
Kazumi Nakamatsu

University of Hyogo, Himeji 670-0092 Japan,

E-mail: nakamatu@shse.u-hyogo.ac.jp

Abstract. A paraconsistent annotated logic program called EVALPSN has been developed for 
dealing with defeasible deontic reasoning and plausible reasoning, and applied to various kinds of 
intelligent control and safety verification. Moreover, in order to deal with before-after relation 
between processes(time intervals), bf(before-after)-EVALPSN has also been developed recently. In 
this paper, we review the reasoning system for before-after relation between processes based on bf-
EVALPSN. The system consists of two groups of inference rules in bf-EVALPSN called basic and 
transitive bf-inference rules. The application of the reasoning system to real-time process order 
control is introduced with simple examples.

Key words: before-after relation, EVALPSN, bf-EVALPSN, annotated logic program, 
reasoning system.

I. I NTRODUCTION

It has already passed over two decades since paraconsistent annotated logic and its logic pro-
gramming have been developed [3], [4]. Based on the original annotated logic program we have
developed four kinds of paraconsistent annotated logic program, ALPSN (Annotated Logic Program
with Strong Negation) that can deal with some non-monotonic reasonings such as default reasoning
[5], VALPSN (Vector ALPSN) that can deal with defeasible and plausible reasonings [6], EVALPSN
(Extended VALPSN) that can deal with defeasible deontic and plausible reasonings [7], [17],
and bf(before-after)-EVALPSN that can deal with before-after relation between processes(time
intervals) recently [16], [18]. Those annotated logic programs have been applied to various kinds
of intelligent control and safety verification, railway interlocking safety verification [9], air traffic
safety verification [8], traffic signal control [10], discrete event control [11], robot action control
[15], pipeline valve control [14], real-time process order control [13], and so on. Moreover, it has
been shown that EVALPSN can be implemented on microchips as electronic circuits, which implies
that EVALPSN is suitable for real-time control [15].

In this paper, we review the reasoning system for process before-after relations aiming efficient
real-time process order control and safety verification in bf-EVALPSN [18]. The proposed before-
after relation reasoning system consists of two groups of inference rules calledbasic bf-inference
rule and transitive bf-inference rule, both of which can be represented in bf-EVALPSN.

In bf-EVALPSN, a special annotated literalR(pm, pn, t) : [(i, j), µ] called bf-literal whose
non-negative integer vector

FACTA UNIVERSITATIS 
Series: Elec. Energ. Vol. 26, No 1, April 2013, pp. 11 – 30 
DOI: 10.2298/FUEE1301011N

APPLICATION OF PARACONSISTENT ANNOTATED LOGIC
PROGRAM BF-EVALPSN TO INTELLIGENT CONTROL

Accepted November 1, 2012



12 K. NAKAMATSU

annotation(i, j) represents the before-after relation between processesPrm andPrn at time
t is introduced. The integer componentsi andj of the vector annotation(i, j) represent the after
and before degrees between processesPrm andPrn, and before-after relations are represented in
vector annotations paraconsistently.

In the proposed reasoning system, the basic bf-inference rules are used for determining the vector
annotation of a bf-literal in real-time according to the start/finish time information of two processes;
on the other hand, the transitive bf-inference rules are used for determining the vector annotation
of a bf-literal in real-time based on the vector annotations of two related bf-literals as follows.
Suppose that there are three processes,Pr0, Pr1 andPr2 starting in sequence, then the before-
after relation between processesPr0 andPr2 can be determined from the before-after relation
between processesPr0 andPr1, and that between processesPr1 andPr2. Such process before-
after relation reasoning is also formalized as transitive bf-inference rules in bf-EVALPSN. The
transitive bf-inference system can contribute to the reduction of using times of basic bf-inference
rules and it is a unique remarkable feature of the proposed system. Suppose that there is a bf-
EVALPSN process order control system dealing with ten processes,Pr0, Pr1, · · · andPr9 starting
in sequence. Without transitive bf-inference rules, the system has to deal with 10C2 = 45 before-
after relations independently by basic bf-inference rules. However, ifwe use transitive bf-inference
rules, just nine before-after relations between processesPri andPri+1 (i = 0, 1, 2, · · · , 8) should
be determined by basic bf-inference rules, and the rest before-after relations could be determined
based on the nine before-after relations by using transitive bf-inference rules.

This review paper is organized in the following manner: first, EVALPSN is reviewed briefly,
and bf-EVALPSN is defined in details; next, it is shown how to reason before-after relations
in bf-EVALPSN with a simple example of process order control, and basicbf-inference rules and
transitive bf-inference rules are introduced; furthermore, a simple practical process order verification
system is provided as an example; last, a related work of treating before-after relation of time
intervals in a logical system and our future work are introduced as the conclusion.

II. EVALPSN

In this section, we review EVALPSN briefly [7]. Generally, a truth value called anannotationis
explicitly attached to each literal in annotated logic programs [3]. For example, let p be a literal,µ
an annotation, thenp :µ is called anannotated literal. The set of annotations constitutes a complete
lattice. An annotation in EVALPSN has a form of[(i, j), µ] called anextended vector annotation.
The first component(i, j) is called avector annotationand the set of vector annotations constitutes
the complete lattice,

Tv(n) = { (x, y)|0 ≤ x ≤ n, 0 ≤ y ≤ n, x, y, n are integers}

in Figure1. The ordering(�v) of Tv(n) is defined as : let(x1, y1), (x2, y2) ∈ Tv(n),

(x1, y1) �v (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

For each extended vector annotated literalp : [(i, j), µ], the integeri denotes the amount of positive
information to support the literalp and the integerj denotes that of negative one. The second
componentµ is an index of fact and deontic notions such as obligation, and the set of thesecond
components constitutes the complete lattice,

Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,⊤}.



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 13

�
�

�
�

❅
❅

❅
❅

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

�
�

�
�

q q

q

q

q

q

q

q

q

(1, 0)

(2, 1)

(0, 1)

(1, 2)

(0, 0)

(0, 2) (2, 0)

(2, 2)

(1, 1)

PPPPP

✟✟✟
PPPPP

✟✟✟

✟✟✟

PPPPP

⊥

α

βγ

∗1

∗2

∗3

⊤

Fig. 1: LatticeTv(2) and LatticeTd

The ordering(�d) of Td is described by the Hasse’s diagram in Fig.1.
The intuitive meaning of each member ofTd is

⊥ (unknown), α (fact), β (obligation),

γ (non-obligation), ∗1 (fact and obligation),

∗2 (obligation and non-obligation),

∗3 (fact and non-obligation), ⊤ (inconsistency).

Then the complete latticeTe(n) of extended vector annotations is defined as the productTv(n)×Td.
The ordering(�e) of Te(n) is defined as : let[(i1, j1), µ1] and [(i2, j2), µ2] ∈ Te,

[(i1, j1), µ1] �e [(i2, j2), µ2]

iff

(i1, j1) �v (i2, j2) and µ1 �d µ2.

There are two kinds ofepistemic negation(¬1 and¬2) in EVALPSN, both of which are defined
as mappings overTv(n) andTd, respectively.
Definition 1(epistemic negations¬1 and¬2 in EVALPSN)

¬1([(i, j), µ]) = [(j, i), µ], ∀µ ∈ Td,

¬2([(i, j),⊥]) = [(i, j),⊥], ¬2([(i, j), α]) = [(i, j), α],

¬2([(i, j), β]) = [(i, j), γ], ¬2([(i, j), γ]) = [(i, j), β],

¬2([(i, j), ∗1]) = [(i, j), ∗3], ¬2([(i, j), ∗2]) = [(i, j), ∗2],

¬2([(i, j), ∗3]) = [(i, j), ∗1], ¬2([(i, j),⊤]) = [(i, j),⊤].

If we regard the epistemic negations as syntactical operations, the epistemic negations followed
by literals can be eliminated by the syntactical operations. For example,

¬1(p : [(2, 0), α]) = p : [(0, 2), α] and

¬2(q : [(1, 0), β]) = p : [(1, 0), γ].

There is another negation calledstrong negation(∼) in EVALPSN, and it is treated as well as
classical negation.
Definition 2(strong negation∼) (see [4]) LetF be any formula and¬ be¬1 or ¬2.

∼ F =def F → ((F → F ) ∧ ¬(F → F )).



14 K. NAKAMATSU

Definition 3 (well extended vector annotated literal) Letp be a literal.

p : [(i, 0), µ] and p : [(0, j), µ]

are calledwell extended vector annotated literals, wherei, j ∈ {1, 2, · · · , n}, andµ ∈ { α, β, γ }.

Definition 4 (EVALPSN) If L0, · · · , Ln are weva-literals,

L1 ∧ · · · ∧ Li∧ ∼ Li+1 ∧ · · · ∧ ∼ Ln → L0

is called anEVALPSN clause. An EVALPSNis a finite set of EVALPSN clauses. Here we com-
ment that if the annotationsα and β represent fact and obligation, notions “fact”, “obligation”,
“forbiddance” and “permission” can be represented by extended vector annotations,[(m, 0), α],
[(m, 0), β], [(0,m), β], and [(0,m), γ], respectively in EVALPSN, wherem is a non-negative
integer.

III. B EFORE-AFTER EVALPSN

In this section, we review bf-EVALPSN that can deal with before-after relations between two
processes(time intervals). The reasoning system in bf-EVALPSN consists of two kinds of inference
rules calledbasic bf-inference ruleand transitive bf-inference rule, which will be introduced with
some simple examples of real-time process order control in the following sections. In bf-EVALPSN,
a special annotated literalR(pm, pn, t) : [(i, j), µ] called bf-literal whose non-negative integer
vector annotation(i, j) represents the before-after relation between processesPrm and Prn at
time t is introduced. The integer componentsi and j of the vector annotation(i, j) represent
the after and before degrees between processesPrm(pm) andPrn(pn), respectively, and before-
after relations are represented in vector annotations paraconsistently. In the reasoning system, the
basic bf-inference rules are used for determining the vector annotationof a bf-literal in real-time
according to the start/finish time information of two processes. On the other hand, the transitive
bf-inference rule is used for determining the vector annotation of a bf-literal in real-time based on
the vector annotations of two related bf-literals as follows. Suppose that there are three processes,
Pr0, Pr1 and Pr2 starting in sequence, then the before-after relation between processesPr0
andPr2 can be determined from two before-after relations between processesPr0 andPr1, and
between processesPr1 andPr2. Such process before-after relation reasoning is also formalized as
transitive bf-inference rules in bf-EVALPSN. The transitive bf-inference system can contribute to
reduce using times of basic bf-inference rules and it is a unique remarkable feature of the reasoning
system.

Suppose that there is a process order control system dealing with ten processes,Pr0, Pr1,
· · · and Pr9 starting in sequence. Without transitive bf-inference rules, the system has to deal
with 10C2 = 45 before-after relations independently by basic bf-inference rules. However, if
we use transitive bf-inference rules, just nine before-after relationsbetween processesPri and
Pri+1 (i = 0, 1, 2, · · · , 8) need to be determined by basic bf-inference rules, and the rest before-
after relations could be determined based on the nine before-after relations by using transitive
bf-inference rules.

For example, the before-after relation of processesPr1 andPr4 is inferred from two before-
after relations between processesPr1 andPr3, and between processesPr3 andPr4 by transitive
bf-inference rules; moreover, the before-after relation between processesPr1 andPr3 is inferred



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 15

x

s

Pr

i

y

s

Pr

j

Fig. 2: Bf-relations Before(be)/After(af)

-

x

s

x

f

Pr

i

-

y

s

y

f

Pr

j

Fig. 3: Bf-relations Disjoint Before(db)/After(da)

from two before-after relations between processesPr1 andPr2, and between processesPr2 and
Pr3 by transitive bf-inference rules.

We introduce bf(before-after)-EVALPSN that can deal with before-after relations between two
processes. Hereafter, the word “before-after” is abbreviated as just “bf”.

A particular literal R(pi, pj , t) whose vector annotation represents the bf-relation between
processesPri(pi) andPrj(pj) is introduced, which declares the bf-relation between the processes

Definition 5(bf-EVALPSN)
An extended vector annotated literalR(pi, pj , t) : [(i, j), µ] is called abf-EVALP literal or a bf-
literal for short, where(i, j) is a vector annotation andµ ∈ {α, β, γ}. If an EVALPSN clause
contains bf-EVALP literals, it is called abf-EVALPSN clauseor just abf-EVALP clauseif it contains
no strong negation. Abf-EVALPSNis a finite set of bf-EVALPSN clauses.

We provide a paraconsistent before-after interpretation for vector annotations representing bf-
relations in bf-EVALPSN, and such a vector annotation is calledbf-annotations. Exactly speaking,
bf-relations are classified into fifteen meaningful kinds according to bf-relations between each
start/finish time of two processes in bf-EVALPSN. First of all, we define themost basic bf-relations
in bf-EVALPSN.
Before (be)/After (af)
Bf-relationsbefore/after are defined according to the bf-relation between each start time of two
processes, which are represented by bf-annotationsbe/af, respectively. Suppose that there are two
processes,Pri with its start timexs and finish timexf , andPrj with its start timeys and finish
time yf . If one process has started before/after another one starts, then the bf-relations between
them are defined as “before(be)/after(af)”, respectively. They are described by the process time
chart in Fig.2 with the condition that processPri has started before processPrj starts.

We introduce other kinds of bf-relations as well as before(be)/after(af). The original idea of
the classification of process before-after relations has introduced in [1]
Disjoint Before (db) /After (da)
Bf-relationsdisjoint before/after between two processes are represented by bf-annotationsdb/da,
respectively. The expressions “disjoint before/after” imply that thereis a time lag between the
earlier process finish time and the later one start time. They also are described by the process time
chart in Fig.3.

Immediate Before (mb)/After (ma)
Bf-relationsimmediate before/afterbetween two processes are represented by bf-annotationsmb/ma,
respectively. The expressions “immediate before/after” imply that there is no time lag between the
earlier process finish time and the later one start time. The bf-relations arealso described by the
process time chart in Fig.4.



16 K. NAKAMATSU

-

x

s

x

f

Pr

i

-

y

s

y

f

Pr

j

Fig. 4: Bf-relations Immediate Before(mb)/After(ma)

-

x

s

x

f

Pr

i

-

y

s

y

f

Pr

j

Fig. 5: Bf-relations, Joint Before/After

Joint Before (jb)/After (ja)
Bf-relations joint before/after between two processes are represented by bf-annotationsjb/ja,
respectively. The expressions “joint before/after” imply that the two processes overlap and the
earlier process had finished before the later one finished. The bf-relations are also described by
the process time chart in Fig.5.
S-included Before (sb), S-included After (sa)

Bf-relations s-included before/after between two processes are represented by bf-annotations
sb/sa, respectively. The expressions “s-included before/after” imply thatone process had started
before another one started and they have finished at the same time. The bf-relations are also
described by the process time chart in Fig.6.
Included Before (ib)/After (ia)
Bf-relationsincluded before/afterbetween processesPri andPrj are represented by bf-annotations
ib/ia, respectively. The expressions “included before/after” imply that one process had started/finished
before/after another one started/finished, respectively. The bf-relations are also described by the
process time chart in Fig.7.

F-included Before (fb)/After (fa)
bf-relations f-include before/after between two processesPri and Prj are represented by bf-
annotationsfb/fa, respectively. The expressions “f-included before/after” imply thatthe two
processes have started at the same time and one process had finished before another one finished.

✲
xs xfPri

✲
ys yfPrj

Fig. 6: Bf-relations S-included Before(sb)/After(sa)

-

x

s

x

f

Pr

i

-

y

s

y

f

Pr

j

Fig. 7: Bf-relations Included Before(ib)/After(ia)



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 17

✲
xs xfPri

✲
ys yfPrj

Fig. 8: Bf-relations F-included Before(fb)/After(fa)

✲
xs xfPri

✲
ys yfPrj

Fig. 9: Bf-relation, Paraconsistent Before-after

The bf-relations are also described by the process time chart in Fig.8.
Paraconsistent Before-after (pba)
Bf-relation paraconsistent before-afterbetween two processesPri and Prj is represented by
bf-annotationpba. The expression “paraconsistent before-after” implies that two processes have
started at the same time and also finished at the same time. The bf-relation is described by the
process time chart in Fig.9.

The epistemic negation over bf-annotations,be, af, db, da, mb, ma, jb, ja, ib, ia, sb, sa,
fb, fa, pba is defined and the complete lattice of bf-annotations is shown in Fig.10.
Definition 6 (Epistemic Negation¬1 for Bf-annotations) The epistemic negation¬1 over the bf-
annotations

{be, af, da, db, ma, mb, ja, jb, sa, sb, ia, ib, fa, fb, pba}

is obviously defined as the following mappings :

¬1(af) = be, ¬1(be) = af, ¬1(da) = db,

¬1(db) = da, ¬1(ma) = mb, ¬1(mb) = ma,

¬1(ja) = jb, ¬1(jb) = ja, ¬1(sa) = sb,

¬1(sb) = sa, ¬1(ia) = ib, ¬1(ib) = ia,

¬1(fa) = fb, ¬1(fb) = fa, ¬1(pba) = pba.

We note that a bf-EVALP literalR(pi, pj, t) : [µ1, µ2], whereµ1 ∈ { mb, jb, sb, ib, fb,
pba, fa, ia, sa, jb, ma } andµ2 ∈ {α, β, γ}, would not be well annotated ifm 6=0 andn 6=0,
however, since the bf-literal is equivalent to the following two well annotated bf-literals:

R(pi, pj , t) : [(m, 0), µ] and R(pi, pj , t) : [(0, n), µ],

such a non-well annotated bf-EVALP literal can be dealt with as the conjunction of two well
annotated bf-EVALP literals. For example, suppose a non-well annotated bf-EVALP clause

R(pi, pj , t0) : [(m,n), µ0] → R(pi, pj , t1) : [(k, l), µ1],

wherek 6=0, l 6=0, m 6=0 and n 6=0. It can be equivalently transformed into two well annotated



18 K. NAKAMATSU

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

✲✛ afterbefore

✻

knowledge

⊥12

⊤12

be af

db damb majb jasb saib iafb fapba

Fig. 10: The Complete LatticeTv(12)bf of Bf-annotations

bf-EVALP clauses,

R(pi, pj , t0) : [(m, 0), µ0] ∧R(pi, pj , t0) : [(0, n), µ0]

→ R(pi, pj , t1) : [(k, 0), µ1],

R(pi, pj , t0) : [(m, 0), µ0] ∧R(pi, pj , t0) : [(0, n), µ0]

→ R(pi, pj , t1) : [(0, l), µ1].

IV. REASONING SYSTEM IN BF-EVALPSN

In this section, we introduce the reasoning system in bf-EVALPSN, which consists of two kinds
of inference rules, basic inference rules for reasoning bf-relationsby process start/finish times and
transitive inference rules for reasoning one bf-relation from two otherbf-relations transitively.

A. Examples of bf-relation reasoning

In order to introduce the basic inference rule we show a simple example ofbf-relation reasoning.
Suppose that processesPr0, Pr1 andPr2 are scheduled to be processed according to the time
chart in Fig.11, then we show how the bf-relations between those processes are reasoned at each
time ti(0 ≤ i ≤ 7).



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 19

Q

Q

Q

time

Pro
:

P r

2

Pr

1

Pr

0

t

0

t

1

t

2

t

3

t

4

t

5

t

6

t

7

-

-

-

Fig. 11: Process Schedule Chart

At time t0, no process has started, thus we have no knowledge in terms of the bf-relations between
processesPr0(p0), Pr1(p1) andPr2(p2). We have the bf-EVALP clauses,

R(p0, p1, t0) : [(0, 0), α], R(p1, p2, t0) : [(0, 0), α],

R(p0, p2, t0) : [(0, 0), α].

At time t1, only processPr0 has started, then it is obviously reasoned that the bf-relation
between processesPr0 andPr1 will be one of the bf-annotations,db(0, 12), mb(1, 11), jb(2, 10),
sb(3, 9), ib(4, 8) whose greatest lower bound is(0, 8) (refer to Figure 10). On the other hand, we
still have no knowledge in terms of the bf-relation between processesPr1 andPr2, thus the vector
annotation of bf-literalR(p1, p2, t1) still remains(0, 0). Obviously bf-literalR(p0, p2, t1) has the
same vector annotationbe(0, 8) as that of bf-literalR(p0, p1, t1), and we have the bf-EVALP
clauses,

R(p0, p1, t1) : [(0, 8), α], R(p1, p2, t1) : [(0, 0), α],

R(p0, p2, t1) : [(0, 8), α].

At time t2, processPr1 has started before processPr0 finishes, then it is obviously reasoned
that the bf-relation between processesPr0 andPr1 will be one of the bf-annotations,jb(2, 10),
sb(3, 9), ib(4, 8) whose greatest lower bound is(2, 8) (refer to Fig.10). As processPr2 has
not started yet, the vector annotation of bf-literalR(p1, p2, t2) turns to(0, 8) from (0, 0) as well
as that of bf-literalR(p0, p2, t1) and the vector annotation of bf-literalR(p0, p2, t2) still remains
(0, 8).

Therefore, we have the bf-EVALP clauses,

R(p0, p1, t2) : [(2, 8), α], R(p1, p2, t2) : [(0, 8), α],

R(p0, p2, t2) : [(0, 8), α].

At time t3, processPr2 has started before processesPr0 andPr1 finish, then the vector annotation
of bf-literal R(p0, p1, t3) still remains(2, 8), and the vector annotation(0, 8) of both bf-literals
R(p1, p2, t3) andR(p0, p2, t3) turns to(2, 8) as well as that of bf-literalR(p0, p1, t2). We have
the bf-EVALP clauses,

R(p0, p1, t3) : [(2, 8), α], R(p1, p2, t3) : [(2, 8), α],

R(p0, p2, t3) : [(2, 8), α].



20 K. NAKAMATSU

At time t4, only processPr2 has finished before processesPr0 or Pr1 finish, then bf-literals
R(p1, p2, t4) andR(p0, p2, t4) have the same bf-annotationib(4, 8). On the other hand, the vector
annotation of bf-literalR(p1, p2, t4) still remains(2, 8). We have the bf-EVALP clauses,

R(p0, p1, t4) : [(2, 8), α], R(p1, p2, t4) : [ib(4, 8), α],

R(p0, p2, t4) : [ib(4, 8), α].

At time t5, processPr0 has finished before processPr1 finishes, then bf-literalR(p0, p1, t5)
has bf-annotationjb(2, 10). Even though processPr1 has not finished yet, all the bf-relations
between processesPr0, Pr1 andPr2 have been determined as follows:

R(p0, p1, t5) : [jb(2, 10), α], R(p1, p2, t5) : [ib(4, 8), α],

R(p0, p2, t5) : [ib(4, 8), α].

B. Basic before-after inference rule

Now we construct basic bf-relation inference rules calledbasic bf-inference ruleswith referring
to the example in Section IV-A.

In order to represent the basic bf-inference rules in bf-EVALPSN, we newly introduce two more
literals:
st(pi, t), which is intuitively interpreted that processPri starts at timet, and
fi(pi, t), which is intuitively interpreted that processPri finishes at timet,

which are used for expressing process start/finish information and mayhave one of the vector
annotations,(0, 0), t(1, 0), f(0, 1), (1, 1), where annotationst andf can be intuitively interpreted
as “true” and “false”, respectively. Firstly, we show a group of basicbf-inference rules to be applied
at the initial stage (timet0) for bf-relation reasoning, which are called(0, 0)-rules.

(0,0)-rules
Suppose that no process has started yet and the vector annotation of bf-literal R(pi, pj , t) is (0, 0),
which shows that there is no knowledge in terms of the bf-relation between processesPri and
Prj , then the following two basic bf-inference rules are applied at the initial stage.
(0, 0)-rule-1 If processPri started before processPrj starts, then the vector annotation(0, 0)
of bf-literal R(pi, pj , t) should turn to bf-annotationbe(0, 8), which is the greatest lower bound
of the bf-annotations,db(0, 12), mb(1, 11), jb(2, 10), sb(3, 9), ib(4, 8).
(0, 0)-rule-2 If both processesPri andPrj have started at the same time, then it is reasonably
anticipated that the bf-relation between processesPri andPrj will be one of the bf-annotations,
fb(5, 7), pba(6, 6), fa(7, 5) whose greatest lower bound is(5, 5) (see Fig.10). Therefore, the
vector annotation(0, 0) of bf-literal R(pi, pj , t) should turn to(5, 5).

Basic bf-inference rules(0, 0)-rule-1 and 2 may be translated into the bf-EVALPSN clauses,

R(pi, pj , t) : [(0, 0), α] ∧ st(pi, t) : [t, α]∧ ∼ st(pj , t) : [t, α]

→ R(pi, pj , t) : [(0, 8), α], (1)

R(pi, pj , t) : [(0, 0), α] ∧ st(pi, t) : [t, α] ∧ st(pj , t) : [t, α]

→ R(pi, pj , t) : [(5, 5), α]. (2)



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 21

Suppose that one of basic bf-inference rules(0, 0)-rule-1 and 2 has been applied, then the vector
annotation of bf-literalR(pi, pj , t) should be one of(0, 8) or (5, 5). Therefore, we have two groups
of basic bf-inference rules to be applied immediately after basic bf-inference rules(0, 0)-rule-1
and 2, which are called(0, 8)-rules and (5, 5)-rules respectively.(0,8)-rules
Suppose that processPri has started before processPrj starts, then the vector annotation of
bf-literal R(pi, pj , t) should be(0, 8). Then we have the following inference rules to be applied
immediately after basic bf-inference rule(0, 0)-rule-1.

(0, 8)-rule-1 If processPri has finished before processPrj starts, and processPrj starts
immediately after processPri finished, then the vector annotation(0, 8) of bf-literal R(pi, pj , t)
should turn to bf-annotationmb(1, 11).
(0, 8)-rule-2 If processPri has finished before processPrj starts, and processPrj has not
started immediately after processPri finished, then the vector annotation(0, 8) of bf-literal
R(pi, pj , t) should turn to bf-annotationdb(0, 12).
(0, 8)-rule-3 If processPrj starts before processPri finishes, then the vector annotation(0, 8)
of bf-literal R(pi, pj , t) should turn to(2, 8) that is the greatest lower bound of the bf-annotations,
jb(2, 10), sb(3, 9), ib(4, 8). Basic bf-inference rules(0, 8)-rule-1,2 and 3 may be translated into
the bf-EVALPSN clauses,

R(pi, pj , t) : [(0, 8), α] ∧ fi(pi, t) : [t, α] ∧ st(pj , t) : [t]

→ R(pi, pj , t) : [(1, 11), α], (3)

R(pi, pj , t) : [(0, 8), α] ∧ fi(pi, t) : [t, α]∧ ∼ st(pj , t) : [t]

→ R(pi, pj , t) : [(0, 12), α], (4)

R(pi, pj , t) : [(0, 8), α]∧ ∼ fi(pi, t) : [t, α] ∧ st(pj , t) : [t, α]

→ R(pi, pj , t) : [(2, 8), α]. (5)

(5,5)-rules
Suppose that both processesPri andPrj have already started at the same time, then the vector
annotation of bf-literalR(pi, pj , t) should be(5, 5). Then we have the following inference rules
to be applied immediately after basic bf-inference rule(0, 0)-rule-2.
(5, 5)-rule-1 If processPri has finished before processPrj finishes, then the vector annotation
(5, 5) of bf-literal R(pi, pj , t) should turn to bf-annotationsb(5, 7).
(5, 5)-rule-2 If both processesPri and Prj have finished at the same time, then the vector
annotation(5, 5) of bf-literal R(pi, pj , t) should turn to bf-annotationpba(6, 6).
(5, 5)-rule-3 If processPrj has finished before processPri finishes, then the vector annotation
(5, 5) of bf-literalR(pi, pj , t) should turn to bf-annotationsa(7, 5). Basic bf-inference rules(5, 5)-
rules-1,2 and 3 may be translated into the bf-EVALPSN clauses,

R(pi, pj , t) : [(5, 5), α] ∧ fi(pi, t) : [t, α]∧ ∼ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(5, 7), α], (6)

R(pi, pj , t) : [(5, 5), α] ∧ fi(pi, t) : [t, α] ∧ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(6, 6), α], (7)

R(pi, pj , t) : [(5, 5), α]∧ ∼ fi(pi, t) : [t, α] ∧ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(7, 5), α]. (8)



22 K. NAKAMATSU

If one of basic bf-inference rules,(5, 5)-rule-1,2 and 3, and(0, 8)-rule-1 and 2 has been applied, the
final bf-relations represented by bf-annotations such asjb(2, 10)/ja(10, 2) between two processes
should be derived. On the other hand, even if basic bf-inference rule(0, 8)-rule-3 has been applied,
no bf-annotation could be derived. Therefore, a group of basic bf-inference rules called(2, 8)-rules
should be considered after applying basic bf-inference rule(0, 8)-rule-3.

(2,8)-rules
Suppose that processPri has started before processPrj starts and processPrj has started before
processPri finishes, then the vector annotation of bf-literalR(pi, pj , t) should be(2, 8) and the
following three rules should be considered.
(2, 8)-rule-1 If processPri finished before processPrj finishes, then the vector annotation
(2, 8) of bf-literal R(pi, pj , t) should turn to bf-annotationjb(2, 10).
(2, 8)-rule-2 If both processesPri and Prj have finished at the same time, then the vector
annotation(2, 8) of bf-literal R(pi, pj , t) should turn to bf-annotationfb(3, 9).
(2, 8)-rule-3 If processPrj has finished beforePri finishes, then the vector annotation(2, 8)
of bf-literal R(pi, pj , t) should turn to bf-annotationib(4, 8).

Basic bf-inference rules(2, 8)-rule-1,2 and 3 may be translated into the bf-EVALPSN clauses,

R(pi, pj , t) : [(2, 8), α] ∧ fi(pi, t) : [t, α]∧ ∼ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(2, 10), α], (9)

R(pi, pj , t) : [(2, 8), α] ∧ fi(pi, t) : [t, α] ∧ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(3, 9), α], (10)

R(pi, pj , t) : [(2, 8), α]∧ ∼ fi(pi, t) : [t, α] ∧ fi(pj , t) : [t, α]

→ R(pi, pj , t) : [(4, 8), α]. (11)

The application orders of all basic bf-inference rules are summarizedin Table I.

TABLE I: Application Orders of Basic Bf-inference Rules

vector rule vector rule vector rule vector
rule-1 (0, 12)
rule-2 (1, 11)

rule-1 (0, 8) rule-1 (2, 10)
(0, 0) rule-3 (2, 8) rule-2 (3, 9)

rule-3 (4, 8)
rule-1 (5, 7)

rule-2 (5, 5) rule-2 (6, 6)
rule-3 (7, 5)

C. Transitive before-after inference rule

Here we review another kind of bf-inference rules calledtransitive bf-inference rules, which
can reason one vector annotation of bf-literal from two other vector annotations of bf-literals
transitively. Bf-relations represented by bf-annotations could be reasoned efficiently by using the
transitive bf-inference rules. Suppose that there are three processes Pri,Prj and Prk starting
sequentially, then we consider to reason the vector annotation of bf-literalR(pi, pk, t) from those



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 23

of bf-literalsR(pi, pj , t) andR(pj , pk, t) transitively. We will show simple examples for forming
some transitive bf-inference rules as introduction.
Example 1
Suppose that both processesPri andPrj have already started at timet but processPrk has not
started yet as shown in Fig.12, then we have obtained the vector annotation(2, 8) of bf-literal
R(pi, pj , t) by basic bf-inference rule(0, 8)-rule-3 and the vector annotation(0, 8) of bf-literal
R(pj , pk, t) by basic bf-inference rule(0, 0)-rule-1. Then, obviously the vector annotation of bf-
literal R(pi, pk, t) is reasoned as bf-annotationbe(0, 8). Thus, we have the following bf-EVALP
clause as a transitive bf-inference rule,

R(pi, pj , t) : [(2, 8), µ] ∧R(pj , pk, t) : [(0, 8), µ]

→ R(pi, pk, t) : [(0, 8), µ], µ ∈ {α, β, γ}.

Here we list all transitive bf-inference rules. The details of how to construct transitive bf-inference

Pr

i

t

P r

j

Pr

k

Fig. 12: Process Time Chart Ex-3

rules are in [18] For simplicity, we represent a transitive bf-inferencerule,

R(pi, pj , t) : [(n1, n2), α] ∧R(pj , pk, t) : [(n3, n4), α]

→ R(pi, pk, t) : [(n5, n6), α]

by only vector annotations and logical connectives,∧ and→, as follows:(n1, n2) ∧ (n3, n4) →
(n5, n6) in the list of transitive bf-inference rules.

Transitive Bf-inference Rules

TR0 (0, 0) ∧ (0, 0) → (0, 0)

TR1 (0, 8) ∧ (0, 0) → (0, 8)

TR1− 1 (0, 12) ∧ (0, 0) → (0, 12)

TR1− 2 (1, 11) ∧ (0, 8) → (0, 12)

TR1− 3 (1, 11) ∧ (5, 5) → (1, 11)

TR1− 4 (2, 8) ∧ (0, 8) → (0, 8)



24 K. NAKAMATSU

TR1− 4− 1 (2, 10) ∧ (0, 8) → (0, 12)

TR1− 4− 2 (4, 8) ∧ (0, 12) → (0, 8) (12)

TR1− 4− 3 (2, 8) ∧ (2, 8) → (2, 8)

TR1− 4− 3− 1 (2, 10) ∧ (2, 8) → (2, 10)

TR1− 4− 3− 2 (4, 8) ∧ (2, 10) → (2, 8) (13)

TR1− 4− 3− 3 (2, 8) ∧ (4, 8) → (4, 8)

TR1− 4− 3− 4 (3, 9) ∧ (2, 10) → (2, 10)

TR1− 4− 3− 5 (2, 10) ∧ (4, 8) → (3, 9)

TR1− 4− 3− 6 (4, 8) ∧ (3, 9) → (4, 8)

TR1− 4− 3− 7 (3, 9) ∧ (3, 9) → (3, 9)

TR1− 4− 4 (3, 9) ∧ (0, 12) → (0, 12)

TR1− 4− 5 (2, 10) ∧ (2, 8) → (1, 11)

TR1− 4− 6 (4, 8) ∧ (1, 11) → (2, 8) (14)

TR1− 4− 7 (3, 9) ∧ (1, 11) → (1, 11)

TR1− 5 (2, 8) ∧ (5, 5) → (2, 8)

TR1− 5− 1 (4, 8) ∧ (5, 7) → (2, 8) (15)

TR1− 5− 2 (2, 8) ∧ (7, 5) → (4, 8)

TR1− 5− 3 (3, 9) ∧ (5, 7) → (2, 10)

TR1− 5− 4 (2, 10) ∧ (7, 5) → (3, 9)

TR2 (5, 5) ∧ (0, 8) → (0, 8)

TR2− 1 (5, 7) ∧ (0, 8) → (0, 12)

TR2− 2 (7, 5) ∧ (0, 12) → (0, 8) (16)

TR2− 3 (5, 5) ∧ (2, 8) → (2, 8)

TR2− 3− 1 (5, 7) ∧ (2, 8) → (2, 10)

TR2− 3− 2 (7, 5) ∧ (2, 10) → (2, 8) (17)

TR2− 3− 3 (5, 5) ∧ (4, 8) → (4, 8)

TR2− 3− 4 (7, 5) ∧ (3, 9) → (4, 8)

TR2− 4 (5, 7) ∧ (2, 8) → (1, 11)

TR2− 5 (7, 5) ∧ (1, 11) → (2, 8) (18)

TR3 (5, 5) ∧ (5, 5) → (5, 5)

TR3− 1 (7, 5) ∧ (5, 7) → (5, 5) (19)

TR3− 2 (5, 7) ∧ (7, 5) → (6, 6)

Note : the bottom vector annotation(0, 0) in the list of transitive bf-inference rules implies
that any bf-EVALP clauseR(pj , pk, t) : [(n,m), α] satisfies it.

Here we indicate two important points in terms of transitive bf-inference rules.
(I) Names of transitive bf-inference rules such as TR1-4-3 show their applicable orders. For
example, if transitive bf-inference rule TR1 has been applied, one of transitive bf-inference rules



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 25

TR1-1,TR1-2,. . . or TR1-5 should be applied at the following stage; if transitive bf-inference rule
TR1-4 has been applied after transitive bf-inference rule TR1, one oftransitive bf-inference rules
TR1-4-1,TR1-4-2,. . . or TR1-4-7 should be applied at the following stage; on the other hand,
if one of transitive bf-inference rules TR1-1, TR1-2 or TR1-3 has been applied after transitive
bf-inference rule TR1, there is no transitive bf-inference rule to be applied at the following stage
because bf-annotationsdb(0, 12) or mb(1, 11) between processesPri andPrk have already been
derived.
(II) The eight transitive bf-inference rules, TR1-4-2 (12), TR2-2(16), TR1-4-3-2 (13), TR2-3-2
(17), TR1-4-6 (14), TR2-5 (18), TR1-5-1 (15), TR3-1 (19) have no following rule to be applied
at the following stage, even though they cannot derive the final bf-relations between processes
represented by bf-annotations such asjb(2, 10)/ja(10, 2). For example, suppose that transitive
bf-inference rule TR1-4-3-2 has been applied, then the vector annotation (2, 8) of the bf-literal
(pi, pk, t) just implies that the final bf-relation between processesPri andPrk is one of three bf-
annotations,jb(2, 10), sb(3, 9) andib(4, 8). Therefore, if one of the eight transitive bf-inference
rules has been applied, one of basic bf-inference rules(0, 8)-rule, (2, 8)-rule or (5, 5)-rule should
be applied for deriving the final bf-annotation at the following stage. Forinstance, if transitive
bf-inference rule TR1-4-3-2 has been applied, basic bf-inferencerule (2, 8)-rule should be applied
at the following stage.

D. Example of transitive bf-relation reasoning

Pr

i

t

0

t

1

t

4

Pr

j

t

2

t

7

Pr

k

t

3

t

5

t

6

Fig. 13: Process Time Chart Ex-4-3

Now we show an example of bf-relation reasoning by transitive bf-inference rules taking the
process time chart in Fig.13.
At time t1, transitive bf-inference rule TR1 is applied and we have the bf-EVALP clause,R(pi, pk, t1) :
[(0, 8), α].
At time t2, transitive bf-inference rule TR1-2 is applied, however bf-literalR(pi, pk, t2) has the
same vector annotation(0, 8) as the previous timet1. Therefore, we have the bf-EVALP clause,
R(pi, pk, t2) : [(0, 8), α].
At time t3, no transitive bf-inference rule can be applied, since the vector annotations of bf-literals
R(pi, pj , t3) andR(pj , pk, t3) are the same as the previous timet2. Therefore, we still have the
bf-EVALP clause having the same vector annotation,R(pi, pk, t3) : [(0, 8), α].
At time t4, transitive bf-inference rule TR1-2-1 is applied and we obtain the bf-EVALP clause
having bf-annotationdb(0, 12), R(pi, pk, t4) : [(0, 12), α].



26 K. NAKAMATSU

PIPELINE-1

PIPELINE-2

t

0

t

1

t

2

t

3

t

4

-

Pr

0

-

Pr

3

-

Pr

1

-

Pr

2

Fig. 14: Pipeline Process Schedule

V. A PPLICATION OF BF-EVALPSN TO PROCESS ORDER VERIFICATION

In this section, we present a simple example for applying the bf-relation reasoning system in
bf-EVALPSN to process order verification.

Suppose that there is a pipeline system consists of two pipelines PIPELINE-1 and PIPELINE-2,
which is also supposed to deal with four pipeline processesPr0, Pr1, Pr2 andPr3 according
to the process schedule in Fig.14. Moreover, the process order verification system has four safety
propertiesSPR− i for processesPri(i = 0, 1, 2, 3) to be strictly assured, respectively.
SPR-0 processPr0 must start before any other processes, and processPr0 must finish before
processPr2 finishes;
SPR-1 processPr1 must start after processPr0 starts;
SPR-2 processPr2 must start immediately after processPr1 finishes;
SPR-3 processPr3 must start immediately after processesPr0 andPr2 finish.

All the safety properties can be translated into the following bf-EVALPSN clauses:

[SPR-0]

∼ R(p0, p1, t) : [(0, 8), α] → st(p1, t) : [f, β], (20)

∼ R(p0, p2, t) : [(0, 8), α] → st(p2, t) : [f, β], (21)

∼ R(p0, p3, t) : [(0, 8), α] → st(p3, t) : [f, β], (22)

st(p1, t) : [f, β] ∧ st(p2, t) : [f, β] ∧ st(p3, t) : [f, β]

→ st(p0, t) : [f, γ], (23)

∼ fi(p0, t) : [f, β] → fi(p0, t) : [f, γ], (24)

where the bf-EVALPSN clauses (20),(21) and (22) declare that if processPr0 has not started before
each processPri(i = 1, 2, 3) starts, it should be forbidden to start each processPri(i = 1, 2, 3),
respectively; the bf-EVALPSN clause (23) declares that if each processPri(i = 1, 2, 3) is forbidden
from starting, it should be permitted to start processPr0; and the bf-EVALPSN clause (24) declares
that if there is no forbiddance from finishing processPr0, it should be permitted to finish process
Pr0.

[SPR-1]

∼ st(p1, t) : [f, β] → st(p1, t) : [f, γ], (25)

∼ fi(p1, t) : [f, β] → fi(p1, t) : [f, γ], (26)

where the bf-EVALPSN clauses (25)/(26) declare that if there is no forbiddance from starting/finishing



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 27

processPr1 respectively, it should be permitted to start/finish processPr1.

[SPR-2]

∼ R(p2, p1, t) : [(11, 0), α] → st(p2, t) : [f, β], (27)

∼ st(p2, t) : [f, β] → st(p2, t) : [f, γ], (28)

∼ R(p2, p0, t) : [(10, 2), α] → fi(p2, t) : [f, β], (29)

∼ fi(p2, t) : [f, β] → fi(p2, t) : [f, γ], (30)

where the bf-EVALPSN clause (27) declares that if processPr1 has not finished before process
Pr2 starts, it should be forbidden to start processPr2; the vector annotation(11, 0) of bf-literal
R(p2, p1, t) is the greatest lower bound of the set{da(12, 0), ma(11, 1)}, which implies that process
Pr1 has finished before processPr2 starts in either way; the bf-EVALPSN clauses (28)/(30)
declare that if there is no forbiddance from starting/finishing processPr2, it should be permitted
to start/finish processPr2, respectively; and the bf-EVALPSN clauses (29) declares that if process
Pr0 has not finished before processPr2 finishes, it should be forbidden to finish processPr2.

[SPR-3]

∼ R(p3, p0, t) : [(11, 0), α] → st(p3, t) : [f, β], (31)

∼ R(p3, p1, t) : [(11, 0), α] → st(p3, t) : [f, β], (32)

∼ R(p3, p2, t) : [(11, 0), α] → st(p3, t) : [f, β], (33)

∼ st(p3, t) : [f, β] → st(p3, t) : [f, γ], (34)

∼ fi(p3, t) : [f, β] → fi(p3, t) : [f, γ], (35)

where the bf-EVALPSN clauses (31),(32) and (33) declare that if none of processesPri(i = 0, 1, 2)
has not finished, it should be forbidden to start processPr3; and the bf-EVALPSN clauses (34)/(35)
declares that if there is no forbiddance from starting/finishing processPr3, it should be permitted
to start/finish processPr3, respectively. Now, we show how the process order verification in bf-
EVALPSN is carried out in real-time by considering the process schedulein Fig.14. In the following
example, five bf-relations between processesPr0, Pr1, Pr2 andPr3 represented by the vector
annotations of bf-literals,R(p0, p1, t), R(p0, p2, t), R(p0, p3, t), R(p2, p1, t) andR(p3, p2, t) are
verified in real-time based on safety propertiesSPR− 0, SPR− 1, SPR− 2 andSPR− 3.

Stage 0(at time t0) no process has started at timet0, thus, the bf-EVALP clauses,

R(p0, p1, t0) : [(0, 0), α], (36)

R(p1, p2, t0) : [(0, 0), α], (37)

R(p2, p3, t0) : [(0, 0), α] (38)

are obtained; also, the bf-EVALP clauses,

R(p0, p2, t0) : [(0, 0), α], (39)

R(p0, p3, t0) : [(0, 0), α] (40)

are obtained by transitive bf-inference rule TR0; then, the bf-EVALP clauses (36) and (39) satisfy
each body of the bf-EVALPSN clauses (20),(21) and (22) respectively, therefore, the forbiddance
from starting each processPri(i = 1, 2, 3),

st(p1, t0) : [f, β], st(p2, t0) : [f, β], and

st(p3, t0) : [f, β] (41)



28 K. NAKAMATSU

are derived; moreover, as the bf-EVALP clauses (41) satisfy the body of the bf-EVALPSN clause
(23), the permission for starting processPr0, st(p0, t0) : [f, γ] is derived; therefore, processPr0
is permitted to start at this stage.
Stage 1(at timet1) processPr0 has already started but all other processesPri(i = 1, 2, 3) have
not started yet; then the bf-EVALP clauses,

R(p0, p1, t1) : [(0, 8), α], (42)

R(p1, p2, t1) : [(0, 0), α], (43)

R(p2, p3, t1) : [(0, 0), α] (44)

are obtained, where the bf-EVALP clause (42) is derived by basic bf-inference rule(0, 0)-rule-1;
moreover, the bf-EVALP clauses,

R(p0, p2, t1) : [(0, 8), α], (45)

R(p0, p3, t1) : [(0, 8), α] (46)

are obtained by transitive bf-inference rule TR1; as the bf-EVALP clause (42) does not satisfy the
body of the bf-EVALPSN clause (20), the forbiddance from starting processPr1,

st(p1, t1) : [f, β] (47)

cannot be derived; Then, as there is not the forbiddance (47), the body of the bf-EVALPSN clause
(25) is satisfied, and the permission for starting processPr1, st(p1, t1) : [f, γ] is derived; on the
other hand, as the bf-EVALP clauses (45) and (46) satisfy the body ofthe bf-EVALPSN clauses (27)
and (31) respectively, the forbiddance from starting both processesPr2 andPr3, st(p2, t1) : [f, β],
andst(p3, t1) : [f, β] are derived; therefore, processPr1 is permitted to start.
Stage 2(at time t2) processPr1 has just finished and processPr0 has not finished yet; then,
the bf-EVALP clauses,

R(p0, p1, t2) : [(4, 8), α], , R(p1, p2, t2) : [(1, 11), α], and

R(p2, p3, t2) : [(0, 8), α]

are derived by basic bf-inference rules(2, 8)-rule-3, (0, 8)-rule-2 and(0, 0)-rule-1, respectively;
moreover, the bf-EVALP clauses,

R(p0, p2, t2) : [(2, 8), α], (48)

R(p0, p3, t2) : [(0, 12), α] (49)

are obtained by transitive bf-inference rules TR1-4-6 and TR1-2, respectively; then, as the bf-
EVALP clause (48) does not satisfy the body of the bf-EVALPSN clause(27), the forbiddance
from starting processPr2,

st(p2, t2) : [f, β] (50)

cannot be derived; as there is not the forbiddance (50), it satisfies the body of the bf-EVALPSN
clause (28), and the permission for starting processPr2, st(p2, t2) : [f, γ] is derived; on the
other hand, as the bf-EVALP clause (49) satisfies the body of the bf-EVALPSN clause (31), the
forbiddance from starting processPr3, st(p3, t2) : [f, β] is derived; therefore, processPr2 is
permitted to start, however processPr3 is still forbidden from starting.



Application of Paraconsistent Annotated Logic Program Bf-EVALPSN to Intelligent Control 29

Stage 3(at thet3) processPr0 has finished, processPr2 has not finished yet, and processPr3
has not started yet; then, the bf-EVALP clauses,

R(p0, p1, t3) : [(4, 8), α], R(p1, p2, t3) : [(1, 11), α]

and R(p2, p3, t3) : [(0, 8), α],

which have the same vector annotations as the previous stage are obtained; moreover, the bf-EVALP
clauses,

R(p0, p2, t3) : [(2, 10), α], (51)

R(p0, p3, t3) : [(0, 12), α] (52)

are obtained, where the bf-EVALP clause (51) is derived by the basic bf-inference rule(2, 8)-
rule-1; then, the bf-EVALP clause (51) satisfies the body of the bf-EVALP clause (33), and the
forbiddance from starting processPr3, S(p3, t3) : [f, β] is derived; therefore, processPr3 is still
forbidden from starting because processPr2 has not finished yet at this stage.
Stage 4(at timet4) processPr2 has just finished and processPr3 has not started yet; then, the
bf-EVALP clauses,

R(p0, p1, t4) : [(4, 8), α], (53)

R(p1, p2, t4) : [(1, 11), α], (54)

R(p2, p3, t4) : [(1, 11), α], (55)

R(p0, p2, t4) : [(2, 10), α], (56)

R(p0, p3, t4) : [(0, 12), α] (57)

are obtained; the bf-EVALP clause (55) is derived by basic bf-inference rule(0, 8)-rule-2; moreover,
as the bf-EVALP clauses (53),(56) and (57) do not satisfy the bodiesof the bf-EVALP clauses
(31),(32) and (33), the forbiddance from starting processPr3,

st(p3, t4) : [f, β] (58)

cannot be derived; as there is not the forbiddance (58), the body ofthe bf-EVALPSN clause (34)is
satisfied, and the permission for starting processPr3, st(p3, t4) : [f, γ] is derived; Therefore,
processPr3 is permitted to start because processesPr0, Pr1 andPr2 have finished.

VI. CONCLUSION

In this paper, we have introduced a logical reasoning system for before-after relations between
processes(time intervals) based on a paraconsistent annotated logic program bf-EVALPSN, which
consists of two groups of inference rules in bf-EVALPSN called basic and transitive bf-inference
rules. As related work, an interval temporal logic has been proposed for developing practical
planning and natural language understanding systems in Allen [1], [2].In his logic, before-after
relations between two time intervals are represented in special predicates and treated in a framework
of first order temporal logic. On the other hands, in our bf-EVALPSN before-after reasoning system,
before-after relations between processes are regarded as paraconsistency and represented more
minutely in vector annotations of the special literalR(pi, pj , t) called bf-literal, and treated in the
framework of annotated logic programming. Moreover, an efficient real-time before-after relation



30 K. NAKAMATSU

reasoning mechanism called transitive bf-inference is implemented in oursystem. Therefore, we
would like to conclude that our bf-EVALPSN before-after relation reasoning system is more suitable
for dealing with process order control/verification in real-time, with considering its hardware
implementation such as on microchips.

Our system has a lot of applications though, our future work focuses onits application to logical
design for various process order control systems based on the safety verification.

REFERENCES

[1] J.F. Allen, “Towards a General Theory of Action and Time”,Artificial Intelligencevol. 23, pp. 123–154,
1984.

[2] J.F. Allen, and G. Ferguson, “Actions and Events in Interval Temporal Logic”,J.Logic and Computation
vol. 4, pp. 531–579, 1994.

[3] H.A. Blair, and V.S. Subrahmanian, “Paraconsistent Logic Programming”,Theoretical Computer Science
vol. 68, pp. 135–154, 1989.

[4] N.C.A. da Costa, V.S. Subrahmanian, and C. Vago, “The Paraconsistent Logics PT ”, Zeitschrift f̈ur
Mathematische Logic und Grundlangen der Mathematikvol. 37, pp. 139–148, 1989.

[5] K. Nakamatsu, and A. Suzuki, “Annotated semantics for default reasoning”,Proc. 3rd Pacific Rim Intl.
Conf. Artificial Intelligence (PRICAI94), pp. 180–186, 1994.

[6] K. Nakamatsu, “On the relation between vector annotated logic programs and defeasible theories”,Logic
and Logical Philosophyvol. 8, pp. 181–205, 2000.

[7] K. Nakamatsu, J.M. Abe, and A. Suzuki, “Annotated Semantics for Defeasible Deontic Reasoning”,
Rough Sets and Current Trends in Computing, LNAI vol. 2005, pp.432–440, 2001.

[8] K. Nakamatsu, H. Suito, J.M. Abe, and A. Suzuki, “Paraconsistent logic program based safety verification
for air traffic control”, Proc. IEEE Intl. Conf. System, Man and Cybernetics 02(SMC02) (CD), 2002.

[9] K. Nakamatsu, J.M. Abe, and A. Suzuki, “A railway interlocking safety verification system based on
abductive paraconsistent logic programming”,Soft Computing Systems(HIS02)Frontiers in Artificial
Intelligence and Applications, vol. 87, pp. 775–784, 2002.

[10] K. Nakamatsu, T. Seno, J.M. Abe, and A. Suzuki, “Intelligent real-time traffic signal control based
on a paraconsistent logic program EVALPSN”,Rough Sets, Fuzzy Sets, Data Mining and Granular
Computing(RSFDGrC2003)LNAI vol. 2639, pp. 719–723, 2003.

[11] K. Nakamatsu, S-L. Chung, H. Komaba, and A. Suzuki, “A discrete event control based on EVALPSN
stable model”,Rough Sets, Fuzzy Sets, Data Mining and Granular Computing(RSFDGrC2005), LNAI
vol. 3641, pp. 671–681, 2005.

[12] K. Nakamatsu, J.M. Abe, S. Akama, “An intelligent safety verification based on a paraconsistent
logic program”,Proc. 9th Intl. Conf. Knowledge-Based Intelligent Information and Engineering Sys-
tems(KES2005), LNAI vol. 3682, pp. 708–715, 2005.

[13] K. Nakamatsu, K. Kawasumi, and A. Suzuki, “Intelligent verification for pipeline based on EVALPSN”,
Advances in Logic Based Intelligent Systems, Frontiers in Artificial Intelligence and Applications, vol.
132, pp. 63–70, 2005.

[14] K. Nakamatsu, “Pipeline Valve Control Based on EVALPSN Safety Verification”, J.Advanced Compu-
tational Intelligence and Intelligent Informatics, vol. 10, pp. 647-656, 2006.

[15] K. Nakamatsu, Y. Mita, and T. Shibata, “An Intelligent Action Control System Based on Extended
Vector Annotated Logic Program and its Hardware Implementation”, J.Intelligent Automation and Soft
Computing, vol. 13, pp. 289–304, 2007.

[16] K. Nakamatsu, and J.M. Abe, “The development of Paraconsistent Annotated Logic Program”,Int’l J.
Reasoning-based Intelligent Systems, vol. 1, pp. 92-112, 2009.

[17] K. Nakamatsu, T. Imai, J.M. Abe, and S. Akama, Introductionto Plausible Reasoning Based on
EVALPSN, Advanced in Intelligent Decision Technologies, SCI vol. 199, pp. 363–372, Springer, 2009.

[18] K. Nakamatsu, J.M. Abe, and S. Akama, A Logical Reasoning System of Process Before-after Relation
Based on a Paraconsistent Annotated Logic Program bf-EVALPSN, Intl J. Knowledge-based and
Intelligent Engineering Systems, 15 (2011), pp. 145–163.




