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Abstract. In this paper, new techniques to implement the Daubechies wavelets and 

multiwavelets are presented using quantum computing synthesis structures. Also, a new 

quantum implementation of inverse Daubechies multiwavelet transform is proposed. 

The permutation matrices, particular unitary matrices, play a pivotal role. The 

particular set of permutation matrices arising in quantum wavelet and multiwavelet 

transforms is considered, and efficient quantum circuits that implement them are 

developed. This allows the design of efficient and complete quantum circuits for the 

quantum wavelet and multiwavelet transforms. 
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1. INTRODUCTION 

As it happens in classical signal analysis, it is natural to expect that quantum wavelet 

transform will find important future applications [1] for the treatment of quantum 

databases and quantum data compression. Therefore, it is important to develop quantum 

circuits for implementing wavelet and multiwavelet transforms. Wavelets have been 

around since the late 1980s, and have found many applications in signal processing, 

numerical analysis, operator theory, and other fields [2]. The wavelet transform is a tool 

that cuts up data or functions or operators into different frequency components, and then 

studies each component with a resolution matched to its scale. The wavelet transform of a 

signal evolving in time depends on two variables: scale (or frequency) and time; wavelets 

provide a tool for time-frequency localization [3]. One generalization is multiwavelets, 

which have been around since the early 1990s. Multiwavelets have some advantages: 

they can have short support coupled with high smoothness and high approximation order, 

and they can be both symmetric and orthogonal. They also have some disadvantages: the 

discrete multiwavelet transform requires preprocessing and post processing steps. Also, 

the theory becomes more complicated [2]. 
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In this paper, efficient and complete quantum circuits are derived for the quantum 

Daubechies D
(4)

 wavelet and multiwavelet transform representations. Quantum algorithms 

are describable in terms of unitary transformations. Fortunately, there is an important 

class of computations, the unitary transforms, such as the Fourier transform, Walsh-

Hadamard transform and wavelet transforms, that are describable in terms of unitary 

operators [4]. The Fourier and Walsh-Hadamard transforms have been used most 

extensively by the quantum computing algorithms [5]-[11]. However, the wavelet 

transforms are every bit as useful as the Fourier transform; therefore it is considered, 

here, how to achieve a quantum wavelet transform. 

The process of finding a quantum circuit that implements the unitary operator of the 

wavelet transform is to factor the wavelet operator into the direct sum, direct product and 

dot product of smaller unitary operators. These operators correspond to 1-qubit and 2-

qubit quantum gates. The permutation matrices play a pivotal role in the factorization of 

the unitary operators that arise in the wavelet transforms. The main issue in deriving 

feasible and efficient quantum circuits for the quantum wavelet transforms considered in 

this paper, is the design of efficient quantum circuits for certain permutation matrices. 

The permutation matrices, due to their specific structure, represent a very special subclass 

of unitary matrices [4]. Therefore, the exploitation of this specific structure represents the 

key to achieve an efficient quantum implementation of permutation matrices. In this 

paper, two representative wavelet kernels are considered, the Daubechies D
(4)

 wavelets 

and multiwavelets. Two new decompositions which lead to gate-level circuits for their 

implementations are developed. 

The rest of the article is organized as follows. Two fundamental quantum wavelet 

pyramidal and packet algorithms are introduced in Section 2, as well as quantum circuits 

for the perfect shuffle permutation matrices which arise in quantum wavelet transforms 

are discussed in this section. New quantum implementations of the most popular discrete 

wavelet transform, namely, the 4-coefficient Daubechies wavelet and multiwavelet 

transforms are developed in Section 3 and Section 4, respectively. While Section 5 deals 

with quantum implementation of the inverse Daubechies multiwavelet transform. Finally, 

the conclusion section summarizes this work. 

2. WAVELET PYRAMIDAL AND PACKET ALGORITHMS 

Given a wavelet kernel, its corresponding wavelet transform is usually performed 

according to a packet algorithm (PAA) or a pyramid algorithm (PYA). The first step in 

devising quantum counterparts of these algorithms is the development of suitable 

factorizations. Consider the Daubechies fourth-order wavelet kernel of dimension 2
i
, denoted 

as D
(4)

2i. The factorizations of PAA and PYA for a 2
n
-dimensional vector are given as [4]. 
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These factorizations allow analysis of the feasibility and efficiency of quantum 

implementations of the packet and pyramid algorithms. 

A set of efficient and practically realizable circuits for implementation of Qubit 

Permutation Matrices can be built by using the qubit swap gate, 4, where 

 

Fig. 1 The 4 gate (a) and its implementation by using three EXOR (Controlled-NOT) 

gates (b). 

The 4 gate, shown in Fig. 1a, can be implemented with three EXOR (or Controlled-

NOT) gates as shown in Fig. 1b. A circuit for implementation of 2n by using 4 gates is 

shown in Fig. 2. This circuit is based on a simple idea of successive swapping of the 

neighboring qubits. 

 
Fig. 2 Implementation of Perfect Shuffle permutation matrix 2n. 

The most popular discrete wavelet transform, namely, the Daubechies fourth-order 

wavelet kernel of dimension 2
n

 is given in a matrix form as [4]  
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Fig. 3 shows a block-level implementation of Eq. (4). Clearly, the main issue for a 

practical quantum gate-level implementation of Eq. (4) is the quantum implementation of 

matrix Q
n

2 . 

 
Fig. 3 A block-level circuit for implementation of D2

n
(4)

 [4]. 

3. QUANTUM IMPLEMENTATION OF DAUBECHIES D
(4)

 WAVELET TRANSFORM 

A new circuit for implementation of permutation matrix Q
n

2 is developed based on its 

description as a quantum arithmetic operator. Such a quantum arithmetic description of 

Q 

n

2 is given as:  

 Q 
n

2: │an1 a n2 . . . a1 a0 〉 → │ bn1 b n2 . . . b1 b0〉 (6) 

Where  bi = ai  1 (mod 2
n
) (7) 
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This description of Q 
n 

2 allows its quantum implementation and hence D
(4)

2n by using 

quantum arithmetic circuits with a complexity of O(n). Whereas, in classical solutions 

there are known algebraic techniques for factoring an arbitrary 2
n
  2

n
 operator, they are 

guaranteed to produce O(2
n
) [4], i.e., exponentially many, terms in the factorization. 

Hence, although such a factorization is mathematically valid, it is physically unrealizable, 

because when treated as a quantum circuit design, would require too many quantum 

gates. It is therefore clear that for achieving an efficient quantum implementation, i.e., 

with a polynomial time and space complexity, it is necessary to exploit the specific 

structure of the given unitary operator. 

In the following, it is shown how a circuit for │m 〉 → │m – 1 mod 2
n
 〉 can be 

constructed. In binary representation, this mapping can be specified in terms of the 

following operations: 

│an1. . . a1 a0 〉 → │ bn1. . . b1 b0〉 , with 

b0 = a0  1 

b1 = a1  a0  1 = a1  b0 

b2 = a2  c1, where c1 = b0b1 

b3 = a3  c2, where c2 = b2c1 

bi = ai  ci1, where ci1 = b i1 ci2 

Calculating the ci's and then the bi's, the circuit in Fig.4 is obtained. Replacing the 

block Q
2

n in Fig.3 with the circuit in Fig.4, then Fig.3 represents a complete gate-level 

circuit for implementation of D
(4)

2n. 

 

Fig. 4 A new circuit for implementation of permutation matrix Q
2

n 
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4. QUANTUM IMPLEMENTATION OF DAUBECHIES D
(4)

 MULTIWAVELET TRANSFORM 

Classical wavelet theory is based on a scaling function ϕ(t) and a wavelet function 

ψ(t), multiwavelets have two or more scaling and wavelet functions. The scaling function 

ϕ(t) is replaced by a function vector Φ(t) = [ϕ1(t) . . . ϕr(t)]
T
 called a multiscaling function. 

Likewise, the multiwavelet function is defined from the set of wavelet functions as Ψ(t) = 

[ψ1(t) . . . ψr(t)]
T
 . 

The multiwavelet two-scale equations: 

 

 

The recursion coefficients Hk and Gk are the low and high-pass filter impulse responses. 

They are rr matrices for each integer k. In practice, the value of r = 2. The Hk and Gk 

scaling and wavelet matrices for GHM filter are [2] 

 

For computing discrete multiwavelet transform (DMWT), the transform matrix (T) can 

be written as in Eq. (12). The input signal is preprocessed by repeating the input stream 

with the same stream multiplied by a constant α , for GHM system functions α = 1/ 2 . 

A new quantum implementation of Daubechies D
(4)

 multiwavelet is proposed here, as 

follows. 

 

The transformation matrix T, Eq. (12), can be decomposed as the summation of two 

matrices X and Y. The matrix X is shown below: 
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The matrix X is a 2
2n

  2
2n

, where n is the number of input bits; it can be described as: 

 

Where  

The H0 , H1 , G0 , and G1 are as given in Eqs. (10) and (11), respectively. 

The matrix Y is shown below: 

 

The matrix Y can be described as: 

 

Where  

Q2
2n2 is the downshift permutation matrix as described in the previous Section. The H2, 

H3, G2, and G3 are as given in Eqs. (10) and (11), respectively. Fig. 5 shows the quantum 

realizations of the matrices X and Y as specified by Eqs. (14) and (17), respectively. The 

circuit of the block Q2
2n2 in Fig. 5b is as shown previously in Fig. 4. Now, to obtain a 

single level of the D
(4)

 multiwavelet transform, the X and Y outputs of Fig. 5a&b are 

applied as inputs to a quantum adder circuit as shown in Fig. 6. The addition of two 

registers │X 〉 and │Y 〉 can be written as │X, Y 〉 → │X, X+Y 〉 , where the result of 

addition is written into one of the input registers. To prevent overflows, the second 
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register (initially loaded in state │Y 〉) should be of size q+1 if both X and Y are encoded 

on q qubits. In addition, a temporary register of size q is required, initially in state │0 〉 , 

to which the carries of the addition are written (the last carry is the most significant bit of 

the result and is written in the last qubit of the second register) [12]. 

 

Fig. 5 The realizations of: (a) Eq. (14), (b) Eq. (17); where q = 2n – 1. 

 

Fig. 6 The realization of the Daubechies D
(4)

 multiwavelet transform. 

5. QUANTUM IMPLEMENTATION OF INVERSE DAUBECHIES D
(4)

 MULTIWAVELET TRANSFORM 

A new quantum implementation of inverse Daubechies D
(4)

 multiwavelet transform is 

proposed here, as follows. 

The reconstruction matrix R, Eq. (19), which is the transformation matrix T transposed, 

can be decomposed as the summation of two matrices Z and W. 
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The matrix Z is shown below: 

 

The matrix Z can be described as: 

 

where
  

The H0, H1, G0 and G1 are as given in Equations (10) and (11), respectively. 

The matrix W is: 

 

The matrix W can be described as: 

 
where, 
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and   

 

The H2, H3, G2  and G3 are as given in Eqs. (10) and (11), respectively. The realization 

of Eq. (21) is similar to that of Eq. (14). Also, the realization of Eq. (24) is similar to that 

of Eq. (17), but the Q 
t

2
2n2 (i.e. the transpose of the downshift permutation matrix) is used 

instead of Q2
2n2. Fig. 7 shows the entire quantum implementation of the inverse D

(4)
 

multiwavelet transform. 

 

Fig. 7 Implementation of the inverse Daubechies D
(4)

 multiwavelet transform. 

The quantum arithmetic description of Q 
t

2
n  is given as: 

Q 
t

2
n  : │an1 a n2 . . . a1 a0 〉 → │ bn1 b n2 . . . b1 b0〉 

where bi = ai + 1 (mod 2
n
). 

This description of Q 
t

2
n  allows its quantum implementation. Hence, it is required to 

construct a quantum circuit for │m 〉 → │m + 1 mod 2
n
 〉. In binary representation, this 

mapping can be specified in terms of the following operations: 

│an1 a n2 . . . a1 a0 〉 → │ bn1 b n2 . . . b1 b0〉 , with 

b0 = a0  1 

b1 = a1  a0 

b2 = a2  c1, where c1 = a1a0 

bi = ai  ci1, where ci1 = a i1 ci2 for 3  i  n1 

Calculating the ci's and then the bi's , the circuit in Fig. 8 is obtained. 
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Fig. 8 A new circuit for implementation of permutation Q 
t

2
n  matrix. 

6. CONCLUSIONS 

In this paper, fast algorithms for quantum Daubechies D
(4)

 wavelet, multiwavelet and 

inverse multiwavelet transforms are developed. Three complete circuits for these three 

types of Daubechies D
(4)

 transforms are described. Permutation matrices 2
n, Q 

n 

2, and Q
t

2
n 

play a pivotal role in the development of the three types of transform. In fact, not only 

they arise explicitly in the packet and pyramid algorithms but also they play a key role in 

factorization of wavelet kernels and in decomposition of multiwavelet and inverse 

multiwavelet transforms. 

In this paper, the Daubechies quantum wavelet and multiwavelet transforms are imple-

mented. In a similar manner, the other types of wavelet and multiwavelet transformations can 

be achieved (a promising task for the future). 
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