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A FAST ALGORITHM FOR LINEAR CONVOLUTION

OF DISCRETE TIME SIGNALS

Zdenka Babi�c and Danilo P. Mandi�c

Abstract: A novel, computationally eÆcient algorithm for linear convolution is
proposed. This algorithm uses an N point instead of the usual (2N � 1) point
circular convolution to produce a linear convolution of two N point discrete
time sequences. To achieve this, a scaling factor is introduced which enables
the extraction of the term representing linear convolution from any algorithm
that computes circular convolution. The proposed algorithm is just as accurate
as standard linear convolution provided that the chosen circular convolution
algorithm does not introduce round-o� errors. The analysis is supported by
simulation examples for several typical application cases.
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1. Introduction

Convolution is at the very core of digital signal processing. Presently,
there is an ever increasing number of applications that require convolution
of some kind. Many DSP applications require a task being completed in
the minimal time. To this cause, ongoing research into DSP hardware con-
centrates on providing faster real-time algorithms. The aim of this paper is
to propose a novel method of linear convolution that signi�cantly reduces
the computational cost of traditional linear convolution. Many convolution
algorithms have been developed to suit a particular application or available
hardware. A convenient way to compute linear convolution of two N point
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sequences is to employ circular convolution, i.e. using properties of the dis-
crete Fourier transform (DFT) [1], [2], [3] or number theoretic transform
(NTT) [4], [5], [6]. All these methods require the use of (2N � 1) point
circular convolution to compute N point linear convolution of discrete time
sequences.

To improve the speed of this operation, other methods such as the right-
angle circular convolution (RCC) have been proposed [7], [8] which makes it
possible to compute a linear convolution of two discrete time sequences using
an N point RCC instead of standard (2N � 1) point circular convolution.
To compute RCC, the modi�ed Fermat number transform (FNT) [7] was
used, whereby some adjustments had to be made to split the N [A numbers
from the computation of RCC into (2N � 1) numbers required by linear
convolution calculation methods.

Another approach was presented in [9], where N point linear convolution
was obtained by using a four N point FNT and three N point inverse FNT
(IFNT), with an additional expense of 3N additions and 3N multiplications.

To calculate a linear convolution of two N point sequences, we propose
a novel algorithm, which uses circular convolution in N points, instead of
(2N � 1) points, as required by the standard algorithm. The proposed algo-
rithm does not impose any limits on the method for calculation of circular
convolution if the assumption of zero round-o� errors is upheld. This algo-
rithm assumes that signals to be convolved are represented with a relatively
small number of bits, such as in the case after the A/D conversion. Pro-
cessor word lengths, however, tend to be much longer than the data word
after A/D conversion. Furthermore, in image processing, the pixel value is
often represented by eight bits, whereas the convolution kernel and the edge
detection operators use four or even two bits. Therefore there is a poten-
tial redundancy in accuracy of data processing with respect to data length.
This redundancy can be used to develop eÆcient algorithms to speed up the
calculation of linear convolution [10].

2. Basics of Fast Convolution

The traditional approach of fast signal convolution involves a multiplica-
tion in the frequency domain, due to the many established algorithms for
fast computation of Fourier type transforms (FFT) [1], [2],[3]. Although
these methods may seem mathematically involved, for long block sizes they
often prove much faster for convolution than time domain methods. FFT
algorithms produce a periodic output, with the same period as the input
sequences. Convolution calculated this way is periodic and is called circular
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convolution. For practical applications, however, we need the linear, not
circular convolution of time domain sequences. Therefore, if we convolve
aperiodic �nite duration signals, we desire an aperiodic �nite duration con-
volution of these signals. Methods to obtain a linear convolution from its
circular counterparts are part of standard DSP courses and they rely on so
called zero-�lling [1], [2], [3], [4]. In general, the overlap that appears in the
transform domain by using circular convolution to obtain the linear one can
be avoided if the period NFFT of the employed FFT is chosen to be

NFFT � N1 +N2 � 1 (1)

where N1 and N2 are the lengths of signals being convolved. In this case,
input signals are �lled with zeros up to a length NFFT which is the smallest
power of M for radix-M FFT methods, such that (1) holds. The inverse
FFT returns a convolved sequence for which the length is (N1 + N2 � 1).
This is exactly the length of the standard linear convolution followed by
[NFFT � (N1 +N2 � 1)] zeros in the returned signal. While standard linear
convolution in the time domain requires approximately N1N2 multiplications
and additions, fast convolution methods require only two NFFT point FFTs
and one NFFT point IFFT, which sums up to 3NFFT log2NFFT operations
for a radix-2 FFT algorithm. This means, that counting only multiplica-
tions, for N1 = N2 = N = NFFT =2 the computational advantage of fast
convolution, as compared to direct convolution, is

N2

3� 2 log2(2N) + 2N
(2)

Fast convolution algorithms for practical applications employed in hardware
may have execution speed advantage more than twice as much as this. For
instance, for processing of real signals, there is no need to calculate the whole
complex valued FFT, which speeds up the execution.

3. A Novel Algorithm for Linear Convolution
by Means of Circular Convolution

To introduce a new algorithm let us �rst �nd the way to express cir-
cular convolution from linear convolution and vice versa. A circular con-
volution of two N point causal discrete time domain sequences x =
fx(0); x(1); : : : ; x(N � 1)g and h = fh(0); h(1); : : : ; h(N � 1)g can be ex-
pressed as

yc(n) =

N�1X

k=0

x(h k iN )h(h n� k iN ); n = 0; 1; : : : ; N � 1 (3)
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where h � iN denotes the modN operator.

Based on the properties of the operator h � iN

h k iN= k;

h n� k iN= n� k;

h n� k iN= N + n� k;

0 � k � N � 1;

0 � n� k � N � 1;

n� k � 0;

(4)

to separate circular convolution (3) into two partial sums we write

yc(n) =
N�1X

k=0

0�n�k�N�1

x(h k iN )h(h n� k iN ) +
N�1X

k=0

n�k<0

x(h k iN )h(h n� k iN )

=

N�1X

k=0

n=0;::: ;N�1

x(k)h(n � k) +

N�1X

k=0

n=0;::: ;N�2

x(k)h(N + n� k)

n = 0; 1; : : : ; N � 1

(5)

The lower index terms in sums (5) denote the range of values for which
the sums are valid. If the index constraints are not upheld, assume zero
value. The �rst term in (5) represents a linear convolution of sequences x
and h, for n = 0; 1: : : : ; N �1, whereas the second term in (5) comprises the
values of linear convolution between x and h, for n = N;N + 1; : : : ; 2N �
2. Technically, this gives an opportunity to calculate an N point circular
convolution of two N point sequences from their linear convolution whereby
an extra addition

yc(n) = yl(n) + yl(N + n); n = 0; 1; : : : ; N � 2

yc(N � 1) = yl(N � 1)
(6)

is necessary.

Notice that multipurpose and signal processors operate nowadays with
a typically 64 bit processor word, whereas the data which come from an
A/D converter are often represented by a 12-20 bit word. Separating the
sums yl(n) and yl(N + n) from (6) (which are in fact linear convolutions)
within the processor word, it would make it possible to calculate a linear
convolution of N point sequences via a circular convolution in N points.
Notice that the existing algorithms use a (2N�1) point circular convolution
for this purpose.
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To separate yl(n) and yl(N +n) in (6), we introduce a scaling factor into
input sequences as

x1(n) = x(n)sn; n = 0; 1; : : : ; N � 1;

h1(n) = h(n)sn; n = 0; 1; : : : ; N � 1:
(7)

The circular convolution of x1 and h1 now becomes

yc1(n) = sn
N�1X

k=0

n=0;1;::: ;N�1

x(k)h(n� k) + sN+n

N�1X

k=0

n=0;1;::: ;N�2

x(k)h(N + n� k);

n = 0; 1; : : : ; N � 1

(8)
and

yc1 = sn[yl(n) + sNyl(N + n)]; n = 0; 1; : : : ; N � 2

yc1 = sN�1yl(N � 1)
(9)

Let us make a usual assumption that input sequences are bounded and
can be expressed by a b-bit word. For N a power of two, representations of
partial sums from (5) do not require more than (2b+log2N) bits. Therefore,
yl(n) and yl(N + n) from (9) can be separated if s is chosen to be

sN � 22b+log2N (10)

In most practical applications s = 2 is a satisfactory choice.

As shown above, linear convolution of two N point sequences with
bounded elements can be computed via the corresponding N point circular
convolution instead of the standard fast convolution method, which requires
a (2N � 1) point circular convolution. This result in the computational
complexity for the proposed method being less than 50 % of that used in
standard fast convolution. Any method for computation of circular convo-
lution can be used to produce (8) as long as the �nal result is represented
without round-o� errors. For instance, methods that employ NTTs are suit-
able for this purpose. If a radix-2 FFT is employed for circular convolution,
the advantage of the proposed method, in terms of computational complex-
ity, as compared to direct linear convolution of two N point sequences, is
approximately

N2

3�N log2N +N
(11)
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Table 1 presents the reduction in computational complexity of the fast
convolution and proposed method over the direct computation of convolu-
tion. Figure 1 shows the computational reduction plots of the proposed al-
gorithm and the standard fast convolution algorithm. As seen, the proposed
algorithm shows a consistent computational advantage over the standard
algorithms. This is the case for any value of data length N (for small N ,
circular convolution does not have advantage over standard convolution -
columns 1 and 2 in Table 1).

An insight in the equation (8) shows that for extracting the elements that
represent linear convolution from an N point circular convolution, a choice
of s = 2 does not require additional arithmetical operations, save for a linear
shift.

Table 1. Showing the computational advantage of the fast convolution (2)
and proposed method (11) for computation of linear convolution over

the direct linear convolution in terms of computational speed.

N 16 32 64 128 256 512 1024 2048 4096

Fast convolution 0.50 0.84 1.45 2.56 4.57 8.26 15.06 27.68 51.20

Proposed method 1.23 2.00 3.37 5.82 10.24 18. 28 33.03 60.24 110.70

Fig. 1. Computational reduction plots.
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4. Simulation Results

To support the analysis, simulations were undertaken for simple real se-
quences, and the results of the proposed and standard algorithms were com-
pared with respect to accuracy and computational speed. The FFT and
IFFT functions from MATLAB were used to compute N point circular con-
volutions. As expected, correct results were obtained if there were no round-
o� errors. If the size of the data and length of sequences were relatively
small there were no scaling data to prevent over
ow and N point circular
convolution (8) of scaled sequences was computed exactly. In that case it
was possible to separate two parts of linear convolution from (8) without
errors (Example 1). If the data and sequence length increased, round-o�
errors occurred which then a�ected the �rst few samples of linear convolu-
tion (Example 2). In many DSP algorithms the �rst few samples of signals
are discarded, thus reducing the sensitivity of the zero round-o� error con-
straint. As b and N increased, the frequency and amplitude of round-o�
errors increased (Example 3).

Example 1

Convolution was performed for sequences with N = 16 and b = 7. The
scaling factor was s = 2. Both the proposed and standard convolution al-
gorithms produced the same results. Fig. 2 shows two input sequences (a)
and (b), their linear convolution obtained with the standard fast convolution
algorithm (circular convolution in 2N points via FFT) (c), and the linear
convolution obtained with the proposed algorithm (N point circular convo-
lution via FFT) (d). In this case, the proposed algorithm gave the correct
result.

Example 2

Convolution was performed for sequences with N = 32 and b = 7. The
scaling factor was s = 2. The round-o� errors occurred in MATLAB if the
FFT method was used for N point circular convolution of scaled sequences,
because the magnitude of the DFT of a sequence tends to be signi�cantly
larger than the magnitude of the sequence itself. Some of the �rst elements
of the result were incorrect. Fig. 3 shows two input sequences (a) and
(b), their linear convolution obtained with the standard fast convolution
algorithm (circular convolution in points via FFT) (c), and the linear convo-
lution obtained with the proposed algorithm (N point circular convolution
via FFT) (d) (the �rst few inaccurate samples of the resulting convolution
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Fig. 2. Linear convolution of two 16-point 7-bit sequences.

Fig. 3. Linear convolution of two 32-point 7-bit sequences.



Z. Babi�c, D. Mandi�c: A fast algorithm for linear convolution ... 407

sequence that are 10 % greater than the maximum value of the convolution
are shown as zero elements).

Example 3

In this example, convolution was performed for sequences with N = 64
and b = 7. The scaling factor was . The round-o� errors which occurred in
MATLAB were greater than in the previous examples and therefore about a
half of the elements of the convolution sequence were incorrect. Fig. 4 shows
two input sequences (a) and (b), their linear convolution obtained with the
standard fast convolution algorithm (circular convolution in points 2N via
FFT) (c), and the linear convolution obtained with the proposed algorithm
(N point circular convolution via FFT) (d) (the �rst few inaccurate sam-
ples of the resulting convolution sequence that are 10 % greater than the
maximum value of the convolution are shown as zero elements).

Fig. 4. Linear convolution of two 64-point 7-bit sequences.

5. Discussion

MATLAB was used to demonstrate accuracy of the proposed algorithm.
For correct implementation of the proposed algorithm in MATLAB, or some
other DSP tool which introduces round-o� errors, the order of convolution
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and word length have to be carefuly chosen to ensure the desired accuracy in
circular convolution. Here, due to limitations of MATLAB, only simple, yet
illustrative examples were chosen to support the analysis. In general, if the
n-th bit of the circular convolution sequence is due to an error, that results
in the bits 0; 1; : : : ; n of the linear convolution to be incorrect, as shown in
the examples.

To make use of all the advantages of the proposed algorithm, a careful
implementation of circular convolution, by exact methods in machine code
or by special-purpose hardware is necessary. From (7) it can be seen that,
if s = 2, for scaling of input sequences, only shift operations are needed to
calculate the result in hardware, which is a great bene�t. Extracting (2N�1)
elements of the linear convolution from the N point circular convolution (8)
requires only (2N � 1) shift operations and (2N � 1) partitioning operators
on a number (no subtraction if s = 2). Therefore, the proposed algorithm
can be easily implemented either in hardware or software.

6. Conclusions

An algorithm for computing of N point linear convolution using N point
circular convolution for real time signal processing has been proposed. It has
been derived based upon redundancy of representation of real world input
data in a signal processing system. This new algorithm has been shown to
enable exact calculation of linear convolution and to introduce considerable
improvement in computational complexity, provided that circular convolu-
tion does not introduce round-o� errors. It is also applicable for a wide range
of DSP methods, which introduce round-o� errors but neglect the �rst few
samples of linear convolution. Simulation examples support the analysis.
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