f̃
�
y � u � � p � f

�
σ
�
y ��� u � (4)

defined on manifold M � G for u � U.

Definition 2.7 The feedback quotient system of the system (1) is the system

ẏ � f̃  � y � u � � p � f
�
σ
�
y ��� α �

σ
�
y ��� ν ��� (5)

which is defined on manifold M � G for all ν � V, σ
�
y �%� M, where u � α

�
σ
�
y ��� ν �

is feedback law and V is a permited control manifold.

3 Isomorphic Decomposition of Systems with Solvable General Sym-
metries

In this section, the concrete formations of isomorphic decomposition of systems
possessing solvable symmetries are given. The presentation begins with the fol-
lowing lemma.

Lemma 3.1 [11]: Assume that the system (1) is a general symmetry system. Then

(a) p
�
x
�
t ��� is an integral curve (starting at point p

�
x0 � ) of system (4) if x

�
t � is a

integral curve (starting at point x0) of system (1),

(b) there exists an integral curve x
�
t � (starting at point x0) of system (1) such that

y
�
t � � p

�
x
�
t ��� if is an integral curve (starting at point p

�
x0 � ) of system (4).

Using this lemma, it is possible to derive and prove the following main concluding
result.
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Theorem 3.1 Suppose system (1) is a control system with general symmetry�
G � Φ � q � , Φ is free and proper, q is solvable, and p : M � M � G admits a cross

section σ . Then system (1) is isomorphic to the system

ẏ � f̃
�
y
�
t ��� u  � t ��� � p � f

�
σ
�
y
�
t ����� u  � t ��� �

6a �
ġ
�
t � � �

TeLg � t � � � TeΦ̃σ � y � ��& 1 � f � σ �
y
�
t ����� u  � t ���'� �

Ty � t � σ � f
�
σ
�
y
�
t ����� u  � t ����� �

6b �
where u  � q � � u � g � . The proof is given in the Appendix.

Theorem 3.1 shows that systems possessing solvable general symmetries, under
certain conditions, can be isomorphic to two subsystems. So, it is natural one to
question what a relationship there may exist between the former and later system
structures. It is this idea precisely that has led us to the result presented in the
subsequent section.

4 Controllability of Systems with Solvable General Symmetries

This section deals with controllability of this class of systems with the symmetry
property as mentioned above. First the following lemma is introduced.

Lemma 4.1 [11]: Φgst
�
x � u � is a integral curve (starting at Φgx) of system (1)

corresponding to control q
�
u � g � , that is, Φgst

�
x � u � � st

�
Φgx � q � u � g ��� if st

�
x � u � is a

integral curve (starting at x) of the system (1) corresponding to control u
�
t � .

The next main result of this paper, given in terms of the Theorem 4.1, follows
from the discussion insofar and the necessity part of its proof follows from Theorem
3.1 above.

Theorem 4.1 Suppose that the system (1) has general symmetry
�
G � Φ � q � , Φ is free

and proper, q is solvable, and p : M � M � G admits a cross section σ . Hence x0
� �

M � is changed into q0, y0 through isomorphic decomposition. Further, suppose that
the system (1) is weakly controllable on σ . Then by means of set gσ � � Φ �

g � x � :
x � G � , g � G one can obtain that sufficient and necessary conditions of the system
(1) being globally controllable at point x0 are determined by:

(a) subsystem (6 a) is globally controllable at point y0;

(b) subsystem (6 b) is globally controllable at point g0.

The proof is given in the Appendix.
On the grounds of Theorem 4.1 (under certain conditions stated and described

in the presentation above) it is possible to decompose the original system into two,
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and by repeated decomposition thereafter each of them can be further decomposed
provided the conditions of this theorem are still satisfied. The respective subsys-
tem dimensions are decreased accordingly while the controllability property of the
original system remains preserved.

5 Conclusion

In this paper, the original system has been decomposed through quotient system
and feedback quotient system. Each of two ways has its own advantages and dis-
advantages. For example, when it is very difficult for one to find an appropriate
feedback law, one may decompose the original system through quotient system
such as solvable general symmetry systems.

It has been shown that complex non-linear control systems possessing gen-
eral symmetries, under technical conditions of smooth mappings, do admit iso-
morphic decompositions in terms of lower dimensional subsystems and feedback
loops. Furthermore, controllability between the original system and the subsys-
tems is equivalent under certain conditions. Therefore, this can be exploited further
when analyzing the controllability of complex non-linear systems and using their
decomposed form in terms of symmetric subsystems.
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Appendix

Proof of Theorem 3.1

Note σ
�
y � is uniquely determined by y because Φ is free and proper and p : M �

M � G admits a cross section σ . So, p � f
�
σ
�
y
�
t ����� u  � t ��� is unique tangent vector of

system (6 a) at point y
� � M � G � and system (6 a) is uniquely defined. Next recall

Lemma 3.1 and consider the following statement [A].
Statement [A]: Let x0 � M, u

�
t � be a continuous time function, x

�
t � the integral

curve of system (1) corresponding to u
�
t � . Then y

�
t � � p

�
x
�
t ��� is the corresponding

integral curve of system (6 a) having y
�
0 � � p

�
x
�
0 ��� .

Let, according to p : M � M � G admitting a cross section σ , define a differen-
tiable curve d

�
t �(� M by means of d

�
t � � σ

�
y
�
t ��� . Since p

�
d
�
t ��� � p

�
x
�
t ��� and Φ
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is free and proper, one can write x
�
t � � Φg � t � � d � t ��� for a uniquely defined differen-

tiable curve g
�
t � � � G.

Proof of Statement [A]: Since system (1) has general symmetry
�
G � Φ � q � , q is

solvable, and x
�
t � is the integral curve of system (1) corresponding to u

�
t � . Noting

that x
�
t � and σ

�
p
�
x ��� have the same orbit, one can get

ẏ
�
t � � p � f

�
x
�
t ��� u � t ���� p � f

�
Φg � t � σ �

p
�
x
�
t ������� u � t ���

� p � f
�
Φg � t � σ �

p
�
x
�
t ������� q � u  � t ��� g � t �����

that is,
ẏ
�
t � � p � � Φg � t � ��� f

�
σ
�
p
�
x
�
t ������� u  � t ���

� � p ) Φg � t � � � f
�
σ
�
p
�
x
�
t ������� u  � t ���

� p � f
�
σ
�
p
�
x
�
t ������� u  � t ���� p � f

�
σ
�
y
�
t ����� u  � t ���

where u  � q � � u � t ��� g � t ��� . The goal now is to find a differential equation for g
�
t � .

By means of the chain rule of differentiation, one can find

f
�
x
�
t ��� u � t ��� � ẋ � d

dt
Φ
�
g
�
t ��� d � t ���

� Td � t � Φg � t � ḋ � t �+* Tg � t � Φd � t � ġ � t ��$
(7)

The next step is to rewrite the second term. Note that ġ
�
t �,� Tg � t � G. Let ξg � TgG

and denote by ξ � TgLg - 1

�
ξg ��� TeG, where Lh is the left translation operator on G.

Then, for a given point m � M, it follows

TgΦm
�
ξg � � � TgΦm � � TeLg � � ξ � � Te

�
Φm ) Lg � � ξ �� Te

�
Φg ) Φm � � ξ � � �

TmΦg � � TeΦm � � ξ � (8)

But, it is also valid

TeΦm
�
ξ � � d

dt
Φm

�
etξ �/.. t 0 0

� ξM
�
m � (9)

the infinitesimal generator of Φ corresponding to ξ . Hence,

TgΦm
�
ξg � � TmΦg

�
ξM

�
m ��� � TmΦg

���
TgLg - 1 � M �

m ��� (10)

and substitution of (10) into (7) gives

f
�
x
�
t ����� u � t ��� � Td � t � Φg � t � ḋ � t �+* Td � t � Φg � t � � Tg � t � Lg - 1 � t � ġ � t ��� M �

d
�
x ��� (11)
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Therefore q being solvable gives

f
�
x
�
t ��� u � t ��� � f

�
x
�
t ��� q � u  � t ��� g � t ����� (12)

which satisfies
u  � t � � q � � u � t ��� g � t ����$ (13)

Thus, the use of (12) in (11) will result in

f
�
x
�
t ��� q � u  � t ��� g � t ����� � Td � t � Φg � t � ḋ � t �1* Td � t � Φg � t � � Tg � t � Lg - 1 � t � ġ � t ��� M �

d
�
x ����$ (14)

System (1) having general symmetry
�
G � Φ � q � gives

TmΦg f
�
m � u  � t ��� � f

�
Φg

�
m ��� q � u  � t ��� g � t ������� (15)

by substituting (15) into (14). Meanwhile by replacing m in d
�
t � one obtains

Td � t � Φg � t � f
�
d
�
t ��� u � t ��� � Td � t � Φg � t � ḋ � t �+* Td � t � Φg � t � � Tg � t � Lg - 1 � t � ġ � t � M �

d
�
t ����� (16)

since Φg : M � M is a diffeomorphism for all g � G and Td � t � Φg � t � is non-singular.
Hence,

f
�
d
�
t ��� u  � t ��� � ḋ

�
t �1* �

Tg � t � Lg - 1 � t � ġ � t ��� M �
d
�
t ����$ (17)

Now, let it be set
ξM

�
d
�
t ��� � �

Tg � t � Lg - 1 � t � ġ � t ��� M �
d
�
t ��� (18)

From (17),
ξM

�
d
�
t ��� � f

�
d
�
t ��� u  � t ���2� ḋ

�
t � (19)

Thus, by applying (9), one obtains

TeΦd � t � � ξ � t ��� � ξM
�
d
�
t ���+* Td � t � Φg � t � � Tg � t � Lg - 1 � t � ġ � t ��� M �

d
�
t ��� (20)

Φ being free and proper implies that Φm : G � M is a diffeomorphism onto its
range. Hence, (20) can be solved uniquely for ξ

�
t � to give

ξ
�
t � � �

TeΦ̃d � t � � & 1ξM
�
d
�
T ��� (21)

or
Tg � t � Lg - 1 � t � ġ � t � � �

TeΦ̃ � d � t � ��& 1ξM
�
d
�
T ��� (22)

where Φ̃m : G � Gm by g �� Φ
�
g � m � . Hence since Lg is a diffeomorphism for all

g.

ġ
�
t � � �

TeLg � t � � � TeΦ̃σ � y � t �3� � & 1 4 f � σ �
y
�
t ����� u  � t ���'� �

Ty � t � σ � f̃
�
y
�
t ��� u  � t ���657$ (23)

Finally, using the fact that d
�
t � � σ

�
y
�
t ��� , one gets

ġ
�
t � � �

TeLg � t � � � TeΦ̃σ � y � t �3� � & 1 4 f � d � t ����� u  � t ���'� �
Ty � t � σ � f̃

�
y
�
t ��� u  � t ���657$ (24)

and substitution of (13) and (6a) into (24) gives (6b). And along with Lemma 3.1
to this end, both the necessity and sufficiency of Theorem 3.1 have been proved
compltely.
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Proof of Theorem 4.1

Since system (1) has general symmetry, q is solvable, and p : � M � G admits a cross
section σ , it is apparent that system (1) is isomorphic to system (1) in Theorem 3.1.
Hence the respective conditions apply.

The necessity of Theorem 4.1: Proof of necessity is obvious since it is clearly
seen from its statement and from the above point.

Prior to completion of the proof of sufficiency, let us point out the next state-
ment.

Statement [B]: System (1) is weakly controllable on σg, " g � G, that is x1 �
R � 1 � � gσ � , and x2 � R � 1 � � x1 � � " x1 � x2 � gσ ).

Proof of Statement [B]: For " x2 � gσ , there exists x   8� σ such that x2
� Φgx   .

Set x1
� Φg

�
x  � for x  � σ . Since x  � R � 1 � � σ � , hence x  � R � 1 � � x   � . From Lemma

4.1, one can easily get x1
� Φg

�
x  3��� R � 1 � Φg

�
x   9� � R � 1 � � x2 � . For x2 � gσ is at will,

we have x1 � R � 1 � � gσ � . The reasons of x2 � R � 1 � � " x1 � x2 � gσ � is similar. Hence,
system (1) is weakly controllable on gσ .

The sufficiency of Theorem 4.1: Let set z � M and z :� g0σ (if z � g0σ , one
can easily have z � R � 1 � � x0 � from the conclusion having been proved just now).
According to the condition (a) of Theorem 3.1, there exists a integral curve y

�
t �

(starting at y0) of system (6a) such that y
�
t1 � � p

�
z � . And then from Lemma

3.1, there exists a integral curve x
�
t � (starting at x0) of the system (1) such that

p
�
x
�
t1 ��� � y

�
t1 � � p

�
z � . It is not difficult for one to find that x

�
t1 � and z lie on the

same orbit. Therefore, there exists g � G satisfying z � Φg
�
x
�
t1 ��� . From Lemma

4.1, one can get z � Φg
�
x
�
t1 ���%� R � 1 � � Φg

�
x0 � .

Let g � gg0. From the condition (b) of Theorem 4.1, there at least exists a point
x � � x � gσ ��� R � 1 � � x0 � (note, otherwise, for " x � g0σ can not reach x1

� " x1 � gσ )
since the system (1) is weakly controllable on g0σ and gσ ). And, then one draws
a contradictory conclusion that system (6 b) can not satisfy g being reachable for
g0. x � can obviously be expressed as x � � Φg

�
x  3� � Φgg0

�
x  ;� � Φg

�
Φg0

�
x  3��� � x  <�

σ � . Since system (1) is weakly controllable for x0 on g0σ , we easily know x0 �
R � 1 � � Φg0

�
x  ��� . And then we have Φg � R � 1 � � Φg

�
Φg0

�
x  ����� � R � 1 � � x � � from Lemma

4.1. Hence z � Φg
�
x
�
t1 ����� R � 1 � � Φg

�
x0 � . Finally, we obtain that the system (1) is

globally controllable at point x0 according to z
� � M � being at will.
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