FACTA UNIVERSITATIS
Series: Elec. Energ. Vol. 26, No 1, April 2013, pp. 11 —30
DOI: 10.2298/FUEE1301011N

APPLICATION OF PARACONSISTENT ANNOTATED LOGIC
PROGRAM BF-EVALPSN TO INTELLIGENT CONTROL

Kazumi Nakamatsu

University of Hyogo, Himeji 670-0092 Japan,
E-mail: nakamatu@shse.u-hyogo.ac.jp

Abstract. A paraconsistenannotatedlogic program called EVALPSN has been developedfor
dealingwith defeasibledeonticreasoningand plausiblereasoningand appliedto variouskinds of
intelligent control and safety verification. Moreover, in order to deal with before-afterrelation
betweenprocesses(timitervals),bf(before-after)-EVALPSNhasalsobeendevelopedecently.in
this paper,we reviewthe reasoningsystemfor before-afterelationbetweenprocessesasedon bf-
EVALPSN. The systemconsistsof two groupsof inferencerulesin bf-EVALPSN calledbasicand
transitive bf-inferencerules. The applicationof the reasoningsystemto real-time processorder
controlis introducedwith simpleexamples.

Key words: before-afterelation,EVALPSN, bf-EVALPSN, annotatedogic program,
reasoning system.

I. INTRODUCTION

It has already passed over two decades since paraconsistent annotated logic and its logic pro-
gramming have been developed [3], [4]. Based on the original annotated logic program we have
developed four kinds of paraconsistent annotated logic program, ALPSN (Annotated Logic Program
with Strong Negation) that can deal with some non-monotonic reasonings such as default reasoning
[5], VALPSN (Vector ALPSN) that can deal with defeasible and plausible reasonings [6], EVALPSN
(Extended VALPSN) that can deal with defeasible deontic and plausible reasonings [7], [17],
and bf(before-after)-EVALPSN that can deal with before-after relation between processes(time
intervals) recently [16], [18]. Those annotated logic programs have been applied to various kinds
of intelligent control and safety verification, railway interlocking safety verification [9], air traffic
safety verification [8], traffic signal control [10], discrete event control [11], robot action control
[15], pipeline valve control [14], real-time process order control [13], and so on. Moreover, it has
been shown that EVALPSN can be implemented on microchips as electronic circuits, which implies
that EVALPSN is suitable for real-time control [15].

In this paper, we review the reasoning system for process before-after relations aiming efficient
real-time process order control and safety verification in bf-EVALPSN [18]. The proposed before-
after relation reasoning system consists of two groups of inference rules bakéd bf-inference
rule andtransitive bf-inference rule, both of which can be represented in bf-EVALPSN.

In bf-EVALPSN, a special annotated liter&@(pm, pn,t) : [(%,), 1] called bf-literal whose
non-ngative integer vector

Accepted November 1, 2012

12 K. NAKAMATSU

annotation(i,) represents the before-after relation between proceBsgsand Pr,, at time
t is introduced. The integer componeritand j of the vector annotatioi, j) represent the after
and before degrees between proced®es and Pr,,, and before-after relations are represented in
vector annotations paraconsistently.

In the proposed reasoning system, the basic bf-inference ruleseddar determining the vector
annotation of a bf-literal in real-time according to the start/finish time informadfdwo processes;
on the other hand, the transitive bf-inference rules are used fomdietag the vector annotation
of a bf-literal in real-time based on the vector annotations of two relatddeb&ls as follows.
Suppose that there are three procesggs, Pr; and Pro starting in sequence, then the before-
after relation between process€s, and Pr, can be determined from the before-after relation
between processd3ry, and Pr;, and that between processBs; and Pr». Such process before-
after relation reasoning is also formalized as transitive bf-inferentss im bf-EVALPSN. The
transitive bf-inference system can contribute to the reduction of using tohéasic bf-inference
rules and it is a unique remarkable feature of the proposed systerpo&uphat there is a bf-
EVALPSN process order control system dealing with ten procegses,Pri1, - - - and Prg starting
in sequence. Without transitive bf-inference rules, the system hasatondt 1,C> = 45 before-
after relations independently by basic bf-inference rules. Howeves ifise transitive bf-inference
rules, just nine before-after relations between processeand Pr;y1 (i =0,1,2,---,8) should
be determined by basic bf-inference rules, and the rest beforeraftgions could be determined
based on the nine before-after relations by using transitive bf-infereules.

This review paper is organized in the following manner: first, EVALPSNeigawed briefly,
and bf-EVALPSN is defined in details; next, it is shown how to reason rbedfter relations
in bf-EVALPSN with a simple example of process order control, and bafsinference rules and
transitive bf-inference rules are introduced; furthermore, a sinmaletisal process order verification
system is provided as an example; last, a related work of treating beftererelation of time
intervals in a logical system and our future work are introduced as thelusian.

1. EVALPSN

In this section, we review EVALPSN briefly [7]. Generally, a truth valuethanannotationis
explicitly attached to each literal in annotated logic programs [3]. For elargip be a literal,u
an annotation, thep: i is called arannotated literal The set of annotations constitutes a complete
lattice. An annotation in EVALPSN has a form ff, j), x| called anextended vector annotation
The first componenti, ;) is called avector annotatiorand the set of vector annotations constitutes
the complete lattice,

To(n) ={ (z,y)|0 <z <n,0 <y <n,zy,n are integers
in Figurel. The ordering{.) of 7,(n) is defined as : letz1,v1), (z2,y2) € To(n),
(z1,y1) S0 (2,y2) iff 1 <zz and y1 < yo.

For each extended vector annotated litgrdl(s, j), 1], the integeri denotes the amount of positive
information to support the litergh and the integerj denotes that of negative one. The second
componeniu is an index of fact and deontic notions such as obligation, and the set ettoad
components constitutes the complete lattice,

7& = {L7a7ﬂ777*17*27*37—r}'

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 13

-
) ws 0 %1
) gl g
(0;0) 1

Fig. 1: Lattice7,(2) and Lattice7y

(2,2)

The ordering) of 7 is described by the Hasse’s diagram in Fig.1.
The intuitive meaning of each member 9 is
1 (unknown) a (fact), B (obligation)
5 (non-obligation) *; (fact and obligation)
x2 (obligation and non-obligation)
x3 (fact and non-obligation) T (inconsistency)
Then the complete latticg (n) of extended vector annotations is defined as the prafiL(et) x 7.
The ordering&.) of 7c(n) is defined as : lef(i1, j1), #1] and[(iz, j2), u2] € Te,
[(il,j1),ﬂ1] je [(izan)a/’LQ]
iff
(i1,71) = (i2,72) and pn =a pio.
There are two kinds oépistemic negatiof—; and—2) in EVALPSN, both of which are defined

as mappings ove¥,(n) and 74, respectively.
Definition 1(epistemic negations; and—, in EVALPSN)

~1([(0,9), ul) =[G, 0), 1), Vi € Ta,

—2([(2,9), L) = (6 9), L], =2,), o) =[5, 5), o],
—2([(2,9),) = (5, 5),7], =2, 5),4]) = [, 5), Bl
—2([(3,9), 1)) = [(0,9), %al, —2(((E4), *2]) = (4, 5), 2],

—2([(8,9), %a]) = [(,5),], =2(((0,9), T]) =[5, 5), T]-

If we regard the epistemic negations as syntactical operations, the epistegations followed
by literals can be eliminated by the syntactical operations. For example,

-1(p:[(2,0),a]) = p:[(0,2),a] and
=2(q:[(1,0), 8]) = p:[(1,0),].

There is another negation callettong negation(~) in EVALPSN, and it is treated as well as
classical negation.
Definition 2(strong negationv) (see [4]) LetF' be any formula and- be —; or —a.

NF:defF—>((F—>F)/\ﬁ(F—>F)).

14 K. NAKAMATSU

Definition 3 (well extended vector annotated literal) Lebe a literal.

p:[(2,0),p] and p:[(0,]), u]
are calledvell extended vector annotated litera¥gherei, j € {1,2,--- ,n},andp € { o, 8, v }.

Definition 4 (EVALPSN) If Lo, --- , L,, are weva-literals,
Lin---ANLAN~Lizi AN+ N~ Ly — Lo
is called anEVALPSN clauseAn EVALPSNis a finite set of EVALPSN clauses. Here we com-

ment that if the annotationa and g represent fact and obligation, notions “fact”, “obligation”,
“forbiddance” and “permission” can be represented by extendetbrvannotations|(m, 0), a],
[(m,0), £], [(0,m),], and [(0,m),], respectively in EVALPSN, wheren is a non-negative

integer.

Ill. BEFOREAFTER EVALPSN

In this section, we review bf-EVALPSN that can deal with before-afedations between two
processes(time intervals). The reasoning system in bf-EVALPSNstertd two kinds of inference
rules calledbasic bf-inference rulandtransitive bf-inference rulewhich will be introduced with
some simple examples of real-time process order control in the followictipss. In bf-EVALPSN,

a special annotated literak(p., pn,t) : [(i,7), u] called bf-literal whose non-negative integer
vector annotatior(i, j) represents the before-after relation between proceBsgs and Pr,, at
time ¢ is introduced. The integer componentsnd j of the vector annotatiorfi, j) represent
the after and before degrees between proceBsgsp) and Pr,(p,), respectively, and before-
after relations are represented in vector annotations paraconsistaritie feasoning system, the
basic bf-inference rules are used for determining the vector annotattiarbf-literal in real-time
according to the start/finish time information of two processes. On the otie, lthe transitive
bf-inference rule is used for determining the vector annotation of a &lite real-time based on
the vector annotations of two related bf-literals as follows. Suppose that #ne three processes,
Pro, Pri and Pr; starting in sequence, then the before-after relation between procsses
and Pry can be determined from two before-after relations between procésseand Pr;, and
between processd3r; and Pr2. Such process before-after relation reasoning is also formalized as
transitive bf-inference rules in bf-EVALPSN. The transitive bf-igfiece system can contribute to
reduce using times of basic bf-inference rules and it is a unique reslarkeature of the reasoning
system.

Suppose that there is a process order control system dealing with teespes,Pro, Pri,

- and Prg starting in sequence. Without transitive bf-inference rules, the systsriddeal
with 10C> = 45 before-after relations independently by basic bf-inference rulesveMer, if
we use transitive bf-inference rules, just nine before-after relatimt®&een processeBr; and
Priy1 (1=0,1,2,---,8) need to be determined by basic bf-inference rules, and the resebefor
after relations could be determined based on the nine before-after msldiio using transitive
bf-inference rules.

For example, the before-after relation of procesBes and Pr, is inferred from two before-
after relations between procesdes; and Prs, and between processé&%; and Pry by transitive
bf-inference rules; moreover, the before-after relation betweeoesses’r, and Pr; is inferred

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 15

T P?’i
— s e
L P

x xr Ys 1
s Pr; N Ys Pr; Y

I 1 B f ™

Fig. 3: Bf-relations Disjoint Beforelb)/After(da)

from two before-after relations between procesBes and Pry, and between processés, and
Prs by transitive bf-inference rules.

We introduce bf(before-after)-EVALPSN that can deal with befafter relations between two
processes. Hereafter, the wordefore-dter” is abbreviated as just “bf”".

A particular literal R(p;, p;,t) whose vector annotation represents the bf-relation between
processes’r; (p;) and Pr;(p;) is introduced, which declares the bf-relation between the processes

Definition 5(bf-EVALPSN)

An extended vector annotated literBi(p;, p;,t) : (4, 5), 1] is called abf-EVALP literal or a bf-

literal for short, where(i, j) is a vector annotation and € {«, 3,~}. If an EVALPSN clause
contains bf-EVALP literals, it is called bf-EVALPSN clauser just abf-EVALP clauséf it contains

no strong negation. Af-EVALPSNs a finite set of bf-EVALPSN clauses.

We provide a paraconsistent before-after interpretation for vectootations representing bf-
relations in bf-EVALPSN, and such a vector annotation is catiednnotations Exactly speaking,
bf-relations are classified into fifteen meaningful kinds according teelations between each
start/finish time of two processes in bf-EVALPSN. First of all, we definentiost basic bf-relations
in bf-EVALPSN.

Before (be)/After (af)

Bf-relations befordafter are defined according to the bf-relation between each start time of two
processes, which are represented by bf-annotabieraf , respectively. Suppose that there are two
processesPr; with its start timex, and finish timez, and Pr; with its start timey, and finish
time y;. If one process has started before/after another one starts, theffrrédations between
them are defined as “befole)/after@f)", respectively. They are described by the process time
chart in Fig.2 with the condition that proce$s; has started before process:; starts.

We introduce other kinds of bf-relations as well as befoeg(after@f). The original idea of
the classification of process before-after relations has introduced in [1
Disjoint Before (db) /After (da)

Bf-relationsdisjoint befordafter between two processes are represented by bf-annotatiids,
respectively. The expressions “disjoint before/after” imply that thera time lag between the
earlier process finish time and the later one start time. They also areéb#esby the process time
chart in Fig.3.

Immediate Before (rb)/After (ma)

Bf-relationsimmediate beforafter between two processes are represented by bf-annotatidma,
respectively. The expressions “immediate before/after” imply thaetigeno time lag between the
earlier process finish time and the later one start time. The bf-relationaslsoalescribed by the
process time chart in Fig.4.

16 K. NAKAMATSU

| P i 3{3 P Trj lef

T Ty

Fig. 4: Bf-relations Immediate Befonal)/After(na)

Ts P?’i Ty
A
Ys ! P?’j vr

Fig. 5: Bf-relations, Joint Before/After

Joint Before (j b)/After (j a)
Bf-relations joint befordafter between two processes are represented by bf-annotgtiofis,
respectively. The expressions “joint before/after” imply that the twocpsses overlap and the
earlier process had finished before the later one finished. The hibredaare also described by
the process time chart in Fig.5.
S-included Before §b), S-included After (sa)

Bf-relations s-included befor&after between two processes are represented by bf-annotations
sb/sa, respectively. The expressions “s-included before/after” imply timat process had started
before another one started and they have finished at the same time.f-félations are also
described by the process time chart in Fig.6.

Included Before (i b)/After (i a)

Bf-relationsincluded beforfafter between processddr; and Pr; are represented by bf-annotations

i b/i a, respectively. The expressions “included before/after” imply thatpmocess had started/finished
before/after another one started/finished, respectively. The Wifaredaare also described by the
process time chart in Fig.7.

F-included Before b)/After (f a)
bf-relations f-include beforéafter between two processeBr; and Pr; are represented by bf-
annotationsf b/f a, respectively. The expressions “f-included before/after” imply ttheg two
processes have started at the same time and one process had fimfrecabother one finished.

:fs PT’,L' xlf
I R 1
vsi Pr; 1ur
Fig. 6: Bf-relations S-included Beforglf)/After(sa)
‘1175 Pr; iff
I " 1
Ys' Pry i¥r

Fig. 7: Bf-relations Included Beforeb)/After(i a)

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 17

zs Pr, oy
I 1

Fig. 8: Bf-relations F-included Beforkb)/After(f a)

Lfs P?”i 1|7.f
! 1
IR

Fig. 9: Bf-relation, Paraconsistent Before-after

The bf-relations are also described by the process time chart in Fig.8.
Paraconsistent Before-after pba)
Bf-relation paraconsistent before-aftébetween two processeBr; and Pr; is represented by
bf-annotationpba. The expression “paraconsistent before-after” implies that twogss®Es have
started at the same time and also finished at the same time. The bf-relatieacitbdd by the
process time chart in Fig.9.

The epistemic negation over bf-annotatiobs, af , db, da, nb, ma, j b,ja,ib,i a, sb, sa,
f b, fa, pba is defined and the complete lattice of bf-annotations is shown in Fig.10.
Definition 6 (Epistemic Negatior; for Bf-annotations) The epistemic negatien over the bf-
annotations

{be, af, da, db, ma, mb, ja, jb, sa, sb, ia, ib, fa, fb, pba}

is obviously defined as the following mappings :

—1(af) =be, —1(be) =af, -—i(da)=db,
—1(db) =da, —i(ma) =mb, —1(mb)=ma,
—-1(ja) = jb, —1(jb) = ja, —u(sa)=sb,
—1(sb) =sa, —i(ia) =ib, —1(ib) = ia,
—1(fa) = fb, —1(fb) = fa, -—i(pba) = pba.

We note that a bf-EVALP literaR(pi, pj, t) : [u1, p2], Wherep, € { mb, j b, sb, i b, fb,
pba,fa,ia,sa,jb, ma}andu2 € {«, 8,~}, would not be well annotated i=/0 andn=£0,
however, since the bf-literal is equivalent to the following two well annaotddkliterals:

R(piapjvt): [(m,O),,u] and R(pizpjat) : [(07 TL),/L],

such a non-well annotated bf-EVALP literal can be dealt with as the cotigm of two well
annotated bf-EVALP literals. For example, suppose a non-well anigobdtEVALP clause

R(pi,pj,to):[(m,n), po] — R(pi, pj, t1):[(k, 1), pual,

wherek #£0, 1 #0, m #0 and n 0. It can be equivalently transformed into two well annotated

18 K. NAKAMATSU

knowledge

before after

Fig. 10: The Complete Lattic&,(12),; of Bf-annotations

bf-EVALP clauses,

R(pi, pj, to) :[(m, 0), po] A R(pi, pj, to):[(0,n), po]
— R(pi,pj,t1):[(k,0), pua],

R(pi, pj, to) :[(m,0), po] A R(pi, pj, to):[(0,n), po]
— R(pi,pj, t1):[(0,1), pa].

IV. REASONING SYSTEM IN BFEVALPSN

In this section, we introduce the reasoning system in bf-EVALPSN, whicisists of two kinds
of inference rules, basic inference rules for reasoning bf-relatignsrocess start/finish times and
transitive inference rules for reasoning one bf-relation from two ofi¢elations transitively.

A. Examples of bf-relation reasoning

In order to introduce the basic inference rule we show a simple examplerefation reasoning.
Suppose that processéy,, Pri and Pre are scheduled to be processed according to the time
chart in Fig.11, then we show how the bf-relations between those mexese reasoned at each
time ¢;(0 << 7).

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 19

time
Prody to t1 to t3 1y ts tg 17

P’I“()

Y

'
'
1
'
'
'
1
' >
i
1
'
1

P’I“l i
Proy

|_>|

Fig. 11: Process Schedule Chart

At time to, no process has started, thus we have no knowledge in terms of thkatiéms between
processesro(po), Pri(p1) and Pra(p2). We have the bf-EVALP clauses,

R(po,ph tO) : [(07 0)7 047 R(p17p27 tO) : [(07 0)7 Ot]7
R(po,p27 tO) : [(07 0)7 04'

At time t;, only processPr, has started, then it is obviously reasoned that the bf-relation
between processd3r, and Pr1 will be one of the bf-annotationslb (0, 12), mb(1,11), j b(2, 10),
sh(3,9),i b(4,8) whose greatest lower bound(ig, 8) (refer to Figure 10). On the other hand, we
still have no knowledge in terms of the bf-relation between proceBsesand Prs, thus the vector
annotation of bf-literalR(p1, p2, t1) still remains(0,0). Obviously bf-literal R(po, p2, 1) has the
same vector annotatiobe (0, 8) as that of bf-literalR(po, p1,t1), and we have the bf-EVALP
clauses,

R(po,p1,t1):[(0,8),0&}, R(p17p27t1) : [(0,0),&],
R(po,pg,tl):[(o,g),od.

At time t2, processPri has started before proce$¥, finishes, then it is obviously reasoned
that the bf-relation between procesdes, and Pr, will be one of the bf-annotations$,b(2, 10),
sh(3,9), i b(4,8) whose greatest lower bound {8,8) (refer to Fig.10). As proces®r, has
not started yet, the vector annotation of bf-litefap;, p2, t2) turns to(0, 8) from (0, 0) as well
as that of bf-literalR(po, p2, 1) and the vector annotation of bf-liter&(po, p2,t2) still remains
(0,8).

Therefore, we have the bf-EVALP clauses,

R(p07 P, t2) : [(25 8)7 a}? R(plap27 t?) : [(07 8)7 Of],

R(p07 b2, t2) : [(Ov 8)7 O‘}'
Attime ¢3, processPr, has started before procesdes, and Pr; finish, then the vector annotation
of bf-literal R(po, p1,t3) still remains(2,8), and the vector annotatiof®), 8) of both bf-literals
R(p1,p2,ts3) and R(po, p2,t3) turns to(2,8) as well as that of bf-literaR(po, p1,t2). We have
the bf-EVALP clauses,

R(po,p1,t3):((2,8),0], R(p1,p2,t3):[(2,8), 0],

R(p07p27 t3) : [(27 8)7 0[}.

20 K. NAKAMATSU

At time t4, only processPr; has finished before processBs, or Pri finish, then bf-literals
R(p1,p2,ts) andR(po, p2, ta) have the same bf-annotatiot (4, 8). On the other hand, the vector
annotation of bf-literalR(p1, p2, t4) still remains(2,8). We have the bf-EVALP clauses,

R(po,p1, t4) : [(2’ 8)7 O‘]v R(p17p27 t4) : [ib(47 8)7 04]7
R(po, p2,ta):[ib(4,8), a].

At time t5, processPro has finished before proce$%- finishes, then bf-literalR(po, p1,ts5)
has bf-annotation b(2,10). Even though proces®r; has not finished yet, all the bf-relations
between processeBry, Pri and Pre have been determined as follows:

R(po,pl, t5) : [jb(27 10)’ a]? R(p17p27 t5) : [ib(47 8)’ Odv
R(po,pg, t5) : [ib(4, 8), Oz}.

B. Basic before-after inference rule

Now we construct basic bf-relation inference rules calbdedic bf-inference rulewith referring
to the example in Section IV-A.

In order to represent the basic bf-inference rules in bf-EVALPS& newly introduce two more
literals:

st(ps, t), which is intuitively interpreted that procedd-; starts at timef, and

fi(pi, t), which is intuitively interpreted that proce$%; finishes at time,,
which are used for expressing process start/finish information andhaay one of the vector
annotations(0, 0), t (1, 0), f (0, 1), (1, 1), where annotations andf can be intuitively interpreted
as “true” and “false”, respectively. Firstly, we show a group of basimference rules to be applied
at the initial stage (timeo) for bf-relation reasoning, which are call€d, 0)-rules

(0,0)-rules
Suppose that no process has started yet and the vector annotatielitefabR (p;, p;, ¢) is (0, 0),
which shows that there is no knowledge in terms of the bf-relation betwemegsesPr; and
Prj, then the following two basic bf-inference rules are applied at the initiakestag
(0,0)-rule-1 If processPr; started before proces3r; starts, then the vector annotatiod, 0)
of bf-literal R(ps, p;,t) should turn to bf-annotatiobe (0, 8), which is the greatest lower bound
of the bf-annotationsdb(0,12), nb(1,11), j b(2,10), sb(3,9), i b(4,8).
(0,0)-rule-2 If both processe$r; and Pr; have started at the same time, then it is reasonably
anticipated that the bf-relation between procesBesand Pr; will be one of the bf-annotations,
fb(5,7), pba(6,6), fa(7,5) whose greatest lower bound {§,5) (see Fig.10). Therefore, the
vector annotatior{0, 0) of bf-literal R(p;, p;,t) should turn to(5, 5).

Basic bf-inference ruleg0, 0)-rule-1 and 2 may be translated into the bf-EVALPSN clauses,

R(pi, p;,1):1(0,0), a] A st(pi, t):[t, &]A ~ st(p;,t):[t, a

= R(pi, p;j;1):((0,8), o,)
R(pi, p;j;t):((0,0), o] A st(pi, t):[t, 0] A st(pj,t):[t,]
= R(pi, p;; 1):((5,5), o] @)

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 21

Suppose that one of basic bf-inference rules0)-rule-1 and 2 has been applied, then the vector
annotation of bf-literalR(p;, p;,t) should be one of0, 8) or (5, 5). Therefore, we have two groups
of basic bf-inference rules to be applied immediately after basic bfenfer rules(0, 0)-rule-1
and 2, which are called0, 8)-rules and (5, 5)-rules respectively(0,8)-rules

Suppose that procesBr; has started before procesyd-; starts, then the vector annotation of
bf-literal R(p;,p;,t) should be(0,8). Then we have the following inference rules to be applied
immediately after basic bf-inference ru(8, 0)-rule-1.

(0,8)-rule-1 If processPr; has finished before proceddr; starts, and procesBr; starts
immediately after procesBr; finished, then the vector annotati¢, 8) of bf-literal R(p;, p;, t)
should turn to bf-annotationb (1, 11).

(0,8)-rule-2 If processPr; has finished before proced3r; starts, and procesBr; has not
started immediately after proced®r; finished, then the vector annotatiqo, 8) of bf-literal
R(ps,pj,t) should turn to bf-annotatiodb(0, 12).

(0,8)-rule-3 If processPr; starts before procesBr; finishes, then the vector annotatio, 8)

of bf-literal R(p;, p;,t) should turn to(2, 8) that is the greatest lower bound of the bf-annotations,
j b(2,10), sb(3,9), i b(4,8). Basic bf-inference rule§), 8)-rule-1,2 and 3 may be translated into
the bf-EVALPSN clauses,

(p“py £):[(0,8),a] A fi(pi, t):[t, a] A st(p;,t):[t]

R(pi, pj,t):[(1,11), o, ®3)
(p17p97 t):[(0,8),a] A fi(pi, t):[t, a]A ~ st(pj,t):[t]

R(pi,p;,1):[(0,12), o], 4)
(pL7pJ7):[(0,8), a]A ~ fi(pi,t):[t, o] A st(ps,1):[t,]

R(pi,pj, t):((2,8), a]. (5)

(5,5)-rules

Suppose that both processEs; and Pr; have already started at the same time, then the vector
annotation of bf-literalR(p;, p;, t) should be(5,5). Then we have the following inference rules
to be applied immediately after basic bf-inference r{de0)-rule-2.

(5,5)-rule-1 If processPr; has finished before proceg¥-; finishes, then the vector annotation
(5,5) of bf-literal R(p;,p;,t) should turn to bf-annotatioab(5, 7).

(5,5)-rule-2 If both processesPr; and Pr; have finished at the same time, then the vector
annotation(5, 5) of bf-literal R(p;, p;,t) should turn to bf-annotatiopba(6, 6).

(5,5)-rule-3 If processPr; has finished before proce$¥; finishes, then the vector annotation
(5,5) of bf-literal R(p:, pj, t) should turn to bf-annotatiosa(7, 5). Basic bf-inference rule§, 5)-
rules-1,2 and 3 may be translated into the bf-EVALPSN clauses,

(pupp £):[(5,5), a] A fi(pi,) :[t, &]A ~ fi(p;, t):[t, a]
(plvp,7'7 t) : [(57 7)7 a]v (6)
(pupj’ £):[(5,5), a] A fi(pi,t):[t,] A fi(p;, t):[t, 0
R(pi, p;,):((6,6), o, Q)
£):((5,5), a]A ~ fi(pi, t):[t, a] A fi(p;,t):[t, 0]
R(pi, p;,t):[(7,5), . 8

(p’bvpj7

22 K. NAKAMATSU

If one of basic bf-inference rules3, 5)-rule-1,2 and 3, an@0, 8)-rule-1 and 2 has been applied, the
final bf-relations represented by bf-annotations suchtg®, 10)/j a(10, 2) between two processes
should be derived. On the other hand, even if basic bf-inferencg @u$g-rule-3 has been applied,
no bf-annotation could be derived. Therefore, a group of basiefbfence rules calle¢2, 8)-rules
should be considered after applying basic bf-inference (@l&)-rule-3.

(2,8)-rules
Suppose that proceg3r; has started before proceBs; starts and procesBr; has started before
processPr; finishes, then the vector annotation of bf-litefa(p;, p;, t) should be(2,8) and the
following three rules should be considered.
(2,8)-rule-1 If processPr; finished before proces®r; finishes, then the vector annotation
(2, 8) of bf-literal R(p;,pj,t) should turn to bf-annotatiopb(2, 10).
(2,8)-rule-2 If both processesPr; and Pr; have finished at the same time, then the vector
annotation(2, 8) of bf-literal R(p:, p;,t) should turn to bf-annotatiohb(3,9).
(2,8)-rule-3 If processPr; has finished beforér; finishes, then the vector annotati¢®, 8)
of bf-literal R(p;, p;,t) should turn to bf-annotationb(4, 8).

Basic bf-inference rule$2, 8)-rule-1,2 and 3 may be translated into the bf-EVALPSN clauses,

(pij7):[(2,8),a] A fi(pi, 1) :[t, a]A ~ fi(pj,t):[t,]
R(pi, pj,t):[(2,10), o], ©)
(pij7):[(2,8),a] A fi(pi, t):[t, o] A fi(pj,1):[t, a]
R(pi, p;,1):(3,9), o, (10)
(pupJ’):[(2,8),a]A ~ fi(pi, t):[t,a] A fi(pj,t):[t,]
— R(pi,pj,t):[(4,8), al. (11)

The application orders of all basic bf-inference rules are summaiz&dble I.

TABLE I: Application Orders of Basic Bf-inference Rules

vector | rule vector | rule vector rule vector
rule-1 | (0,12)
rule-2 | (1,11)
rule-1 | (0,8) rule-1 | (2,10)
(0,0) rule-3 | (2,8) | rule-2| (3,9)
rule-3 | (4,8)
rule-1 | (5,7)
rule-2 | (5,5) | rule-2 | (6,6)
rule-3 | (7,5)

C. Transitive before-after inference rule

Here we review another kind of bf-inference rules calteghsitive bf-inference ruleswhich
can reason one vector annotation of bf-literal from two other vectootations of bf-literals
transitively. Bf-relations represented by bf-annotations could beoreakefficiently by using the
transitive bf-inference rules. Suppose that there are three pesc€ss,Pr; and Pry starting
sequentially, then we consider to reason the vector annotation of bf-lf&fal px,t) from those

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 23

of bf-literals R(p;, p;,t) and R(p;, pk,t) transitively. We will show simple examples for forming
some transitive bf-inference rules as introduction.

Example 1

Suppose that both processBs; and Pr; have already started at tintebut processPr; has not
started yet as shown in Fig.12, then we have obtained the vector annotafi®nof bf-literal
R(ps,pj,t) by basic bf-inference rul€0, 8)-rule-3 and the vector annotatic, 8) of bf-literal
R(pj,pk,t) by basic bf-inference rulé0, 0)-rule-1. Then, obviously the vector annotation of bf-
literal R(p;, pk,t) is reasoned as bf-annotatibe (0, 8). Thus, we have the following bf-EVALP
clause as a transitive bf-inference rule,

R(pi,p;j,t):[(2,8), u] A R(pj, pe, t):[(0,8), p
%R(plvpkat)[(OaS)nu]v /’LE {057577}
Here we list all transitive bf-inference rules. The details of how to canstransitive bf-inference

PT,‘ }_:7
Pr; |_.—
Pry, .

Fig. 12: Process Time Chart Ex-3

rules are in [18] For simplicity, we represent a transitive bf-inferemde,

R(pi:pjv t) : [(nlv n2)7 O‘} A R(pjvpk7 t) : [(n37 n4)7 a]
— R(pi, pk, t):[(ns,m6), A

by only vector annotations and logical connectiveasand —, as follows: (n1,n2) A (n3, n4) —
(ns,me) in the list of transitive bf-inference rules.

Transitive Bf-inference Rules

TRO (0,0) A (0,0) — (0,0)

TR1 (0,8) A (0,0) — (0,8)
TR1-1 (0,12) A (0,0) — (0,12)
TR1-2 (1,11) A (0,8) — (0,12)
TR1-3 (1,11) A (5,5) — (1,11)
TR1—-4 (2,8)A(0,8) — (0,8)

24 K. NAKAMATSU

TR1-4-1 (2,10) A (0,8) — (0,12)

TR1-4-2 (4,8)A(0,12) — (0,8) (12)
TR1-4-3 (2,8)A(2,8) = (2,8)

TR1-4-3-1 (2,10)A(2,8) — (2,10)

TR1-4-3-2 (4,8)A(2,10) = (2,8) (13)
TR1-4-3-3 (2,8)A(4,8) = (4,8)

TR1-4-3-4 (3,9)A(2,10) = (2,10)

TR1-4-3-5 (2,10)A (4,8) — (3,9)

TR1-4-3-6 (4,8)A(3,9) — (4,8)

TR1-4-3-7 (3,9)A(3,9) — (3,9)

TR1-4-4 (3,9)A(0,12) — (0,12)

TR1-4-5 (2,10)A (2,8) — (1,11)

TR1-4-6 (4,8)A(1,11) — (2,8) (14)
TR1-4-7 (3,9)A(1,11) — (1,11)

TR1-5 (2,8)A(5,5) — (2,8)

TR1-5-1 (4,8)A(5,7) — (2,8) (15)
TR1-5-2 (2,8)A(7,5) — (4,8)

TR1-5-3 (3,9)A(5,7) — (2,10)

TR1-5-4 (2,10) A (7,5) — (3,9)

TR2 (5,5) A (0,8) — (0,8)

TR2-1 (5,7) A (0,8) — (0,12

TR2 -2 (7,5) A (0,12) — (0,8) (16)
TR2-3 (5,5) A (2,8) — (2,8)

TR2-3-1 (5,7)A(2,8) — (2,10)

TR2-3-2 (7,5)A(2,10) — (2,8) 17)
TR2-3-3 (5,5) A (4,8) — (4,8)

TR2-3-4 (7,5)A(3,9) — (4,8)

TR2-4 (5,7) A (2,8) — (1,11)

TR2-5 (7,5)A(1,11) — (2,8) (18)
TR3 (5,5) A (5,5) — (5,5)

TR3 -1 (7,5)A(5,7) = (5,5) (19)
TR3 -2 (5,7)A(7,5) — (6,6)

Note : the bottom vector annotatiof0, 0) in the list of transitive bf-inference rules implies
that any bf-EVALP claus&k(p;, pk, t):[(n,m), o] satisfies it.

Here we indicate two important points in terms of transitive bf-inferendesru
() Names of transitive bf-inference rules such as TR1-4-3 showr tqgplicable orders. For
example, if transitive bf-inference rule TR1 has been applied, oneaasitive bf-inference rules

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 25

TR1-1,TR1-2,.. or TR1-5 should be applied at the following stage; if transitive bf-infeeerule
TR1-4 has been applied after transitive bf-inference rule TR1, orteansitive bf-inference rules
TR1-4-1,TR1-4-2,... or TR1-4-7 should be applied at the following stage; on the other hand,
if one of transitive bf-inference rules TR1-1, TR1-2 or TR1-3 hasrbapplied after transitive
bf-inference rule TR1, there is no transitive bf-inference rule to h@ieg at the following stage
because bf-annotatiomtb (0, 12) or mb(1, 11) between processe3r; and Pry have already been
derived.

(I) The eight transitive bf-inference rules, TR1-4-2 (12), TR218), TR1-4-3-2 (13), TR2-3-2
(17), TR1-4-6 (14), TR2-5 (18), TR1-5-1 (15), TR3-1 (19) baw following rule to be applied
at the following stage, even though they cannot derive the final bfioak between processes
represented by bf-annotations suchjdx2,10)/j a(10,2). For example, suppose that transitive
bf-inference rule TR1-4-3-2 has been applied, then the vector aiomi@, 8) of the bf-literal
(pi, pi, t) just implies that the final bf-relation between procesBes and Pr, is one of three bf-
annotationsj b(2, 10), sb(3,9) andi b(4, 8). Therefore, if one of the eight transitive bf-inference
rules has been applied, one of basic bf-inference r(de8)-rule, (2, 8)-rule or (5, 5)-rule should
be applied for deriving the final bf-annotation at the following stage. iRstance, if transitive
bf-inference rule TR1-4-3-2 has been applied, basic bf-infereuleg(2, 8)-rule should be applied
at the following stage.

D. Example of transitive bf-relation reasoning

to b tatsty ts tg ty
Lo P i . .
o P : ;
Ty e : 1

:Prk i—i

Fig. 13: Process Time Chart Ex-4-3

Now we show an example of bf-relation reasoning by transitive bf-amfee rules taking the
process time chart in Fig.13.
Attime t,, transitive bf-inference rule TR1 is applied and we have the bf-EVABBS®,R(p;, pr, t1)
[(0,8),q].
At time t., transitive bf-inference rule TR1-2 is applied, however bf-liteRdp;, px,t2) has the
same vector annotatiof0, 8) as the previous time;. Therefore, we have the bf-EVALP clause,
R(pi, pr, t2):[(0,8), a].
At time ¢3, no transitive bf-inference rule can be applied, since the vector aionaf bf-literals
R(ps,pj,ts) and R(p;, pk, t3) are the same as the previous time Therefore, we still have the
bf-EVALP clause having the same vector annotatiBfp;, px, t3):[(0, 8), a].
At time t4, transitive bf-inference rule TR1-2-1 is applied and we obtain the bAHE/clause
having bf-annotatiordb (0, 12), R(p:, pk,t4):[(0,12), a].

26 K. NAKAMATSU

to 1 to t3 iy
v Prgo D
PIPELINE-1 } > - >

o P P
PIPELINE-2 P > >

Fig. 14: Pipeline Process Schedule

V. APPLICATION OF BFEVALPSN TO PROCESS ORDER VERIFICATION

In this section, we present a simple example for applying the bf-relatiasoréng system in
bf-EVALPSN to process order verification.

Suppose that there is a pipeline system consists of two pipelines PIPELE-PIPELINE-2,
which is also supposed to deal with four pipeline procesd3es Pri, Pro and Prs according
to the process schedule in Fig.14. Moreover, the process ordercagdfi system has four safety
propertiesSPR — ¢ for processesr;(i = 0, 1,2, 3) to be strictly assured, respectively.

SPR-0 processPry must start before any other processes, and proBegssmust finish before
processPrs finishes;

SPR-1 processPr; must start after procesBr, starts;

SPR-2 processPry, must start immediately after procegs; finishes;

SPR-3 processPrs; must start immediately after processes, and Pr finish.

All the safety properties can be translated into the following bf-EVALPSNis#a:
[SPR-0]

~ R(po,p1,1):[(0,8),a] = st(p1,1):[£, B], (20)
~ R(pg,p27t):[(0,8)7a] - St(pz,t):[f,ﬂL (21)
~ R(p07p37t):[(078)7a] - St(p37t):[f,ﬂ]7 (22)
St(ph t) : [fa B] A St(pg, t) : [f’ B] A St(p3, t) : [f, ﬂ]

— st(po,t):[£,7], (23)
Nf’i(po,t)I[f,ﬁ] %fi(po,t)l[f,’y}, (24)

where the bf-EVALPSN clauses (20),(21) and (22) declare thabifgssPr, has not started before
each proces®r; (i = 1,2, 3) starts, it should be forbidden to start each procesgi = 1,2, 3),
respectively; the bf-EVALPSN clause (23) declares that if eachgssfer; (i = 1, 2, 3) is forbidden
from starting, it should be permitted to start proc&ss; and the bf-EVALPSN clause (24) declares
that if there is no forbiddance from finishing proceRsy, it should be permitted to finish process
P’/‘o.

[SPR-1]
~ St(pl,t) : [f7 6] — St(ph t) : [fv ’Y]v (25)
Nfi(plat):[f75] _>fi(pl7t):[f>7]7 (26)

where the bf-EVALPSN clauses (25)/(26) declare that if there is ndddance from starting/finishing

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 27

processPr; respectively, it should be permitted to start/finish procEss.

[SPR-2]

~ R(p2,p1,t):[(11,0),a] — st(p2,t):[£, 6], 27)
~ st(pz2,t):[f, B] = st(p2,t):[£,7], (28)
~ R(p2,po,t):[(10,2),a] — fi(p2,t):[£, 8], (29)
~ fi(p2,1):[£, B] = fi(p2,t):[£,7], (30)

where the bf-EVALPSN clause (27) declares that if procBss has not finished before process
Pr, starts, it should be forbidden to start procdds;; the vector annotatiofil1, 0) of bf-literal
R(p2, p1,t) is the greatest lower bound of the §et(12, 0),ma(11, 1)}, which implies that process
Pry has finished before proced3r, starts in either way; the bf-EVALPSN clauses (28)/(30)
declare that if there is no forbiddance from starting/finishing proéess it should be permitted
to start/finish proces®r2, respectively; and the bf-EVALPSN clauses (29) declares that fga®
Pry has not finished before process finishes, it should be forbidden to finish proce?s;.

[SPR-3]

~ R(ps,po,t):[(11,0),a] — st(ps,t):[£, 5], (31)
~ R(ps,p1,t):[(11,0),a] — st(ps,t):[£, 5], (32)
~ R(ps,p2,t):[(11,0),a] — st(ps,t):[£, 5], (33)
~ st(ps,t):[£, B] — st(ps,t):[£,], (34)
~ fi(ps,t):[£, B] = fi(ps,t):[£,7], (35)

where the bf-EVALPSN clauses (31),(32) and (33) declare thatiérad processeBr;(i = 0, 1,2)

has not finished, it should be forbidden to start prodess and the bf-EVALPSN clauses (34)/(35)
declares that if there is no forbiddance from starting/finishing pro&ess it should be permitted

to start/finish proces®rs, respectively. Now, we show how the process order verification in bf-
EVALPSN is carried out in real-time by considering the process schéualig.14. In the following
example, five bf-relations between procesggs, Pri, Pro and Prs represented by the vector
annotations of bf-literalsR(po, p1,t), R(po, p2,t), R(po,ps,t), R(p2,p1,t) and R(ps, p2,t) are
verified in real-time based on safety propertteBR — 0, SPR — 1, SPR — 2 andSPR — 3.

Stage @at timety) no process has started at timg thus, the bf-EVALP clauses,

R(prphtO):[(O’ 0)70‘}7 (36)

R(p1,p2,t0):[(0,0), o], (37)

R(p2,ps,t0):[(0,0), a] (38)
are obtained; also, the bf-EVALP clauses,

R(po,pmtO):[(Oa 0)70‘}7 (39)

R(po,ps, t0):[(0,0), a] (40)

are obtained by transitive bf-inference rule TRO; then, the bf-EVAlaRises (36) and (39) satisfy
each body of the bf-EVALPSN clauses (20),(21) and (22) respalgtitherefore, the forbiddance
from starting each proces3r; (i = 1,2, 3),

st(p1,to):[£, 8], st(p2,to):[f,], and
£, B]

st(ps,to): (41)

28 K. NAKAMATSU

are derived; moreover, as the bf-EVALP clauses (41) satisfy tldy bbb the bf-EVALPSN clause
(23), the permission for starting proceBso, st(po,to):[£,] is derived; therefore, proceddry
is permitted to start at this stage.

Stage lattimet;) processPro has already started but all other procesBes(i = 1, 2, 3) have
not started yet; then the bf-EVALP clauses,

R(pO,plytl):[((L 8),&}, (42)
R(pl,p27t1):[(07 0)704’ (43)
R(p2,p37t1)1[(07 0)704 (44)

are obtained, where the bf-EVALP clause (42) is derived by basinfefence rule(0, 0)-rule-1;
moreover, the bf-EVALP clauses,

R(po,p%tl):[(ﬂa 8)70‘}7 (45)
R(po,p3, t1):[(0,8), a] (46)

are obtained by transitive bf-inference rule TR1; as the bf-EVALPsda42) does not satisfy the
body of the bf-EVALPSN clause (20), the forbiddance from startinocessPry,

st(p1,t1):[f, 8] 47)

cannot be derived; Then, as there is not the forbiddance (47) oty df the bf-EVALPSN clause
(25) is satisfied, and the permission for starting prod@ss, st(pi1,t1):[£,~] is derived; on the
other hand, as the bf-EVALP clauses (45) and (46) satisfy the bothedif-EVALPSN clauses (27)
and (31) respectively, the forbiddance from starting both proceBsesind Prs, st(p2, t1):[£, §],
and st(ps, t1):[£, 8] are derived; therefore, proce$s; is permitted to start.

Stage Zat timetz) processPr; has just finished and proce$¥ has not finished yet; then,
the bf-EVALP clauses,

R(po,p1,t2):[(4,8),a],, R(p1,p2,t2):[(1,11),a], and
R(p2, ps, t2):1(0,8), a]

are derived by basic bf-inference rulé, 8)-rule-3, (0, 8)-rule-2 and(0, 0)-rule-1, respectively;
moreover, the bf-EVALP clauses,

R(p03p27t2):[(278)5a]7 (48)
R(PO,I);%, t2) : [(07 12)3 04 (49)

are obtained by transitive bf-inference rules TR1-4-6 and TR1-&yeetively; then, as the bf-
EVALP clause (48) does not satisfy the body of the bf-EVALPSN cla{@s§, the forbiddance
from starting proces#r,,

st(p, t2): [£, B (50)

cannot be derived; as there is not the forbiddance (50), it satisfebdtly of the bf-EVALPSN
clause (28), and the permission for starting proc€ss, st(ps,t2) : [£,7] is derived; on the
other hand, as the bf-EVALP clause (49) satisfies the body of the BEP8N clause (31), the
forbiddance from starting procesBrs, st(ps,t2) : [£, 5] is derived; therefore, procesBr; is
permitted to start, however proceBs is still forbidden from starting.

Application of Paraconsistent Annotated Logic ProgramEBRLPSN to Intelligent Control 29

Stage 3at thets) processPr, has finished, procesBr: has not finished yet, and proceBs;
has not started yet; then, the bf-EVALP clauses,

R(po,p1,t3):[(4,8),a], R(p1,p2,t3):[(1,11), 0]
and R(p2,ps,ts3):[(0,8),ql,

which have the same vector annotations as the previous stage are ghtzonedver, the bf-EVALP
clauses,

R(po,pz, t3) : [(2, 10)7 O‘]v (51)
R(p07p37 t3) : [(07 12)7 a] (52)

are obtained, where the bf-EVALP clause (51) is derived by the bdsitfdrence rule(2, 8)-
rule-1; then, the bf-EVALP clause (51) satisfies the body of the bfiEB¥&lause (33), and the
forbiddance from starting proces3rs, S(ps, t3):[£f, 8] is derived; therefore, proced3rs is still
forbidden from starting because procd3s; has not finished yet at this stage.

Stage 4at timets) processPr; has just finished and proce$s:s has not started yet; then, the
bf-EVALP clauses,

R(po,p1,ta):[(4,8), 0, (53)
R(p1,p2,ta):[(1,11), o, (54)
R(p2,ps3, ta):[(1,11), o], (55)
R(po, p2,t4):[(2,10), a], (56)
R(po, ps3, ta):[(0,12),a] (57)

are obtained; the bf-EVALP clause (55) is derived by basic bf-imegeule(0, 8)-rule-2; moreover,
as the bf-EVALP clauses (53),(56) and (57) do not satisfy the boafidhe bf-EVALP clauses
(31),(32) and (33), the forbiddance from starting procEss,

St(p37t4) : [f7ﬂ} (58)

cannot be derived; as there is not the forbiddance (58), the bothedif-EVALPSN clause (34)is
satisfied, and the permission for starting procéss, st(ps,t4) : [£,7] is derived; Therefore,
processPrs is permitted to start because procesgeg, Pri and Pry have finished.

VI. CONCLUSION

In this paper, we have introduced a logical reasoning system fordsafter relations between
processes(time intervals) based on a paraconsistent annotated logfiamprbf-EVALPSN, which
consists of two groups of inference rules in bf-EVALPSN called bastt teansitive bf-inference
rules. As related work, an interval temporal logic has been propazedefeloping practical
planning and natural language understanding systems in Allen [1]J{3is logic, before-after
relations between two time intervals are represented in special prediodtégated in a framework
of first order temporal logic. On the other hands, in our bf-EVALP &fbbe-after reasoning system,
before-after relations between processes are regarded as nEsteacy and represented more
minutely in vector annotations of the special litefa(p;, p;, t) called bf-literal, and treated in the
framework of annotated logic programming. Moreover, an efficieat-time before-after relation

30

K. NAKAMATSU

reasoning mechanism called transitive bf-inference is implemented isystem. Therefore, we
would like to conclude that our bf-EVALPSN before-after relation redsg system is more suitable
for dealing with process order control/verification in real-time, with con@ideits hardware
implementation such as on microchips.

Our system has a lot of applications though, our future work focuséts application to logical
design for various process order control systems based on thg saféication.

(1]
(2]
(3]
(4]
(5]
(6l
(7]
(8]
El

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

REFERENCES

J.F. Allen, “Towards a General Theory of Action and Timg<tificial Intelligencevol. 23, pp. 123-154,
1984.

J.F. Allen, and G. Ferguson, “Actions and Events in lné¢Temporal Logic”,J.Logic and Computation
vol. 4, pp. 531-579, 1994.

H.A. Blair, and V.S. Subrahmanian, “Paraconsistent tdgiogramming”;Theoretical Computer Science
vol. 68, pp. 135-154, 1989.

N.C.A. da Costa, V.S. Subrahmanian, and C. Vago, “The deamsistent Logics P, Zeitschrift fir
Mathematische Logic und Grundlangen der Mathematk 37, pp. 139-148, 1989.

K. Nakamatsu, and A. Suzuki, “Annotated semantics for diéfeeasoning”,Proc. 3rd Pacific Rim Intl.
Conf. Artificial Intelligence (PRICAI94)p. 180-186, 1994.

K. Nakamatsu, “On the relation between vector annotatgitiprograms and defeasible theoridsigic
and Logical Philosophyol. 8, pp. 181-205, 2000.

K. Nakamatsu, J.M. Abe, and A. Suzuki, “Annotated Semanfar Defeasible Deontic Reasoning”,
Rough Sets and Current Trends in ComputibyAl vol. 2005, pp.432-440, 2001.

K. Nakamatsu, H. Suito, J.M. Abe, and A. Suzuki, “Paradstesit logic program based safety verification
for air traffic control”, Proc. IEEE Intl. Conf. System, Man and Cybernetics 02(SNIGCD), 2002.

K. Nakamatsu, J.M. Abe, and A. Suzuki, “A railway interloeg safety verification system based on
abductive paraconsistent logic programmin&pft Computing Systems(HISORjontiers in Atrtificial
Intelligence and Applications, vol. 87, pp. 775784, 2002.

K. Nakamatsu, T. Seno, J.M. Abe, and A. Suzuki, “Intadlig real-time traffic signal control based
on a paraconsistent logic program EVALPSNRpugh Sets, Fuzzy Sets, Data Mining and Granular
Computing(RSFDGrC2003)NAI vol. 2639, pp. 719-723, 2003.

K. Nakamatsu, S-L. Chung, H. Komaba, and A. Suzuki, “A ti$e event control based on EVALPSN
stable model”,Rough Sets, Fuzzy Sets, Data Mining and Granular CompRBEDGrC2005) LNAI
vol. 3641, pp. 671-681, 2005.

K. Nakamatsu, J.M. Abe, S. Akama, “An intelligent safetgrification based on a paraconsistent
logic program”,Proc. 9th Intl. Conf. Knowledge-Based Intelligent Infotina and Engineering Sys-
tems(KES2005)LNAI vol. 3682, pp. 708-715, 2005.

K. Nakamatsu, K. Kawasumi, and A. Suzuki, “Intelligentifieation for pipeline based on EVALPSN”,
Advances in Logic Based Intelligent Systefm®ntiers in Artificial Intelligence and Applications, vo
132, pp. 63-70, 2005.

K. Nakamatsu, “Pipeline Valve Control Based on EVALPSBfey Verification”, J.Advanced Compu-
tational Intelligence and Intelligent Informatics, vol.,1fp. 647-656, 2006.

K. Nakamatsu, Y. Mita, and T. Shibata, “An Intelligent #han Control System Based on Extended
Vector Annotated Logic Program and its Hardware ImplememétiJ.Intelligent Automation and Soft
Computing vol. 13, pp. 289-304, 2007.

K. Nakamatsu, and J.M. Abe, “The development of Parasteisi Annotated Logic Programiit’l J.
Reasoning-based Intelligent Systewmsl. 1, pp. 92-112, 2009.

K. Nakamatsu, T. Imai, J.M. Abe, and S. Akama, IntroducttonPlausible Reasoning Based on
EVALPSN, Advanced in Intelligent Decision Technologi&ClI vol. 199, pp. 363-372, Springer, 2009.
K. Nakamatsu, J.M. Abe, and S. Akama, A Logical ReasonipsteSn of Process Before-after Relation
Based on a Paraconsistent Annotated Logic Program bf-E¥ALRANtl J. Knowledge-based and
Intelligent Engineering System$5 (2011), pp. 145-163.

