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Abstract. This paper presents thermodynamic model of the system for rubber strip 

(protector) cooling. This model is used for determining the number of cooling system 

cascades, and rubber contraction coefficient, important parameters in mechanical 

model of the system which is the starting point of designing control system for rubber 

strip cooling. The correlation between the working velocity and rubber strip dimension, 

as well as the relation for the cooling water flow per cascade is also given. 
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1. INTRODUCTION 

Rubber strip cooling systems were developed more than thirty years ago and they have 

been applied ever since in tire industry [1]. These systems are very complex, difficult to 

control, because of the large number of cascades and many stochastic parameters (rubber 

strip contraction coefficients, some time constants in cascades) [2, 3]. There are several 

thousand similar systems all over the world. Mechanical model of the system for protector 

(external part of tire) cooling was first made three decades ago [4-7]. Parameters of this 

model depend on temperatures in specific cascades. Values of these parameters are 

mostly determined experimentally, either in laboratory or directly on the designed system. 

In this paper, thermodynamic model of the system is designed. This model allows us to 

calculate parameters of mechanical model of the system. This mechanic-dynamical model 

is necessary for the design of control system for rubber strip cooling process. The method 

for determining parameters of the model is described in the paper. First, a well known 

mechanical model is presented in order to indicate the problems which occur during 
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system control. Then thermodynamic model is derived. At the end, method for calculating 

necessary parameters and values for design the system control is described.  

2. MATHEMATICAL MODEL OF THE PROTECTOR COOLING SYSTEM 

The length change of the rubber strip between two transporters is given by the following 

equations: 
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where the used notation represents follows:  

i   cascade ordinal number, 

li   the length of rubber strip between i -th and 1i  -th transporter, 
(1)

,R iV   rubber velocity at the beginning of the i -th transporter, 

(2)

,R iV   rubber velocity at the end of the i -th transporter, 

il   length change of rubber strip between two consecutive transporters, 

Vi  the velocity of the i-th transporter, 

L  transporter length, 

i  the rubber contraction coefficient for the i -th transporter. 

Characteristic of measurer (potentiometer) for rubber between transporters is: 

 i = (li), (2) 

where i is potentiometer angle. Potentiometer voltage is: 

 i P iu K  , (3) 

where KP is the potentiometer coefficient [V/rad]. 
The block diagram of the derived model of cascade-connected system is shown in Fig. 1. 

 

Fig. 1 Block diagram of the cascade-connected system 



 Thermodynamic model of the system for protector cooling with applications 55 

 Transfer function W(s) of the drive motor with load in Fig.1 has the following form: 
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where k is gain, a and b are some functions of time constants [5]. 

 Problems during designing control systems which can appear are: 

 Determine number of cascades necessary for the rubber to cool down, i.e. become 

relaxed, 

 Determine rubber contraction coefficients in specific cascades. 

In order to calculate these parameters, thermodynamic model of the system for rubber 

cooling can be designed. 

3. THERMODYNAMIC MODEL OF THE SYSTEM 

The system for the rubber strip cooling, used for forming protector is, from a thermo-

dynamic point of view, multiple heat exchanger [8]. This heat exchanger consists of sev-

eral cascades. Rubber strip is formed in extruder, then squeezed out and then using the 

existing mold, the defined rubber strip profile can be produced. In that moment, rubber 

temperature is around 136°C. Rubber strip comes to the first cascade of the cooling sys-

tem, i.e. the first transporter then moves from the first to second one, and so on until it 

finally comes to the last cascade. The number of cascades depends on the rubber strip 

thickness and rubber strip velocity. Each transporter consists of transporting strip, in the 

form of a metal grid, which carries the rubber strip. Both strips run through the cooling 

water. Cooling water is injected at one part of the metal tub and discharged at the oppo-

site one. While the rubber strip moves through the water, heat is being transferred from 

rubber to water. One part of the heat is transferred to metal tub by conduction, second to 

air by radiation and the last one by convection to the rubber in the next cascade, i.e. to the 

next transporter. In this way, temperature is decreasing, while rubber moves from one to 

another transporter. Rubber is cooled down to the desired, predefined temperature, where 

the rubber is completely relaxed (no inner strains). The reason is that, at the output of the 

system rubber strip must be cut into precisely determined pieces equal to the volume of 

the tire torus. If rubber is not fully relaxed, after winding the strip around torus (an inner 

part of the tire), rubber can contract afterwards which causes tire imbalance. Such tire 

does not have the required quality and cannot be used.  

Deriving thermodynamic model starts from elementary equations for stationary heat 

transfer by conduction and convection [9].  

The amount of heat transferred by conduction is described by the Fourier’s heat 

conduction law: 

 
d

H KA
dx


  . (5) 

The amount of heat transferred by convection is: 

 H = Ah(2  1). (6) 
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The amount of heat transferred by fluid: 

 H cQ  . (7) 

Heat balance equation has the following form: 

 j

j

d
mc H
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 . (8) 

When we apply the above relations to the unit length of the rubber strip we obtain a 

thermodynamic model for each cascade of the system:  
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with the following notation: 

1

1 R

Ah
K

m c
   coefficient which depends only on rubber parameters, 

A   one meter of rubber strip area, one meter long, 

h  surface conductivity coefficient from rubber to water, 

m1  mass of strip, one meter long, 

cR  specific heat of rubber, 

V  transporter velocity.  

Appropriate temperatures are: 

W  water temperature in the system, 

0  rubber temperature at the system input, 

i  rubber temperature at the end of the i-th transporter, 

xi  rubber temperature in the i-th transporter on x(m) from the beginning. 

Relation for xi can be obtained from (9): 

 1expxi W

K
c x

V
 

 
   

 
. (10) 

At the transporter beginning (x = 0); xi = i1. Using this initial condition, we can 

determine integration constant and obtain:  
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Equation (12) represents recurrent relation for finding temperatures at cascades out-

puts. Relation (12) allows us to determine rubber temperatures at the end of each cascade 

and temperature at the system output as the most important value. Successively substitut-

ing, we obtain equation system: 
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Huge problem occurs in determining coefficient K1 because it is difficult to analyti-

cally determine h. In practice, that is the reason why h is usually experimentally obtained. 

The advantage of this method is that the experiment can be done in laboratory, before 

designing the system.  

3.1. Determining the number of system cascades 

If we want to keep rubber temperature at the system output in the desired limits: 

 i W    , (14) 

(  tolerance), minimal number of transporters can be obtained from (13): 

 0
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. (15) 

Note 1: Symbol x represents rounding up. Relation (15) is valid when all cascades are 

the same. In the case when cascade are different, transporter number is determined for 

each system in particular, using the relations above. 

This method for determining number of cascades is applied for three already realized 

systems. The necessary numbers of cascade for three different types of tires are given in 

Table 1.  

Table 1 Number of cascades for different realized systems 

Tire factory Tire type Number of cascades 

N  

''Tigar-Michelline'' Pirot diagonal 5 

''Tigar-Michelline'' Pirot radial 7 

Tire Factory Ruma tractor 13 
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3.2. Determining rubber contraction coefficients  

Relation (11) can be applied to calculate rubber contraction coefficients of certain 

cascades. Let Li denote strip contraction (length L) while running through i -th cascade. 

Then, we have: 

  2 1i i iL K L    , (16) 

where K2 is technological parameter depending on rubber type and experimentally 

determined.  

After replacing (13) into (16) we obtain: 
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Finally, the relation for the rubber contraction coefficient has the following form: 

 1 1
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i.e.: 

 01 ( ), 1,2,...,i i W i n       , (19) 
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This part of equation doesn’t depend on temperature but only on system parameters. As 

required |i|   , sufficient condition for system control is to keep 0  V constant. In 

practice, variance of this difference should be as little as possible. Parameters i are 

complex functions of system parameters and cascade ordinal number. Until now, i has 

been obtained experimentally. Using (19) contraction coefficients are determined in 

advance, before designing the control system. Coefficient i is the smallest in the first 

cascade and the largest in the last one.  

Relation (19) is experimentally verified in the already realized systems as well as done 

for determining cascade number. In the case of the largest realized system in Serbia which 

consists of 13 cascades, the obtained values for contraction coefficients per each cascade 

are given in Table 2. 

Table 2 Contraction coefficients in the system with 13 cascades 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 

i 0.861 0.903 0.925 0.941 0.955 0.968 0.979 0.984 0.988 0.992 0.995 0.998 0.999 
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3.3. Correlation between the working velocity and the rubber strip dimension 

If we want to keep rubber temperature at the system output in the desired limits 

regardless of rubber strip dimensions, according to (9), the ratio V / K1, i.e., Vm1 / A must 

be kept constant. When we take into consideration that strip profiles for any size are 

geometrically similar (A / d = const., d  strip width) we finally obtain:  

 1 .
Vm

const
d

  (20) 

This relation can be used for determining transport velocity during cooling of different 

dimensions strip. The largest velocities are when the rubber strip has the smallest dimen-

sions and opposite. 

3.4. The flow of cooling water 

Cooling water flow in cascades can be determined in the following way. Heat balance 

of one cascade per unit time is: 
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The relation above represents water flow for i -th transporter. It is an approximated 

relation because heat radiation to environment is disregarded. Using (22), we obtain 

slightly higher values of  Qi than needed, but that is recommended for designing system 

control. 

4. CONCLUSION 

Thermodynamic model of protector cooling system is presented in this paper. The 

system represents multiple cascade type heat exchanger (series of cascade-connected 

transporters). The relations of thermodynamic model allow us to calculate in advance 

some system parameters and values necessary for a successful system control design. Re-

lations that provide determining necessary number of cascades of the given system and 

values for rubber contraction coefficients were derived. The obtained relations were veri-

fied on the already realized systems. Thermodynamic model also allow us to determine 

transporting strip velocities depending on tire strip dimensions (width and thickness), and 

cooling water flow. Also, using the described method, velocity of water flow through 

transporters and referent temperature (in the case of automated temperature control) could 

be calculated.  
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