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A Simplified Linearized Dinamic Model for
Voltage Collapse Assessment in Power Systems

Dragan Tasi¢ and Miodrag Stojanovié

Abstract: A simplified linearized dynamic model for fast assessment of volt-
age collapse is developed in this paper. The simplification was made under as-
sumption that the voltages at generator nodes are constant, which means that
only power changes at load nodes are considered in analysis. Dimensions of the
state matrix, which eigenvalues are used for voltage collapse assessment, de-
crease under this assumption. Appropriate transformations of linearized state
matrix prove that knowledge of values of the dynamical load change time con-
stants is not required for this model.
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1 Introduction

Analysis of faults caused by voltage collapse, and its consequences, pointed
out this phenomenon is very complex and influenced by many factors. Be-
cause of complexity, for a long time this phenomenon occupies interest of
researchers, what verify a number of published papers. Different approaches
are used in voltage collapse researches, depending on: emphasized factors,
used models of components, and introduced simplifications. In general, all
approaches for analysis of voltage collapse and voltage (in)stability can be
classified into two basic groups: static and dynamic.

Linearized models are often used in both static [1,2,5,6] and dynamic
[1,2,7-10] approaches. Eigenvalues of related linearized matrix are then used
for voltage collapse presence indication.
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A simplified linearized dynamic model for voltage collapse assessment is
formed in this paper. This model is obtained under assumption that voltages
at generator nodes are constant. It means that only power changes at load
nodes can be considered in analysis. Starting from this model, the voltage
collapse is assessed by the eigenvalues of linearized state matrix. Sizes of
this matrix are equal to the total number of load nodes.

2 Dynamic of power change at load nodes

The system under consideration has m generator and n load nodes. Dynamic
of load changes at the i-th node can be expressed by following two differential
equations [8,10]

= (P fri (V) )
dQri
Ui Qui— Sl ©

where Pr; is active load at i-th node, QQr; reactive load at i-th node, T;
dynamical load change time constant at i-th node, fp;(V;) dependence of
the active load at i-th node as a function of the voltage V;, and fqg:(V;)
dependence of the reactive load at i-th node as a function of the voltage V;.

Time constant T; depends on the load structure. Major factor that influ-
ences on this value is time constant of asynchronous machine, which repre-
sents loads in proposed model. Value of T; also depends on time constant of
tap changing transformer regulator, if it is presented at load node. Determi-
nation of the time constant T; is very complex problem for each particular
case. Proposed approach does not require knowledge of time constants values
T; , which can be considered as an advantage.

Functional relations of fp; and fg; are static voltage characteristics of
load at i-th node. In previous papers [1 — 4], different methods for mod-
elling of static voltage characteristics are presented. In this paper, following
functional relations are used

V; kpui
Fri(Vi) = P, (7) , 3)

Vi kqvi
foilVi) = Q3 (70) , )
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where kp,; and kg are voltage selfregulation coefficients of the active and
reactive load at i-th node, P7; is active and Q, reactive loads at i-th node
that correspond to voltage Vj.

3 Linearized dynamic model

Analysis of the voltage collapse appearance, as usually, starts from known
initial conditions, i.e. from initial values of the voltage phasors at all nodes.
Moreover, constant magnitudes of voltages at the generator nodes are as-
sumed, while magnitudes of the voltages at load nodes are treated as corre-
sponding functions of the active and reactive loads. Small changes in voltages
AV, then can be expressed as

ov ov
AV= | APL+ —| A 5
aPL o L + aQL . QL ; ( )
where
AV =[AV, AV, ... AV,]T
AP = [APy APy ... AP,
AQ=[AQ AQra .. AQr,]"
oV A% oV oVq
OPr1 """ OPry 0Qr1 " 0QrLn
av| _ | - : av | _ . .
oPL |, : : ’ QL |, : :
OPry """ 0Pr, 49 0Qr1 """ 0Qrn do

Subscripts ”0” in these equations denote that partial derivatives are cal-
culated for steady state before changes appear.

Linearizing the functions fp;(V;) and fg;(V;) around the analyzed initial
state and respecting equation (5), equations (3) and (4) became

N D ofpi 0V; ofpi OV;
fpz<m—PLz(o>+( 21 aPL)OAPL+( 2 BQL)OAQL, (6)

N O0fq: OV; Ofqi OV;
fad) = Qui0) + (FETL) apu+ (Y TL) aqu. ()

where Pr,;(0) is initial steady-state active load, Qr;(0) is initial steady-state
reactive load at the i-th node, and
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Vi | _— av; 9V, oV;

Py, 0 - OPr1 OPrs """ OPr, 0 ’
V; _ aVv; aV; V;

QL |y~ | 9QL1 9Qr2 """ Qrn |

Power increments at i-th node can be expressed by following equations
APy; = Pr; — Pr;(0) , (8)

AQri = Qri — Qri(0) . 9)

System of linearized differential equations is obtained if (6-9) are sequen-
tially substituted in (1) and (2). For the case of n load nodes network,

following system of linearized differential equation can be written in matrix
form

-t ofp OV —1 (ofp OV
d [ v ] - (I_ (ﬁm%) T (3_P3QL)0 [ APy, ]
dt AQL T—l (%8_V> — T—l (I . (%8_\/) ) AQL
oV 0Py, 0 aV QL .
(10)
where I is unit n x n ma‘trixa APL = [APLI APLQ . APLn]Ta
e 0
AQL = [AQLI AQLQ e AQLn]T, gL‘;; ) _ . ’
0 aan
OVp, 0
86f\?11 0 i 0
of ) B
V|, = T _

In mentioned mathematical model (10), appearance of voltage collapse
is assessed basing on state matrix eigenvalues. This practically means that
the answer results from the solution of the following algebraic equation

—1 ofp OV —1 (2tp OV
-t (I_ (ﬁ"’ﬁ)o) - T (ﬁaQL)o
-1 (9fq ov -1 ofq ov
T (WaPL)O -T (I_(WBQL)())_)\I

Using elementary transformations, the system of equations (11) can be
reduced to the following, simple form

=0. (11)
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N A | 0
I- (gL\c]: 53’ - =0
-1 (9fq av -1 L/o
T (G, T _(Maov) (%) lag| | M
oV 9Py, 0 FAY 0 FAY 0
(12)
From equation (12) it is obvious that n eigenvalues are always real and
negative (—1/T1,...,—1/T,). For the voltage collapse assessment purpose,

only sign of appropriate eigenvalues are needed, i.e. quantification of the
first n eigenvalues is not necessary. Then, problem is reduced to the deter-
mination of n eigenvalues
. (13)
0

A__pi[1_ (%@ dV\ _(0fq 8V (9fq) " Ofe
- ovoQr/), \OVOPL),\0V ), OV
. ofq | -
Regarding that W‘o (i.e. ( 5V )0 ) is diagonal, after some elementary

otq

transformations, the matrix A can be written in the following form

A__p1 OV (aV)l_@ _(8V>1(8V> ofp| |
oQL |, oQL/ ov |, oQr/, \0PL/, 0V |,

(14)

Starting from the expressions for Qg, and Py, matrices % ‘0 and 661TVL .

can be determined as functions of voltage magnitude V and angle ® , i.e.
QL =8q(V,0) and Py, = gp(V,0)

—1
oV | _ (9sq| OJsq 3gp>_1 Ogp (15)
Qul, \av| @@ | \e® ), av|,] °
B 1 B
oV | _ (9sa| Ogq| (dsr) ' Osp dgq| (dgp)
oPL |, av |, 0@ |,\e® ), ov|,)] e |,\oe ),

(16)

In (14), T is diagonal matrix and does not have effect on sign of eigen-

values. For this reason it can be neglected. Then, respecting (15) and (16),
following matrix of order n can be used for voltage collapse assessment

-1
—1
_ 98q 9gq dgp
PQV_—([)VO_B(-)O 6@0 0 ’

(22a| _ 9| , osq (% _ oze
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Elements of this matrix could be simply obtained on the basis of known
parameters and state variables of the power system. Thus, a relatively simple
mathematical model is formed. This model is very suitable for the analysis
of the power system voltage (in)stability, because problem is reduced to
determination of eigenvalues of a real matrix PQYV, of relatively low order
(equal to the number of load nodes).

4 Uniform movement of generator rotors

Voltage (in)stability is practically always performed for characteristic post
dynamic quasi-states of the power system. The assumption that the change
in power at load nodes coincides with the uniform synchronous generators
movements is there completely justified. In practice, this means that syn-
chronous machines participate in total acceleration power P,. according to
their inertia constants [9,10], i.e.

Pr,— P, P,

wit Il ' (18)
M; M

where Pr; is mechanical power, P; injected active power, M; = (T};Spi) /ws

inertia constant, T)j; inertia time constant, and S,; nominal power of i-th

synchronous machine. In the same equation ws is synchronous velocity of
m

rotation, My = > M; and m is number of synchronous machines.
i=1

m
If participation of M; in M is noted as F; (F; = M;/M, ; >, F; =1)
i=1
and if m-th machine is reference one

Pri — P _ Prm — Pm
F; Fin ’

i=1,...,m—1. (19)

Thus, the condition of uniform movement of generator rotors reduces to
the form
Rpr; =R;; i=1,....m—1, (20)

Changes in injected power at i-th generator node, as result of load power
changes, can be expressed as

n m
AP =k | Pioss+ > Prj | 5 Y k=1, (22)
j=1 =1
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where k; is incremental coefficient which corresponds to generator production
at node 7, and P, is total active power loses of system. Regarding to the
two last expressions, for matrix PQV can be finally written

dgp 171 ofp _ Ogp

o of, o 00 9V oV
pQv - _g-! |%a| % 8Q ’
oV, 0V], 00 |;| sgg pofe _ dgn
90 1o ov — av 4o
(23)
where
vsq| osq| [ W] [ W
c— |28 _ %8Q (24)
OV ]y 00 |y | ogn dgr
90 o av o

gRr is vector that shows conditions of uniform movement of rotors, gr (V, ®),
and F is matrix with n identical columns

[Fruky — Fiky Fuky — Fokpy ... Fpkm 1 — Fp_ k] . (25)

5 Test example

Presented procedure is applied for voltage collapse assessment of a power
system with 13 nodes that is shown in Fig. 1 [10]. Four of the nodes are
generator ones. The data in per unit values of the system (generated powers,
load powers and nodes voltages) are shown in Table 1. The voltages in the
same table are calculated using Newton-Raphson method.
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Fig. 1. Test system for voltage collapse assessment.
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The corresponding incremental factors k; are k1 = 0.2, ko = 0.28, k3 =
0.22, k4 = 0.3, while factors F; are: Fy = 0.15, Fy = 0.3, F3 = 0.25, F, = 0.3.
For this initial state of the test network, and for different values of voltage
selfregulation coefficients (with assumption that they are the same for all
load nodes), voltage collapse assessment is made.

Table 1. Generated powers, load powers and voltages for test system

Generated Load power Voltage Voltage
Node power magnitude | phase angle

Pg(p.u.) | Pr(p-u.) | Qr(p.u.) Vip.u.) 0(°)
1 3.5 2.0 0.826466 -24.4156
2 0.0 0.0 0.896634 -16.8234
3 2.12 1.1 0.859977 -23.9969
4 0.0 0.0 0.944272 -10.657
5 1.3 0.8 0.905786 -15.3282
6 0.0 0.0 0.987532 -5.5421
7 2.95 1.4 0.920813 -11.5256
8 1.1 0.7 0.907940 -18.702
9 0.9 0.5 1.027933 5.2696
10 2.7 1.05 10.2098
11 3.0 1.05 6.3277
12 3.2 1.05 0.3605
13 3.452 1.05 0.0

On the basis of results shown at the Tabes 1 and 2 following statement
can be established: eigenvalues obtained if influence of synchronous gen-
erators are not considered are approximately equal to ones obtained when
uniform movement of generator rotors is included. Thus, for purpose of volt-
age collapse fast assessment, it is suitable to use (17) for calculation matrix
PQYV, because of its simplicity comparing to (23).

In any of two mentioned cases, when k,, = kg, = 1 or kp, = kg = 0,
one of eigenvalues is positive what indicate possibility of voltage collapse
appearing. Test example verifies the fact that loads with smallest voltage
selfregulation coefficients of active and reactive power are critical, i.e. they
have larger contribution to voltage collapse appearance.

As we saw, generator nodes were modelled, in this approach, only as con-
stant voltage sources. Because of that, when critical points are determined,
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Table 2. Eigenvalues of the PQV matrix without consideration

influence of synchronous generators

| kpw = kg =2 | kpy = kg =1 | kpy = ko =0

A1 -3.91786 0.004088 1.05967
A2 -1.42943 -0.85222 -0.69687
A3 -1.20511 -0.92942 -0.85522
VI -1.30729 -0.89426 -0.78309
A5 -1.14506 -0.95008 -0.89760
A6 -1.00000 -1.00000 -1.00000
A7 -1.01299 -0.99553 -0.99083
A8 -1.00000 -1.00000 -1.00000
A9 -1.00000 -1.00000 -1.00000

153

Table 3. Eigenvalues of the PQV matrix when uniform move-
ment of synchronous generators is considered

| kpw = kg =2 | kpy =kqp =1 | kpy = kgo =0

A1 -3.60740 0.0082376 1.15838
A2 -1.40995 -0.867497 -0.72057
A3 -1.29324 -0.90344 -0.79801
Aq -1.17375 -0.93441 -0.85790
A5 -1.12872 -0.94556 -0.89901
A6 -0.99958 -0.99091 -0.98719
A7 -0.99958 -1.00355 -1.00498
A8 -1.00008 -1.00000 -1.00004
A9 -0.99999 -1.00003 -1.00000

we should reconsider them using some exact method to test if voltage col-

lapse appears.

6 Conclusion

The simplified linearized dynamic model for fast voltage collapse assessment
is formed in this paper. For the case of n-load nodes network appropriate
transformations prove that instead of 2n, it is needed to determine only n
eigenvalues. Additionally, knowledge of the values of load time constant is
needless also, as it is shown in this paper. Presented linearized dynamical
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model, because of introduced assumptions, can be used only for fast assess-
ment of voltage collapse. When critical states are identified, other method
should be utilised in order to clearly determine whether voltage collapse
appears.
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