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Homoclinic and Heteroclinic Bifurcations in a
Two-Dimensional Endomorphism

Ilham Djellit and Mohamed R. Ferchichi

Abstract: Our study concerns global bifurcations occuring in noninvertible
maps, it consists to show that there exists a link between contact bifurcations
of a chaotic attractor and homoclinic bifurcations of a saddle point or a saddle
cycle being on the boundary of the chaotic attractor. We provide specific infor-
mation about the intricate dynamics near such points. We study particularly
a two-dimensional endomorphism of (Z; — Z3 — Z1) type. We will show that
points of contact, between boundary of the attractor and its basin of attrac-
tion, converge toward the saddle point or the saddle cycle. These points of
contact are also points of intersection between the stable and unstable invari-
ant manifolds. This gives rise to the birth of homoclinic orbits (homoclinic
bifurcations).

Keywords: Signal processing, homoclinic points, critical curves, bifurcations
in endomorphisms, chaos.

1 Introduction

The critical curve notion is an important mathematical tool used to study
bifurcations, that take place in invariant areas of two-dimensional endo-
morphisms, for either invariant absorbing areas or chaotic areas. To our
knowledge the notion of critical curve was first introduced in 1964 by Mira
[5] who provides an entry into certain areas of current research on nonin-
vertible maps and the role of such curve in bifurcations basin. It is a natural
generalization in TR? of the notion of critical points of one-dimensional en-
domorphisms. We define the critical curve LC of an endomorphism T in
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the plane TR? (in means of Mira [5]) as the geometrical locus of points
having at least two coincident preimages of first rank. One determines this
locus denoted by LC 1, when T is differentiable, by taking the Jacobian of
T equal to zero (J = det(DT'(z,y)) = 0). A critical line LC is constitute of
one or several branches. These branches separate the plane in open regions,
where all points of a region have the same number of first rank antecedents.

Since several papers have shown the importance of critical curves in
the bifurcations of transition type ” simply connected basin<>nonconnected
basin” as Gumowski and Mira [6] who have developped the role of critical
curves in bifurcations, Barugola and Cathala [2,3] and Gardini [4] have stud-
ied bifurcations of type ” simply connected basin<>multiply connected basin”.
These basic bifurcations result from the contact of a basin boundary with a
critical curve segment of an attracting set, such a bifurcation leads either to
the chaotic area destruction, or a sudden and important modification of the
area. Many of chaotic motions that are observed in dynamical systems are
intimately associated with the presence of transversal homoclinic points of
maps. Contact bifurcations may correspond to homoclinic and heteroclinic
bifurcations , and critical curves are useful for interpreting such problems.
Bifurcations by homoclinic and heteroclinic contact have been presented in
[6,7] for the one-dimensional case, in [4,5] it is proved that some contact
bifurcations correspond to homoclinic bifurcations in the case involving a
repelling node or focus and other examples of homoclinic orbits of saddles.

It is worth noting that the results presented in this paper were essentially
obtained via a numerical way and using the critical curve tool. Unfortunately
taking into account the complexity of the matter and its nature and unrav-
eling the dynamics of specific equations often turns out to be analytically
insurmountable, it seems then difficult to carry out the study with success
from another process.

2 Definitions and Fundamental Properties

In this paragraph, we give the main definitions and properties in report with
some technical terms as absorbing area, chaotic area, contact and homoclinic
bifurcations .

The endomorphism 7' considered here defines a discrete dynamical sys-
tem in R?

($n+17 yn—|—1) = T(-Tnayn) = (f(wn,yn;)\),g(wn,yn;k))
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where f(z,y, ) et g(z,y, ) are continuous and differentiable functions with
respect to real variables x, y and continuous with respect to the real param-
eter .

Definition 2.1: An absorbing area F is a closed and bounded subset as:
() T(F) C F
(ii) its frontier, OF is made up of a finite or infinite number of critical

arcs of LC, LCy, LC,, ..., LCy, such that LC = T(LC_,); LC; = T*(LCO)
for s > 1.

(iii) A neighborhood U(FE) exists, such that preimages of finite rank of
its points are in interior of E ( all points of U enter into E after a finite
number of iterations and cannot get away after entering).

An absorbing area may contain an attracting set.

Definition 2.2: A chaotic area A, is an invariant absorbing area (T(A) =
A)), the points of which give rise to iterated sequences having the property
of sensitivity to initial conditions.

About chaotic areas, it is important to emphasise that te study of such
area has only the purpose to obtain properties giving rise to fractal basin
boundaries.

Definition 2.3: We say that A = A\* is a bifurcation of contact of F, if
a contact between the frontier of F and the frontier its basin of attraction
takes place.

Proposition 2.1: When a bifurcation of contact of a chaotic area A arises
for a value X = X*, the crossing of this value leads to the destruction of
A,either to a qualitative modification of properties of A (i.e. a sudden and
important modification of the size of such an area or its basin of attraction).

The destruction of A, after the crossing of the bifurcation value has
been demonstrated by Gumowski and Mira [6]. The qualitative change of
properties of A has been described by Barugola and al [1].

Definition 2.4: Let S be a saddle fixed point of T' ; a ¢ point is called
homocline to S, so ¢ € W?*(S) N W*(S) and ¢ # S. ¢ is a transversal
homocline point, so W*(S) intersects transversally W*(S).

Definition 2.5: One calls homoclinic orbit O,(q) associated with g, q be-
longing to a U(S) of S, a set constituted of successive iterates of ¢, and its
infinite sequence of preimages obtained by application of the local inverse
map TlflofT in U(S).

Oo(q) = {,-Tl_n(q)aann(q)vn > O} = {"'aQ—na'--aq—Qaq—laQa q17q27"'aQ727"'}
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where ¢, = T"(q) — S, and ¢, =T} "(q) — S.

Definition 2.6: One calls heteroclinic orbit &(g) connecting S to S associ-
ated with g,the one given by ¢ together with its finite orbit and its infinite
sequence of preimages obtained by application of the local inverse map Tl_lof

T in U(S).

e(q) = {T;7™9), ¢, T"(@);n >0} = {oi;qon; 1 4-2,4-1,4: 41,42, -+ Gy -}
where g, =T"(q) = S', and ¢_p, =T "(q) = S.

Remark: There is an infinity of homoclinic orbits associated to a homo-
cline point. They have the half positive trajectory, but differ by their half
negative trajectory. A homoclinic or heteroclinic orbit is called degenerate
if it contains one point of J and nondegenerate otherwise.

Definition 2.7: Let T be an endomorphism of IR? depending on a pa-
rameter A and let S be a saddle point of T. A homoclinic bifurcation takes
place, if for a value A\ = X\*, there is apparition (or disappearance) of an
infinity of homoclinic orbits.

Overlapping of global stable and unstable manifolds usually leads to nonlocal
bifurcations. The existence of a transversal point of a planar map leads to
very complicated behavior of orbits nearby. Such dynamical complexity is
often dubbed as chaos, the onset of chaos typically occurs at the parameters
values for which the stable and unstable manifolds of a saddle point come
into contact tangentially.

And we have then the

Theorem 2.1 [5]: Let S be a fized point of a map T , T(S) = S. Let
q be a point homoclinic to S, q € U(S), U(S) being a neighborhood of S
such that all the eigenvalues of DT (x) are greater than 1 in absolute value,
Vo € U(S) and T(U(S)) D U(S). If Oo(q) is noncritical (g; € J\LC_1 for
some 1 < j < (m—1)) then:

(a) a set A invariant by T™ , for a suitable positive integer m , exists. A

has a Cantor-like stucture and contains cycles of T™ of any period p,p > 1;

(b) for any i > 1, a set A invariant by T™* ezists, it has a Cantor-like
stucture and contains cycles of T™ " of any period p,p > 1;

(c) if Oy(q) is nondegenerate homoclinic orbit, then A is a repelling set
( there ezists an integer N,N > 1,such that absJ > 1 for any x € A and
any n > N).

Proof: it follows from a construction process using invariance and that all
eigenvalues of DT'(x) are greater than 1 in absolute value.
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Remark: The same role of a homoclinic orbit is also played by a hetero-
clinic cycle between two fixed points S and S’. That is, results similar to
those stated in Theorem 2.1 for a homoclinic orbit of S, can be stated for a
heteroclinic cycle, degenerate or nondegenerate.

3 Basin Bifurcations

These bifurcations essentially correspond to an interaction of stable manifold
associated with a saddle point or a saddle cycle (they generally constitute
the boundary of the basin of attraction of an area or a chaotic attractor)
with the critical Lines (which constitute the boundary of the area or the
chaotic attractor).

In this section we consider two-dimensional endomorphisms T' : TR? —
IR?, of which the LC is constituted of two distinct branches, separates
the phase plane in three open regions Zi, Z3 and Z2. Zj is the place of
points having three preimages of distinct first rank, Z{ et Z? the one of
points having only one antecedent. These applications are called of type
VA AR AR

We denote respectively, by Dy and D immediate basin of attraction and
total attraction basin of an attractor. The region not containing the attractor
is called an island. It is interesting to know when basins are connected or
nonconnected. The creation of holes inside the basin is considered as a
bifurcation, that means a qualitative change in the system behavior. This
can be explained on the basis of the critical curves properties and it is the
same for the chaotic attractors and their bifurcations.

Proposition 3.1: Consider an endomorphism T depending on a parameter
A. If the connected components number of DN LC changes when A crosses
bifurcation value X*, then the basin D may undergo a qualitative change of
one of the following types:

(a) connected basin <> non connected basin (when the number of con-
nected components of Do N LC changes).

(b) simply connected basin<> multiply connected basin (when the number
of connected components of Dy N LC changes).

(¢) modification of the number of lakes in D, or new arborescent sequence
of islands.

(d) destruction of a chaotic area.

Remark: Combined situations of (a) and (b) lead to a nonconnected total
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basin D and each of its connected components is multiply connected. That
is, according to terminology of Mira [6], islands and lakes into islands.

4 Properties of W*(S) and W*(S)

1- In the case of a diffeomorphism, the stable invariant manifold W?*(S) of
a saddle point S remains connected ; what is not true when one has an en-
domorphism. Indeed W*(S) constitutes in general the frontier of the basin
of attraction of an associated attractor A. When W*(S) enters in contact
with the critical line LC, W*(S) becomes nonconnected and each of its con-
nected components approaches again itself to constitute the frontier of an
island. It transforms the connected attraction basin in nonconnected basin.
Due also to crossing of the invariant closed curve basin through LC, holes
appear inside the basin, which becomes multiply connected. All these phe-
nomena generate a very big sensitivity to initial conditions, due principally
to multistability, interconnection between basins and fractalization of basins.

2— When unstable invariant manifold W*(S) enters in contact with the
critical curve LC, a bifurcation making appear self-intersections of this mani-
fold takes place. These self-intersections are responsible notably of the trans-
formation of a closed invariant curve I" in a chaotic attractor. Indeed, a point
of self-intersection of the curve is a point of non differentiability. By succes-
sive iterations of T', one will have an infinity of points of self-intersections,
from points of non differentiability, what means that I' becomes fractal. Its
Liapounov dimension will be then superior to 1, what first generates an
annular chaotic area, and a chaotic attractor.

5 Example of a Cubic Recurrence Having a Chaotic Attrac-
tor

Consider the cubic map T defined by

Tn+1 :-I?L‘I‘amn +b+yn
Ynt+1 = €Ty + dyy

where a, b, ¢, d are real parameters. This endomorphism is of type Z; —
Z3 — Zy, whose critical curves LC_q, LC" |, LC, LC' are given here by
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and

with

c a+1 c a+1
LO.y: m=+)— - LO' o=y —
(Cl T=Hygg T3 e 34 3 )

LC: y=dz—dx}— (ad+d—c)zo—db
LC': y=da+ dzl+ (ad+d—c)zy —db

_ i_a—l—l
0=\V3d "3

Despite the simplicity of the map, the concept is central to our interest
and subject.

For fixed parameter values, we plot the attraction basin of an attractor.
When there exist several attracting sets, it is possible to define a global
basin, that means the set of initial conditions giving rise to bounded iterated
sequences, independently of the fact that the converge to one attractor or
another.

I) First let us fix parameters a, b, ¢ at some real values and we vary the
parameter d. For the values a = —1, b = 1, ¢ = —0.9 and d varying in the
decreasing sense, one has the following situations:

1. For d = —0.35 (Fig.1), the attractor is an attractive invariant closed

curve (CFIs); which results from a Neimark - Hopf bifurcation. The
connected component (the island) Hj of basin of attraction has no
contact with the branch LC'; it is completely in the region Zj.

. For d = —0.36 (Fig.2), the island Hy has a contact with LC" and enters

in the region Z3. This gives rise to a birth of an island H_; and to an
arborescent sequence of islands.

. For d = —0.47 (Fig.3), the attractor remains CFIs. This one is more

and more near the branch LC.

. Pour d = —0.48 (Fig.4), The CFIs degenerates after a contact with

the branch LC. The attractor becomes a set of points of dimension
zero. On the Figure 5, one sees that the degeneration takes place
when W*(S) touchs LC. This contact gives, after bifurcation, self-
intersections of W*(S), which will transform the CFIs in a chaotic
attractor, the size of which increases, until there is a contact between
the curve and a part of its basin.
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Fig. 3. Contact bifurcation of the attractor Fig. 4. Attractor of dimension zero.
with the critical curve.
II- In the following one will fix ¢ = —1.003, to visualize better our
figures.
5. For d = —0.76 (Fig.6), we can see the presence of a chaotic attractor,

of which the dimension of Liapounov Dy, is equal to 1.52. Its boundary
doesn’t have a contact with the boundary of its attraction basin. It
results the

Proposition 5.1 : A cascade of bifurcations flip of cycles of order 2°.3
oceurs.

d decreases, the period-3 orbit undergoes a period doubling bifurcation
(see Fig.9) and gives up its stability and there is a sequence of period
doubling bifurcations. Remarkably the ratio of the distances between
these successive period doubling bifurcations again approaches. The
Figure 9 gives the parameter value for which at least one fixed point is
attractive (blue domain corresponding to the value 1). More generally,
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Fig. 5. The closed curve become chaotic. Fig. 6. Chaotic attractor.

the Figure 9 gives the regions of parameter (a,d) plane for which at
least a periodic orbit of order k exists (kK = 1,2,...,14). The black
regions (k = 15) corresponds to the existence of bounded iterated
sequences. This figures is typical of maps with dominating cubic terms,
analogous bifurcation diagrams have already been obtained for systems
with non linearity given by hyperbolic tangency [3, 4].We can recognize
on the diagram period doubling bifurcation, there exist several ways
in which a dynamical system can become chaotic, of which the period-
doubling route to chaos is the best known and identified here. The
bifurcation structure is a cubic ” box-within-a-box ” type, as is well
known infinitely many periodic are opened by fold bifurcations and are
closed by homoclinic bifurcations by the intriguing ” box-within-a-box
”? bifurcation structure. When chaotic motion appears as the result of a
finite or infinite number of bifurcations, where some periodic regimes
loss their stability, the final chaotic attractor has a close relation to
stable and unstable manifolds. Geometrically, it is easy to imagine that
at least one branch of unstable manifold will approach the attractor,
while the stable manifold traced backwards, will outline the boundary
of the basin of attraction.

6. For d = —0.8 (Fig. 7), The chaotic attractor has a contact with the
boundary of its basin of attraction ; it is a contact bifurcation. These
points of contact are also homoclinic points, since they are points of
contact between W*(S) and W*(S) ; and then we are in presence of a
homolinic bifurcation. Dy, = 1.72.

7. For d = —1.498 (Fig.8), The chaotic attractor becomes larger, since
Dy, = 2 and below this value of d the attractor disappears.
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Fig. 7. Contact bifurcation of the chaotic  Fig. 8. Granulated attractor and tongues
attractor with its basin boundary. appear on the bassin boundary.
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Fig. 9. Global view of the parameter plane
(a,d) organisation.

The crossing of the bifurcation value d = —1.5 leads to a destruction of
the chaotic attractor and the disappearing of its basin, complex homoclinic
situations have before occured leading to a granulated basin corresponding
to the presence of infinitely many sequences of homoclinic and heteroclinic
points. Between these two values of d (d = —1.498, d = —1.5) the basin
undergoes successive bifurcations creating more of holes. These complex
phenomena arise in very small regions of parameter variations.

References

[1] A. Barugola, J. C. Cathala, C. Mira, Annular chaotic areas Nonlinear Anal-
ysis TM & A. 10(11), 1968, pp. 1223-1236.

[2] A. Barugola, and J. C. Cathala, An extension of the notion of chaotic area
in two-dimensional endomorphisms. In Proc. of European conference on It-



Homoclinic and Heteroclinic Bifurcations in ... 283

eration Theory ECIT, Batschuns, Austria, Sept. 1992.

J. C. Cathala, Multiconnected chaotic areas in second order endomorphisms.
In Proc. of Int. J. Syst. Sci., 21(5), 1990, pp. 863-887.

L. Gardini, On the global bifurcation of two-dimensional endomorphisms by
use of critical lines. Nonlinear Analysis TM & A., 18(4), 1991, pp. 361-399.
L. Gardini, Homoclinic bifurcations in n-dimensional endomorphisms,due to
expansing period points. Nonlinear Analysis TM & A., 23(8), 1994, pp. 1039-
1089.

I. Gumowski, and C. Mira, Dynamique Chaotique (Ed. Cépadues, Toulouse)
18, 1980.

C. Mira and D. Fournier-Prunaret, Bassin bifurcations of two-dimensional
noninvertible maps: fractalization of basins. Int Jour of bifurcations and
chaos, Vol. 4, No. 2, 1994, pp. 343-381.



