
FACTA UNIVERSITATIS (NI�S)

Ser.: Elec. Energ. vol. 15, No. 1, April 2002, 123-136

Defect-Oriented Mixed-Level Fault Simulation in

Digital Systems

Raimund Ubar, Jaan Raik, Eero Ivask

and Marina Brik

Abstract: A new method for mixed level defect-oriented fault simulation of
Digital Systems represented with Decision Diagrams (DD) is proposed. We
suppose that a register transfer level (RTL) information along with gate-level
descriptions for RTL blocks are available. Decision diagrams (DDs) are ex-
ploited as a uniform model for describing circuits on both levels. The physical
defects in the system are mapped to the logic level and are simulated on the
mixed gate- and RT levels. The approach proposed allows to increase the ac-
curacy of test quality estimation, and to reduce simulation cost in comparison
to traditional gate-level fault simulation methods.

Keywords: Digital system, decision diagram, fault simulator, mixed level
simulation.

1 Introduction

Fault simulators of digital circuits and systems are used widely in many areas
of design and test like test generation, fault diagnosis, test set compaction
etc. The quality of test generation signi�cantly relies on the eÆciency of fault
simulation, especially in the case of simulation-based test generators [2,3].
Traditionally, fault simulation is performed at the gate-level with using the
stuck-at fault (SAF) model. On one hand, the gate-level SAF-based fault
simulation is time-consuming, on the other hand the SAF model doesn't

Manuscript received March 26, 2002. An earlier version of this paper was presented
at the 23rd International Conference on Microelectronics, MIEL 2002, May 12-15, 2002,
Ni�s, Serbia.

The authors are with the Department of Computer Engineering, Technical Uni-
versity of Tallinn, Raja 15, 12618 Tallinn, Estonia (e-mail: [raiub, jaan, ieero,

mbrik]@pld.ttu.ee).

123

124 R. Ubar, J. Raik, E. Ivask and M. Brik:

represent adequately the physical defects in transistor circuits. To overcome
these disadvantages, mixed-level simulation is needed which allows to use the
advantage of high level information to speed up the simulation process while
analysing the quality of tests still in relation to realistic physical defects.

In this paper, a new method for parametric defect modeling is presented
for calculating the conditions for activating physical defects in the modules
(e.g. library components) of digital circuits. A new method for multi-level
defect-oriented fault simulation based on Decision Diagrams (DD) is pro-
posed. We suppose that a register transfer level (RTL) information along
with gate-level descriptions for blocks of the RTL structure are available.
For defect simulation a new functional fault model is used which can be
handled on the gate- and RT levels. Decision diagrams (DDs) are exploited
as a uniform model for describing systems on both, RT and gate levels.
In Section 2 of the paper we describe the general case of the DD model
for representing digital systems hierarchically on the gate- and RT levels.
In Section 3 we discuss the problem of mapping physical defects onto the
logical level. Section 4 is devoted to describing the general idea of the hier-
archical defect-oriented fault simulation. In Section 5 we develop the ideas
of hierarchical fault simulation for using on the model of DDs. In Section
6 we discuss some experimental results, and �nally, in Section 7 we present
the concluding remarks.

2 The Model for Simulation

Consider a digital system as a network N = (Z;F) of components where Z is
the set of all variables (Boolean, Boolean vectors, integers) which represent
the connections between components, inputs and outputs of the network.
Denote by X � Z and Y � Z, correspondingly, the subsets of input and
output variables. V (z) denotes the possible values for z 2 Z, which are �nite.
Let F be the set of digital functions on Z: zk = fk(zk;1; zk;2; : : : ; zk;p) =
fk(Zk) where zk 2 Z, fk 2 F , and Zk � Z. Some of the functions fk 2 F ,
for the state variables z 2 ZSTATE � Z, are next state functions.

De�nition 1. A decision diagram (denoted as DD) is a directed acyclic
graph G = (M;�; z) where M is a set of nodes, � is a relation in M , and
� (m) �M denotes the set of successor nodes of m 2M . The nodes m 2M
are marked by labels z(m). The labels can be ether variables z 2 Z, or
algebraic expressions of z 2 Z, or constants.

For non-terminal nodes m, where � (m) 6= ;, an onto function exists
between the values of z(m) and the successors me 2 � (m) of m. By me we

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 125

denote the successor of m for the value z(m) = e. The edge (m;me) which
connects nodes m and me is called activated i� there exists an assignment
z(m) = e. Activated edges, which connect mi and mj make up an activated

path l(mi;mj). An activated path l(m0;mT) from the initial node m0 to a
terminal node mT is called full activated path.

De�nition 2. A decision diagram Gk = (M;�; z) represents a function
zk = fk(zk;1; zk;2; : : : ; zk;p) = fk(Zk) if for each value v(Zk) = v(zk;1) �
v(zk;2)� � � � � v(zk;p), a full path in Gk to a terminal node mT is activated,
where z(mT) = zk is valid.

Each function fk 2 F in the system network N = (Z;F) is represented
by a decision diagram zk = Gk(Zk) [5-7]. Depending on the class of digital
system (or level of its representation), we may have various DDs, in which
nodes have di�erent interpretations and relationships to the system struc-
ture. In RT level descriptions, we usually decompose digital systems into
control and data parts. State and output variables of the control part serve
as addresses or control words, and the variables in the data part serve as data
words. The functions of RTL components in the data part are described by
the high-level data word variables.

The BDDs [1,4] represent a special class of DDs where all the variables
in Z are binary, i.e. for all z 2 Z, V (z) = 2.

Consider a digital system in Fig. 1 which consists of control and data
parts. The control part is given by the output and next-state functions
y = �(q0; x), q = Æ(q0; x), where y is an integer output vector variable, which
represents a microinstruction with 4 control �elds y = (yM ; yz; yz;1; yz;2),
x = (xA; xC) is a Boolean input vector variable, and q is the integer state
variable. The value j of the state variable corresponds to the state sj of the
FSM. The apostrophe refers to the previous clock cycle.

The data path consists of the memory block M with three registers A,
B, C together with the addressing block ADR, which can be represented by
three DDs: A = GA(yM ; z), B = GB(yM ; z), C = GC(yM ; z), of the data
manipulation block CC where z = Gz(yz; z1; z2), and of two multiplexers
z1 = Gz;1(yz;1;M) and z2 = Gz;2(yz;2;M). The block COND performs the
calculation of the condition function x = Gx(A;C).

The component level model of the system can be represented by the
following set of DDs: N1 = fGq; Gy; GA; GB ; GC ; Gz ; Gz;1; Gz;2; Gxg. By
superpositioning of DDs we can obtain the following compressed model for

126 R. Ubar, J. Raik, E. Ivask and M. Brik:

Fig. 1. A digital system.

describing the behaviour of the register A:

A = GA(yM ; z) = GA(yM ; Gz(yz; z1; z2))

= GA(yM ; Gz(yz; Gz;1(yz;1;M); f4(yz;2;M)))

= GA(yM ; yz; yz;1; yz;2;M) = GA(y;M)

= GA(Gy(q
0; x);M) = G0

A(q
0; A;B;C):

In similar way we can compress other DDs in N1 and represent the whole
system by a new compact DD model:

N2 = fGq; G
0

A; G
0

B ; G
0

Cg:

An example of a DD G0

A(q
0; A;B;C) for the register A with the following

behaviour

A =

8>>>>>><
>>>>>>:

B0 + C 0; if q0 = 0;

:A0 + 1 if q0 = 1 & xA = 0;

:C 0 +B0; if q0 = 3 & xC = 1;

A0 +B0 + C 0; if q0 = 4 & xA = 0&xC = 0;

A0; in other cases:

is represented in Fig. 2.

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 127

Fig. 2. DD for the subcircuit of A in the system in Fig.1.

Fault analysis on DDs is based on path traversing procedures. In path
traversing, the values of node-variables are given, and we have to move along
the path determined by these values. Suppose, a test pattern P assigns to
a node variable z(m) a value e 2 V (z(m)). Suppose also, there is a defect
d which inuences on the variable z(m) and changes the value e to D. The
defect is detected by the pattern P if the following conditions are ful�lled:

� P activates the paths: l(m0;m), l(me;mTe), l(mD;mTD), and

� z(mTe) 6= z(mTD) is valid.

3 Mapping Defects onto the Logical Level

In this Section we present a new general fault model for describing and
modeling arbitrary physical defects in the components of digital circuits and
for mapping them onto the logical level.

Consider a Boolean function y = f(x1; x2; : : : ; xn) implemented by an
embedded component in a digital circuit. Introduce a Boolean variable d for
representing a given defect in the component or in the neighbourhood layout
of the component, which may a�ect the value y by converting the Boolean
function f into another function y = fd(x1; x2; : : : ; xn; xn+1; : : : ; xp). Here,
the new variables xn+1; : : : ; xp may be introduced to describe the inuence
of the neighbourhood layout of the component in the presence of the physical
defect d.

For example, assume there is a short between x1 and x5 in the circuit in
Fig. 3. The faulty function y = f(x1; x2) = :(x1 ^ x2) in the case of the

128 R. Ubar, J. Raik, E. Ivask and M. Brik:

defect d can be represented as

y = fd(x1; x2; x3; x4) = :(x1x5) _ x2 = :(x1:(x3 _ x4)) ^ x2):

Introduce now a generalized parametric function

y� =f�(x1; x2; : : : ; xn; xn+1; : : : ; xp; d)

=(:d ^ f) _ (d ^ fd)

as a function of a defect variable d, which describes the behavior of the
component simultaneously for both possible cases. For the erroneous case
the value of the defect variable d as a parameter is equal to 1, and for the
nonerroneous case d = 0. In other words, y� = fd if d = 1, and y� = f if
d = 0.

Fig. 3. A short between two signal leads.

The solution of the Boolean di�erential equation

W d =
@y�

@d
= 1 (1)

describes the conditions which activate the fault d on a line y. For
example, for the short in Fig. 3 we have

y� = :df _ dfd = :d:(x1 ^ x2) _ d(:x1:(x3 ^ x4) _ :x2):

To �nd the conditions for activating the short to the line y we have to solve
the logical equation

W d =
@y�

@d
= x1x2x3x4 = 1:

The method of parametric defect modeling by logical conditions W d can
be generalized for the purpose of hierarchical fault simulation. A component

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 129

of a circuit can be preprocessed by lower level defect simulation with the goal
to generate a set of conditions W for all possible lower level defects d of the
component. Each condition as a solution of Wd = 1 can be regarded as a
higher level functional fault model for a given defect d, since in the presence
of this defect the functional behavior of the component at the input where
Wd = 1 will be erroneous. The functional fault model concept is illustrated
in Fig. 4.

Fig. 4. Functional fault model for a physical defect.

The relationships between the functional faults (patterns) W d and the
defects d for all the logic level simple or complex gates g in the library L are
given by defect tables DTg = kgidk, g 2 L, where an entry gid = 1 means
that the input pattern i (solution of Wd = 1) of the gate detects the defect
d, otherwise gid = 0.

4 Hierarchical Fault Simulation

Consider a task of defect oriented fault simulation in a system represented
on three levels: register transfer, gate and defect levels.

Formally, if Y is the system RTL variable representing an observable
point of the system, yM is an output variable of a gate-level module and yC
is the output of a component (complex gate) in the module with a physical
defect d, then the condition of detecting the defect d on the observable test
point Y can be represented as

W =
@Y

@yM
^
@yM
@yC

^Wd = 1; (2)

where @Y=@yM is the Boolean derivative calculated by the high-level simula-
tion, @yM=@yC is the Boolean derivative calculated by the gate-level simula-
tion, and Wd is the functional fault condition found by the gate defect-level
preanalysis.

In the fault simulation approach proposed in the paper the defect analysis
is made module by module in the higher RT level network. An example of
a RTL system to describe the main principles of the approach is illustrated

130 R. Ubar, J. Raik, E. Ivask and M. Brik:

Fig. 5. Hierarchical fault modeling in a digital system.

in Fig. 5. Let us have a network of a system consisting of 3 parts: A, B,
and C. The block B is taken currently as the target for defect oriented fault
analysis, and therefore is represented at the lower gate-network level. The
test sequence before reaching the target block is simulated in the part A on
the RT level, pattern by pattern, starting from the inputs of the system.
Let D be the set of all defects to be simulated in the target block B. The
low-level fault simulation for a given input pattern P* in the target block B
is carried out by the following procedure.

Procedure 1. When the target block B is reached by a pattern P � �rst,
the faultfree output pattern P is calculated. Then, the low level defect
analysis is carried out, and the set of all defects d 2 DB � D activated in B
by the pattern P � is calculated by checking if at least for one output yB of
the block B the condition

W =
@yB
@yG

^W d = 1 (3)

is ful�lled. For each activated defect d 2 DB in B, the corresponding faulty
output pattern of the block B is calculated. Then, the all activated defects
d 2 DB for which the same (faulty) output pattern of B is produced are

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 131

grouped into the same subset DBi � DB . As the result, a complex test pat-
tern T = fP; (P1;D1); : : : ; (Pk;Dk)g at the output of B will be generated
where D1 [D2 [� � � [Dk = DB � D.

Suppose now, a block C (which is not the target block) is to be simulated
at the higher level. All the input patterns of the block C can be regarded in
general case as a set of complex test patterns TS = fT1; T2; : : : ; Tmg where
Ti = fPi;0; (Pi;1;Di;2); : : : ; (Pi;k;Di;k)g. This set can be easily reformed as a
single joint complex pattern T � = fP �; (P �

1 ;D
�

1); : : : ; (P
�

n ;D
�

n)g. The high-
level (RT-level) fault simulation for a given complex input pattern T* in the
non-target block C is carried out by the following procedure.

Procedure 2. For each joint input pattern from the set fP �; P �

1 ; : : : ; P
�

ng
at the high-level, the corresponding output complex pattern T 0 =
fP; (P1;D

�

1); : : : ; (Pn;D
�

n)g is calculated. If two input patterns P �

i and P �

j

produce the same output pattern Ph then the two pairs (Pi;D
�

i) and (Pj ;D
�

j)
in T 0 should be merged, and the pattern Ph should be linked to a joint set
of defects Dh = Di [Dj . If the fault-free input pattern P � and a faulty
input pattern P �

j produce the same output pattern P , then all the defects
in D�

j are self-masked, and the component (Pj ;D
�

j) should be removed from
the complex pattern T 0. As the result, a new reduced complex test pattern
T = fP; (P1;D1); : : : ; (Pk;Dk)g at the output of B where k � n may be
generated from T 0, so that D1 [D2 [� � � [Dk � DB � D.

When during the fault simulation the target block B is again reached
via the feedback loops by a complex input pattern T � = fP �; (P �

1 ;D
�

1); : : : ;
(P �

n ; D
�

n)g, all the patterns fP �; P �

1 ; : : : ; P
�

ng should be fault simulated on
the low-level at the presence of corresponding defects. For P , new defects
activated by P are calculated by using Procedure 1. After that, a new
complex pattern T � will be created at the output of B using the operations
described in Procedures 1 and 2.

5 Defect-Oriented Fault Simulation on Decision Diagrams

Fault simulation on DDs is carried out by tracing the activated paths on
DDs in accordance to the given values of variables as speci�ed in De�nition
1. For example, at the given input (state) pattern P = fq0 = 1; xA = 0g
of the block A we reach the terminal node mT of the graph GA with label
A0 + 1 (see the highlighted path in Fig. 2). The new value of A will be
A = A0 + 1.

In high-level fault propagation in the digital system S = (Z;F) through
a block with function z = f(z1; z2; : : : ; zn) = f(Z 0), Z 0 � Z, which is repre-

132 R. Ubar, J. Raik, E. Ivask and M. Brik:

sented by a decision diagram Gz, we proceed from the fact that the defects
may have been propagated to all of the variables zi 2 Z 0 used in labels of
nodes in the graph. To each node m of the DD with the label z(m), a
complex pattern

Tz(m) = fPz(m);0; (Pz(m);1;Dz(m);1); : : : ; (Pz(m);kz ;Dz(m);kz)g

corresponds. From this pattern, it results that a set of defects Dz(m) =
Dz(m);1 [� � � [Dz(m);k has been propagated to the node m. Let D be the set
of all faults currently activated and listed in Tz(m).

Consider the fault simulation on the decision diagram Gz as the following
set of procedures.

Procedure 3. The fault-free path is simulated in accordance to the fault-
free input pattern Pz(m);0, and the fault-free value of z = z(mT;0) is calcu-

lated, where mT;0 is the terminal node of the fault-free activated path.

Denote the set of all nodes traced in the fault-free path up to the node
m (m itself not included) by MFF (m). Let DFF (m) be the set of all faults
propagated to the nodes m 2MFF (m). The condition of reaching the node
m in the fault-free path during fault simulation is the absence of all the faults
in DFF (m). Denote by DCF (m) the set of faults consistent to the current
faulty path from the initial node m0 up to the node m. For the nodes m on
the fault-free path we have DCF (m) = D �DFF (m).

Denote by L the list of all nodes of the DD to be fault simulated. All the
nodes met on the fault-free path are included into dynamic list L. For carry-
ing out fault simulation of the nodes in L, either Procedure 4 or Procedure
5 will be used. As the result of the procedure the list L will be updated.
Fault simulation is terminated when the list L gets empty.

Procedure 4. Fault simulation of a terminal node mT;0 2 L with the

function z = z(mT;0) = f(z1; : : : ; zp) for the set of complex input patterns
T = (T1; : : : ; Tp), Ti = fPi;0; (Pi;1;D0

i;1); : : : :; (Pi;ki;D
0

i;ki)g, i = 1; 2; : : : ; p,

where 8i;j: D
0

i;j = (Di;j �DFF (m
T;0))\DCF (m) is equivalent to Procedure

2 of high-level fault simulation discussed in Section 4.

Procedure 5. Fault simulation of a nonterminal nodem 2 L with the vari-
able z(m) for the complex pattern Tz(m) = fPz(m);0; (Pz(m);1;D

0

z(m);1); : : : ;

(Pz(m);km;D
0

z(m);km)g where 8i;j: D
0

z(m);j = (Dz(m);j �DFF (m)) \DCF (m),
consists in the following:

� if m belongs to the fault-free path, and if D0

z(m) = D0

z(m);1 [� � � [

D0

z(m);km = ; no nodes will be included into L;

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 133

� if m does not belong to the fault-free path, and if D0

z(m) = ;, the node
me where e = Pz(m);0, will be included into L; for the new nodeme in L
we calculate: DFF (m

e) = DFF (m) [Dz(me), and DCF (me) = DCF (m),

� if Dz(m) 6= ;, all the nodes me, where e = Pz(m);i, i: D0

z(m);i 6= ;,
will be included into L; for all these nodes we calculate DCF (me) =
DCF (m) \D0

z(m);i, DFF (me) = DFF (m).

As the result of the fault simulation by Procedures 4 and 5 we create a
complex pattern for the graph variable z: Tz = fPz;0; (Pz;1;Dz;1); : : : ; (Pz;kz;
Dz;kz)g. All the pairs (Pz;i;Dz;i) where Pz;i = Pz;0 are eliminated since
the defects Dz;i are self-masked at this point. All the groups of pairs
f(Pz;i;Dz;i); (Pz;j ;Dz;j)g where Pz;i = Pz;j are merged into a single pair
(Pz;i;Dz;i), so that Dz;i = Dz;i [Dz;j.

Fig. 6. Fault simulation on the graph GA on Fig. 4.

Example 4. Consider the DD GA in Fig. 2 with a set of complex pat-
terns: Tq = f1; 0(1; 2; 5); 4(3; 4)g, TxA = f0; 1(3; 5)g, TxC = f1; 0(4; 6)g,
TA = f7; 3(4; 5); 4(1; 3; 9); 8(2; 8)g, TB = f8; 3(4; 5); 4(3; 7); 6(2; 8)g, TC =
f4; 1(1; 3; 4); 2(2; 6); 5(6; 7)g. All the paths traced during the fault simula-
tion are highlighted and marked by details of simulation in Fig. 6. The fault
free paths are shown by bold lines both, in Fig. 2 and Fig. 6. The edges on
paths in Fig. 6 are labelled by pairs e; (D), where e is the value of the node

134 R. Ubar, J. Raik, E. Ivask and M. Brik:

variable when leaving the node at this direction, and D is a subset of defects:
DFF (m) for the next node m on the fault-free path, and DCF (m) for the
next node m on the faulty paths. Since DFF (xA) = f1; 2; 3; 4; 5g includes
both of the defects 3 and 5 propagated to xA, no faulty paths are simulated
from the node xA: for the value xA = 1: D0

xA
= (DxA � DFF (xA)) = ;.

From all the defects propagated to A0, only the defects 8 and 9 are simulated
at the node A0 + 1. At the terminal node B0 + C 0 only the defects 1,2,5 are
simulated, since only they are consistent to the condition of leaving the node
q0 at this direction.

After fault simulation of all 3 terminal nodes reached at the given com-
plex pattern we compose the �nal result as follows: the defect 2 propagated
to the node B0 + C 0 is selfmasked because the value B0 + C 0 = 8 calculated
for the defect 2 is equal to the fault-free value calculated at the node A0+1.
The defects 4 and 5 propagated to di�erent terminal nodes are merged into
the same group because they produces the same new value 7 for A. Also the
defects 1 and 8 are merged into the same group. The �nal value of the new
complex pattern for A is: TA = f8; 5(9); 7(4; 5); 9(1; 8)g.

6 Experimental Results

For investigation the correlation between fault coverages for stuck-at faults
(SAF) and the defects, we created two benchmark circuits C1 and C2 -
both, tree-like combinational networks, the �rst with 2-levels (5 complex
gates, 16 inputs, 100 defects) and the second with 3-levels (21 complex gates,
64 inputs, 420 defects). Both circuits were simulated for two tests Tmin
(optimized test: 8 patterns for C1, and 16 patterns for C2) and Tmax (not
optimized test: 19 patterns for C1, and 70 patterns for C2) which both
had 100% coverage for stuck-at faults. The results of the defect oriented
simulation for the given tests are depicted in Table 1.

Table 1. Comparison of defect and SAF simulation.

Number Stuck-at Defect coverage'
Circuit of fault %

defects coverage Tmin Tmax

C1 100 100,00 81,00 83,00
C2 420 100,00 84,29 84,76

From these experiments we see that the SAF-based fault coverage is over-
estimated compared to the realistic defect coverage, and that the di�erence

Defect-Oriented Mixed-Level Fault Simulation in Digital Systems 135

between stuck-at fault and physical defect coverages reduces when the com-
plexity of the circuit increases. In the worst case we have noticed that the
100% SAF test may cover only 50% of realistic physical defects.

In Table 2 the results of multi-level simulation for FSM benchmark cir-
cuits are shown for evaluating the proposed mixed-level fault simulation
approach. A hierarchical multi-level fault simulator (HSIM) is compared to
the plain gate-level simulator (GSIM). Here we see that the mixed-level fault
simulation can be carried out with signi�cally higher speed than in the case
of plain gate-level simulation, the di�erence is between 2,7 and 121 times,
or in average 35 times.

Table 2. Mixed-level fault simulation results.

FSM Number Test Fault cover Time,s

circuit of faults length % HSIM GISM

bbsse 562 300 74.1 0.01 0.38
dk16 1038 150 95.1 0.01 0.55
ex2 480 600 25.9 0.01 1.21
ex3 274 1000 46.2 0.01 0.77
Log 486 200 99.6 0.01 0.11
s832 1090 300 59.6 1.00 2.69
s1488 2234 400 63.48 2.00 9.17
Sand 1622 400 84.2 1.00 3.18
Styr 1734 500 74.1 2.00 6.81

7 Conclusions

We introduced a hierarchical defect oriented fault simulation method for
digital systems. As a mathematical model for systematic multi-level solution
for fault simulation at three levels of abstraction - RT, gate- and defect
levels, decision diagrams are used. The method proposed helps to reduce
dramatically the computation cost of test quality analysis in digital systems.

Acknowledgements

The work has been supported by the Estonian Science Foundation grants
G3658 and G4300.

References

[1] R. Drechsler, B. Becker: BDDs. Theory and Implementation, Kluwer Aca-
demic Publishers, 1998, 200 p.

136 R. Ubar, J. Raik, E. Ivask and M. Brik:

[2] R. Guo, I. Pomeranz and al.: A Fault Simulation Based Test pattern Generator

for Sequential Circuits. In: Proc. 17th IEEE VLSI Symposium, April 25-29,
1999, California.

[3] D. Krishnaswamy, M. S. Hsiao and al.: Parallel Genetic Algorithms for

Simulation- Based Sequential Test Gene-ration. In: Proc. IEEE VLSI Design
Conference, 1997. pp. 475- 481.

[4] S. Minato: Binary Decision Diagrams and Applications for VLSI CAD Kluwer
Acad. Publishers, 1996, 141 p.

[5] R. Ubar: Multi-Valued Simulation of Digital Circuits with Structurally Syn-

thesized Binary Decision Diagrams. OPA (Overseas Publishers Assotiation) N.
V. Gordon and Breach Publishers, Multiple Valued Logic, Vol.4 pp. 141-157,
1998.

[6] R.Ubar: Vektorielle Alternative Graphen f�ur digitale Systeme, Nachrichten-
technik/ Elektronik, (31) 1981, H.1, pp. 25-29.

[7] R.Ubar: Test Synthesis with Alternative Graphs, IEEE Design and Test of
Computers. Spring, 1996, pp.48-59.

