
FACTA UNIVERSITATIS  

Ser: Elec. Energ. Vol. 26, No 1, April 2013, pp. 31 - 46 
DOI: 10.2298/FUEE1301031P 

ANALYSIS OF FINITE TOLERANCE EFFECT OF CRITICAL 

POLE ON CHARACTERISTICS OF SELECTIVE RC ACTIVE 

SPECIAL GEGENBAUER FILTERS 

Vlastimir D. Pavlović
1
, Aleksandar D. Ilić

2
, Zlata Ž. Cvetković

1
  

1
University of Niš, Faculty of Electronic Engineering, Niš, Republic of Serbia 

2
RATEL, Republic Agency for Electronic Communications, Belgrade, Republic of Serbia  

Abstract. A precise analytical method for finding the explicit expression for the 

characteristic function of special Gegenbauer filters applicable to the design of RC 

active filters is suggested in this paper. The adverse parasite effects of limited finite 

gain-bandwidth product of operational amplifiers are decreased by using filters with 

the low pass-band attenuation. The new class of continual filter functions generated by 

analytical method by extremal Christoffel-Darboux formula for orthogonal Gegenbauer 

polynomials has two parameters. One is the filter order, n, and the second one is real 

free parameter, v, which provides a wide range of the amplitude responses. In this 

paper, a detailed analysis of attenuation and insertion loss in the bandwidth and 

around the stop-band cut-off frequency, cs, are carried out using 3D plots and using 

examples of the effect of finite tolerance of quality factor module, Q, of critical 

conjugate-complex poles of considered RC active filter functions. 

Keywords: Christoffel-Darboux formula, orthogonal Gegenbauer polynomials, RC 

active Gegenbauer filter, frequency response analysis 

1. INTRODUCTION 

CHRISTOFFEL-DARBOUX formula, [1,2], can be efficiently implemented in filter 

function synthesis in continuous domain, as described by analytical method in works [3-

6]. Related results in application of the Christoffel-Darboux formula in design of one-

dimensional z domain multiplierless linear-phase FIR filters and 2D FIR filter have also 

been reported in works [7-12]. Popular one dimensional multiplierless CIC filters are 

described in literature [13,14]. Syntheses of the RC active filters are described in 

literature [15,16]. 
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Due to the effect of element tolerances and the limited gain-bandwidth product of 

operational amplifiers used in passive and active filter realizations, the pass-band 

response of the filter departs from the theoretical optimum much more in the frequency 

range near the band edge frequency than in the rest of the pass-band. An established 

technique to increase the element tolerances in the design of selective passive filters or to 

decrease the adverse effect of limited gain-bandwidth product of operational amplifiers 

uses transfer function with a special type of magnitude response for which the pass-band 

ripple amplitude decreases with the frequency increment, [17,18]. Some designs of low-

sensitivity RC active filters are considered in literature [19-23]. Helpful literature for filter 

theory is given in literature [24-30]. 

In this paper it is given illustration of the examples of the filter, of recently introduced 

by analytical method of approximation filter function in work [4], for specific numerical 

values of the real free parameter, v, and even filter orders, n = 6, n = 8  and n = 10. 

These filter functions depend on one variable parameter v, enabling the last attenuation 

maximum in the pass-band to be adjusted by numerical computation, as shown in 3D 

plots frequency response analysis examples. The RC ladder nature of the resulting filter 

circuits as described in the work [4], reduced the sensitivity to component tolerances 

sufficiently to eliminate the need for tuning. Approximation filter functions constructed in 

this work are such that have small pass-band magnitude ripples. Consequently, the 

sensitivity performance of the resulting network has advantage of improving the 

sensitivity performance. To avoid the need for filter tuning, filters of medium to low 

selectivity and low sensitivity to component tolerances are requisite. Sensitivity of the 

filter to finite tolerances of the critical module and the critical quality factor of the 

normalized complex conjugate poles are analyzed in this paper. 

2. MATHEMATICAL BACKGROUND 

Mathematical background for continual filter function with one free real parameter, v, 

and order of the filter function, n, is considered in this part of the paper. Set of orthogonal 

Gegenbauer polynomials, C 
v

n (), is orthogonal on segment, 1    +1, in respect to 

weighting function, w()  0,  

2

1

2 )1(),(





w .                                              (1) 

Certain values of free real parameter,  , which are listed in Table 1, defines  

Table 1 The hierarchy of classical orthogonal polynomials. 

  ),( w  Type of polynomials 

  2/12 )1(    Gegenbauer 

2/1  1  Legendre 

0  )1(/1 2  Chebyshev First kind 

1  )1( 2  Chebyshev Second kind 

Gegenbauer, Legendre and Chebyshev first and second kind orthogonal polynomials. 
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Norm of the r-th order of the classical Gegenbauer orthogonal polynomials has, for 

r = 0,1,2,..., the form:  


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dCCrh rr .                         (2) 

Directly applying the Christoffel-Darboux formula for the Gegenbauer orthogonal 

polynomials, we derive the characteristic function, A(n,v,), of the proposed filter function. 
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where, C 
v

r () = C (r,v,), are Gegenbauer orthogonal polynomials of r-th order, 

r = 1,2,...R, is number of cascade section of second order, h(r,v) is the norm of orthogonal 

polynomials and v is free real parameter.  

As an example, by characteristic function, (3) we generated pole locations of the 

normalized Gegenbauer filter function for n = 10,  = 0.15, v = 0.777, listed in Table 2. 

Table 2 Pole locations of the proposed polynomial Gegenbauer filter function  

for n = 10, v = 0.777 and  = 0.15. 

rrr js   , 10,...,2,1r . 

- 0.593968973174199   j 0.16832288030512205 

- 0.533395626654318   j 0.48950142374949457 

- 0.41956141180743767   j 0.7654403062083845 

- 0.26630210136050475   j 0.9694821178496846 

- 0.09137276918104686   j 1.0786183282370532 

The magnitude characteristics of the filter functions, a (n,v,) [dB], are defined as the 

logarithm of the square module of the characteristic function, A (n,v,),  

]dB[),,(log20),,(  nAna  .                                 (4) 

From the magnitude approximation in continuous domain by Christoffel-Darboux 

formula for Gegenbauer orthogonal polynomials defined by (3), we derive the 3D plot of 

normalized magnitude characteristics of the filter function in the pass-band,   (0,1), for 

band of the free real parameter, v  (0.9, 1.2), and for order, n = 8, and parameter, 

 = 0.15, corresponding to in-band attenuation, amax = 0.1dB, shown in Figure 1. 
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Fig. 1 3D plot of normalized magnitude characteristics of the filter function,  

in the pass-band for n = 8,  = 0.15, v  (0.9, 1.2) and   (0,1). 

3D plot, in Figure 1, of normalized magnitude characteristics of the filter function 

shows transition feature of Gegenbauer filter function between the traditional filter 

functions derived for special values of free real parameter,  , as particular solutions.  

3. PARTICULAR SOLUTIONS OF THE PROPOSED FILTER FUNCTION DERIVED  

FOR CLASSICAL ORTHOGONAL GEGENBAUER POLYNOMIALS  

Particular solutions of filter function (3), are given for values of free real parameter, 

 , defined in Table 1.  

3.1. First of particular solution of proposed filter function using Legendre 

orthogonal polynomials 

For v = 1/2 we give weighting function (1) of value w (v = 0.5, ) =1 and derive filter 

function for Legendre orthogonal polynomials, 
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where, P (r,),  represent the Legendre orthogonal polynomials. 

As example, by characteristic function (5) we generated pole locations of the 

normalized filter function generated by described analytical method for Legendre 

orthogonal polynomials for n = 10,  = 0.15, v = 0.5, listed in Table 3.  
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Table 3 Pole locations of the proposed filter function for Legendre polynomials  

derived for order n = 10, v = 0.5 and  = 0.15. 

rrr js   , 10,...,2,1r . 

- 0.4919477987992828641890952   j 0.1654924102543998785605376 

- 0.4416094466308945831190436   j 0.4811582731743207856125694 

- 0.3470212317784157265999371   j 0.7520957438618467885150038 

- 0.2197637699909412862494105   j 0.9522632839181990017184144 

- 0.07514667209247199446342382   j 1.059788559205653658996074 

3.2 Particular solution of proposed filter function using Chebyshev first kind 

orthogonal polynomials  

For v = 0 we give weighting function of value )1(/1),0( 2 w  and derived 

Chebyshev first kind filter function, 
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where, T (r,),  represent the Chebyshev orthogonal polynomials of the first kind. 

As example, by characteristic function, (6), we generated pole locations of the 

normalized Chebyshev first kind filter function for n = 10,  = 0.15, v = 0, which are listed 

in Table 4.  

Table 4 Pole locations of the proposed filter function for Chebyhev first kind 

polynomials derived for order n = 10, v = 0 and  = 0.15. 

rrr js   , 10,...,2,1r . 

- 0.361155173560939592538498   j 0.1613133945882286776382269 

- 0.3240421009078149769792677   j 0.4688225242222096645397391 

- 0.2542809875914478648307888   j 0.7322912840425286431940622 

- 0.1604230313972310349739562   j 0.9264865081348941269117547 

- 0.05418824935966591610568113   j 1.031175413613481470564874 

3.3 Particular solution of the proposed filter function using Chebyshev second 

kind orthogonal polynomials  

For v = 1 we give weighting function of value )1(),1( 2 w  and derived 

Chebyshev second kind filter function, 
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where, U (r,),  represent the Chebyshev orthogonal polynomials of second kind. 

As an example, by characteristic function (6), we generated pole locations of the 

normalized Chebyshev second kind filter function for n = 10,  = 0.15, v = 1, listed in 

Table 5.  

Table 5 Pole locations of the proposed filter function for Chebyhev second kind 

polynomials derived for order n = 10, v = 1 and  = 0.15. 

rrr js   , 10,...,2,1r . 

- 0.361155173560939592538498   j 0.1613133945882286776382269 

- 0.3240421009078149769792677   j 0.4688225242222096645397391 

- 0.2542809875914478648307888   j 0.7322912840425286431940622 

- 0.1604230313972310349739562   j 0.9264865081348941269117547 

- 0.05418824935966591610568113   j 1.031175413613481470564874 

Comparasion of normalized magnitude characteristics of the filter functions with pole 

locations listed in Tables 2 to 5 for n = 10,  = 0.15 and v = 0.777 for Gegenbauer filter 

function, v = 0.5 for Legendre filter function, v = 0 for Chebyshev first kind filter 

function, and v = 1 for Chebyshev second kind filter function, in the stop-band and the 

pass-band are shown in Figures 2 and 3, respectively. 

 

Fig. 2 Comparison of normalized magnitude characteristics in the stop-band of the filter 

functions, derived for n = 10,  = 0.15  and for: (a) v = 0.5, Legendre orthogonal 

polynomials, (b) v = 0, Chebyshev first kind orthogonal polynomials, (c) v = 0.777, 

Gegenbauer orthogonal polynomials and (d) v = 1, Chebyshev second kind 

orthogonal polynomials. 
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Fig. 3 Zoomed in the pass-band comparison of normalized magnitude characteristics 

from Fig. 2, derived for n = 10,  = 0.15  and for: (a) v = 0.5, Legendre orthogonal 

polynomials, (b) v = 0, C hebyshev first kind orthogonal polynomials, 

(c) v = 0.777, Gegenbauer orthogonal polynomials and (d) v = 1, Chebyshev 

second kind orthogonal polynomials.  

4. INSERTION LOSS ANALYSIS 

The magnitude characteristics of the filter functions can be expressed by means of 

insertion loss characteristics (in decibels),  

]dB[|)j(|log10 2

1210 sL A  .                                    (8) 

The proposed polynomial normalized prototype filter functions generated by the 

Christoffel-Darboux formula for the classical Gegenbauer orthogonal polynomials are 

determined by Eq. (3) for parameter values v = 0.888 and  = 0.15, and orders n = 6, n = 8 

and n = 10. Pole locations, sr,r+1 = r  jr, where r = 1,2,..., R/2 and n = 2R, of proposed 

filter functions of order n = 6, n = 8 and n = 10, are given in Tables 6, 7, and 8, respectively. 

Table 6 Pole locations of the proposed filter function for Gegenbauer polynomials 

derived for order n = 6, v = 0.888  and  = 0.15. 

rrr js   , 6,...,2,1r . 

- 0.8407318203193898   j 0.31241580541972985 

- 0.6124720589625705   j 0.8563289133194147 

- 0.22337564180560512   j 1.173878292324402 

Table 7 Pole locations of the proposed filter function for Gegenbauer polynomials 

derived for order n = 8, v = 0.888  and  = 0.15. 

rrr js   , 8,...,2,1r . 

- 0.6876481240806619   j 0.2178180922759596 

- 0.5797626599071993   j 0.622201686102077 

- 0.38359414776159495   j 0.9359537946631831 

- 0.13378307736950462   j 1.1089521249640877 
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Table 8 Pole locations of the proposed filter function for Gegenbauer polynomials 

derived for order n = 10, v = 0.888  and  = 0.15. 

rrr js   , 10,...,2,1r . 

- 0.5875688362574722   j 0.1674108697212237 

- 0.527418267040304   j 0.48691652199092045 

- 0.4144387083241363   j 0.7616228307010962 

- 0.2625060737480009   j 0.965131202458954 

- 0.08962753303437143   j 1.0746866509926576 

 

Fig. 4 Normalized magnitude characteristics in the stop-band of the Gegenbauer filter 

functions for v = 0.888  and  = 0.15, of order n = 6, n = 8 and n = 10. 

 

Fig. 5 Normalized magnitude characteristics from Fig. 4 zoomed in the pass-band of the 

Gegenbauer filter functions for v = 0.888 and  = 0.15, of order n = 10, n = 8 and 

n = 6.  
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5. FINITE TOLERANCE OF THE FILTER FUNCTION ANALYSIS 

Analog continuous-time all-pole low-pass filter function can be expressed in the form: 
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where, n = 2R is order of filter function, R is a total number of biquadrate sections, pr, is 

module of conjugate-complex poles, spr, 

222 }{Im}{Re rprprp ss  ,    Rr ,...,2,1 .                             (10) 

Conjugate-complex poles in Figure 6 are defined as, rrrp js   , and its module as,  

22 )()( rrrp   ,     Rr ,...,2,1 .                               (11) 

The critical module of conjugate-complex poles, pc, is determined as, 

},...,,{max 21 Rpppcp   .                                       (12) 

Then the pole quality factor of r-th biquadrate section is expressed by, 

}{Re2 rp

rp

rp
s

Q


 ,     Rr ,...,2,1 ,                                    (13) 

and critical pole quality factor, Qpc, is determined as, 

},...,,{max 21 Rpppcp QQQQ  .                                       (14) 

 

Fig. 6 Locations of pairs of complex conjugate poles with terms of definition quality 

factor, Qpr, where, pr is module of conjugate-complex poles, spr. 
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6. ANALYSIS OF FINITE TOLERANCE OF THE MODULE OF CRITICAL POLE OF FILTER FUNCTION 

The limited gain-bandwidth product has the effect to the each biquadrate sections 

pass-band response, r = 1,2,..., R, in the part of frequency range near the pass-band edge 

frequency of the RC active filter. The limited gain-bandwidth product has an equal impact 

in the part of frequency range near the band edge frequency and at the band edge 

frequency to the biquadrate section of critical complex conjugate poles which has 

maximum value of the pole quality factor, Q. In this part of paper, only the adverse 

impact to the biquadrate section of the critical quality factor is analyzed. 

The sensitivity of analog continuous-time filter function, Hn (s  j), to the critical 

module of the normalized complex conjugate poles is defined as, 
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Values of attenuation on frequency,  = 1, for set of tolerance values of critical module 

of complex conjugate poles, pc, of the normalized 10-th order filter function derived for 

Gegenbauer polynomials by equation (3) for order n = 10, and parameters v = 0.888 and 

 = 0.15, are listed in Table 9.  

Table 9 Values of attenuation on,   = 1,  for set of tolerance of critical pole module, 

pc, of normalized 10-th order filter function derived for Gegenbauer 

polynomials for order n = 10, v = 0.888 and  = 0.15. 

cp  ]dB[)1( a   cp  ]dB[)1( a  

+ 0.5 % 0.316371  - 0.5 % 2.14522 

+ 1 % 0.533451  - 1 % 2.50501 

+ 2 % 0.962716  - 2 % 3.22362 

+ 3 % 1.38123  - 3 % 3.93541 

+ 5 % 2.17430  - 5 % 5.32250 

When the finite tolerance of critical module, pc, is limited to 0% and to 3%, 

normalized magnitude characteristics in the stop-band and zoomed in the pass-band and 

around stop-band cut-off frequency, cs, as well normalized group delay characteristics of 

the 10-th order Gegenbauer filter function for v = 0.888 and  = 0.15, are analyzed in 

Figures 7, 8, 9, and 10, respectively. 
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Fig. 7 Normalized magnitude characteristics of the Gegenbauer filter function for n = 10, 

 = 0.15, and v = 0.888, and finite tolerance of the critical module of 0% and 3% 

 

Fig. 8 Zoomed in the pass-band normalized magnitude characteristics from Fig. 7 for 

n = 10,  = 0.15 and v = 0.888, and finite tolerance of the critical module of 0% 

and 3%. 

 

Fig. 9 Normalized magnitude characteristics from Fig. 7, for n = 10,  = 0.15 and v = 0.888, 

zoomed around the stop-band cut-off frequency, cs, for 0% and 3% of finite 

tolerance of the critical module. 
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Fig. 10 Group delay of the normalized filter function, for n = 6,  = 0.15 and v = 0.888, 

for  %0  and %3  of finite tolerance of the critical module. 

7. ANALYSIS OF FINITE TOLERANCE OF THE CRITICAL Q  FACTOR OF FILTER FUNCTION 

The sensitivity of analog continuous-time filter function, Hn (s  j), to the critical 

quality factor, Qpc, of complex conjugate poles is defined as, 
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Values of attenuation on frequency,  = 1, of normalized 10-th order filter function 

derived for Gegenbauer polynomials for n = 10, v = 0.888 and  = 0.15 are derived for set 

of the critical quality factor tolerance of complex conjugate poles, Qpc, and listed in 

Table 10.  

When tolerance of the critical Q factor are limited to 0% and 3%, the normalized 

magnitude characteristics of the 10 -th order filter function, in the stop-band and in the 

pass-band, are analyzed in the Figures 11 and 12. In Figure 13 are shown magnitude 

characteristics for same finite tolerance of the critical Q factor, zoomed in the stop-band 

around the stop-band cut-off frequency, cs. 
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Table 10 Values of attenuation on,  = 1, for set of finite tolerances of critical quality 

factor, Qpc, of normalized 10-th order filter function derived for Gegenbauer 

polynomials for v = 0.888 and  = 0.15. 

cpQ  ]dB[)1( a   cpQ  ]dB[)1( a  

+ 0.5 % 0.0751704  - 0.5 % 2.30724 

+ 1 % 0.0517322  - 1 % 2.26051 

+ 2 % 0.0055166  - 2 % 2.16864 

+ 3 % 0.039835  - 3 % 2.07883 

+ 5 % 0.128026  - 5 % 1.90516 

 

Fig. 11 Normalized magnitude characteristics in the stop-band of the Gegenbauer filter 

function for n = 10,  = 0.15, v = 0.888, and finite tolerance of critical quality 

factor  of %0  and %3 . 

 

Fig. 12  In the pass-band zoomed normalized magnitude Gegenbauer characteristics from 

Fig. 11 for n = 10,  = 0.15, v = 0.888, and finite tolerance of critical quality 

factor of %0  and %3 .  
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When tolerances of the critical Q factor are limited to 0% and 3%, the normalized 

group delay characteristics of the 10 -th order filter function are analyzed in Figure 14. 

 

Fig. 13 Normalized magnitude characteristics of the Gegenbauer filter function for 

n = 10,  = 0.15, v = 0.888, from Fig. 11, zoomed in the stop-band around the 

stop-band cut-off frequency, scω , for finite tolerance of critical quality factor 

Qpc = 0% and Qpc = 3%. 

 

Fig. 14 Normalized group delay characteristics of the Gegenbauer filter function for 

n = 10,  = 0.15, v = 0.888, and for 0% and 3% of finite tolerance critical 

quality factor, Qpc. 

8. CONCLUSION 

This paper presents 3D analysis and detailed sensitivity analysis to component 

tolerances in the pass-band and the stop-band of a new class of filter functions introduced 

in literature [4]. An analysis of determining the characteristic features of these filters 

applicable for the design of the RC active filter is presented. In literature [4] available 

technique for derivation of filter functions at the approximation stage of filter synthesis is 

entirely analytical. In addition, the design economy of selective filters can be considerably 

improved by analyzing 3D plots of the magnitude response and the magnitude of the in- 
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band ripples as a function of the free parameter, v, the filter order, n, and the frequency 

for maximum in-band attenuation defined by the parameter, , which defined the 

maximum value of reflection coefficient in the pass band. In this paper, an exact method 

has been presented to determine the explicit shape of the magnitude characteristic 

function for polynomial filters of even degree, for n = 6, n = 8 and n = 10. Amplitude 

characteristics are normalized by the maximum value of the attenuation in the pass-band 

of 0.1dB. Frequency characteristics of filter function for n = 10 and v = 0.888 are 

normalized to the maximum value of the attenuation in the pass-band of 0.1dB, and 

compared from point of view of finite tolerance of filter components. 

The sensitivity of analog continuous-time filter function derived in literature [4] for 

Gegenbaure orthogonal polynomials, to finite tolerances of critical quality factor, Qpc, 

and to finite tolerances of critical module, pc, of complex conjugate poles are analyzed 

in this paper. Limited gain-bandwidth product has dominant impact to the biquadrate 

section of critical poles in the part of frequency range near the pass-band edge frequency 

and at the band edge frequency. Foregoing effect is inconsiderable on the filter insertion 

loss. From the point of view of finite pole tolerance in this paper it is analyzed the 

proposed new design method suitable for the design of filters that may satisfy different in-

band attenuation specifications. The analysis of analytical approximation for design 

procedure of all-pole, RC active, low selectivity low-pass prototype filters, with low 

sensitivity to component tolerances is presented.  
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