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Abstract: A recently proposed gain- and o�set- compensated (GOC) fully
di�erential switched-capacitor (SC) integrator is presented. The resulting
gain, phase and o�set errors are simultaneously lower when compared to the
uncompensated balanced Hsiech-81 integrator. Both the integrators are used
as building blocks of two SC second-order balanced all-pass networks. To
demonstrated the superiority of the new integrator the two all-pass topologies
were designed for a given transfer function and then compared in terms of
four performances comprising sensitivities to �nite op. amp. gain and o�set
voltage, capacitance spread and total capacitance. The component counts are
also compared.
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1. Introduction

The most important frequency limitation in switched-capacitor (SC)
circuits is imposed by the operational ampli�er (op. amp.) gain-bandwidth
restrictions. A �nite bandwidth GB reduces the speed of the op. amp. by
introducing a limit on the sampling frequency fS = 1=TS in order to assure a
full charge transfer during the individual clock phase. But, in SC circuits the
distortion introduced by the �nite gain A0 is more pronounced than that of
the �nite bandwidth [1]. On the other hand, an optimum trade-o� between
speed and gain is a critical design aspect because they are contradictory
requirements. Generally, the price to be paid for high speed is low dc gain
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A0 . The input-referred op. amp. o�set voltage Vosintroduces an output
o�set voltage which may become a signi�cant limitation to the permissible
signal swing. With the implementation of gain- and o�set- compensation
(GOC) technique the e�ect due to A0 and Vos can be reduced.

It is well known that single-ended SC circuits have a very poor power
supply rejection ratio (PSRR). Figures range from 20 to 40 dB [2], [3]. SC
�ltering techniques have been widely applied to voice-band applications re-
quiring dynamic range on the order of 85 dB [3]. The use of balanced,
i.e., fully di�erential structures for the realization of SC networks has many
advantages. The fully di�erential topology is a powerful designing tool for
improving the dynamic range and PSRR characteristics of SC �lters [4]. The
clock feedthrough noise is also reduced [5]. The fully di�erential solution of-
fers a sign inversion at no extra cost, by simply crossing the signal lines. In
this way higher-order structures without any extra element (e.g. inverting
stages) can be built. Two disadvantages to the balanced technique are that
the interconnection problem makes circuit layout more complex, and that a
di�erential to single-ended conversion may be necessary in some applications.
The basic building block of many balanced structures is the fully di�erential
SC integrator, proposed by Hsiech et al (Fig. 7 of [3]). This integrator is a
balanced version of the single-ended non-GOC basic-79 integrator (Fig. 1(a)
of [6]). According to [6], for each integrator the name of the �rst author is
assigned to the circuit, along with the year of publication. The inverting
and noninverting Hsiech-81 integrators have been used as building blocks
of balanced low-pass biquads [7],[8] and all-pass �lters [9], [10]. A balanced
version of the single-ended GOC Shafeeu- 91 integrator (Fig. 1 of [11]) was
proposed in [12]. The resulting gain, phase and o�set errors are considerably
smaller than those of the non-GOC Hsiech-81 integrator.

In this paper two SC second-order balanced all-pass networks are consid-
ered. Subsequently, the Hsiech-81 integrators in the original structures have
been replaced by the fully di�erential inverting GOC integrator, proposed
in [12], and its noninverting counterpart. To demonstrate the superiority of
this integrator the two all-pass topologies were designed for a given transfer
function and then compared in terms of four performances comprising sen-
sitivities to �nite op. amp. gain and o�set voltage, capacitance spread and
total capacitance. The component counts are also compared.

2. Fully Di�erential Gain- and O�set- Compensated
SC Integrator

The proposed in [12] fully di�erential modi�cation of the single-ended
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GOC inverting Shafeeu-91 integrator [11] is shown in Fig. 1(a), where C 0
1
=

C 00
1
= C1, C

0

2
= C 00

2
= C2, C

0

h = C 00h = Ch, k = C1=C2, and k
0 = Ch=C2.

Compared with the non-GOC Hsiech-81 integrator the op. amp. has
been replaced with the block shown in Fig. 1(a). In addition to the clock
phases 1 and 2, the integrator requires two nonoverlapping clocks, e and o,
shown in Fig. 1(b). The output voltage is sampled in phase 1o = 1 + o.
The value of the holding capacitors C 0h = C 00h = Ch is not critical and can be
made very small. In most applications it will be adequate to set Ch equal
to the unit capacitance.

Fig. 1. Fully di�erential gain- and o�set- compensated SC integrator.
(a) Circuit architecture.
(b) Clocking scheme.

The approximate formulas for the gain errorsm(!) and the phase errors
�(!) of the two integrators are given in Table 1. In both single-ended and
fully di�erential cases (basic-79 integrator and Hsiech-81 integrator, corre-
spondingly Shafeeu-91 integrator and novel integrator in Fig. 1) the expres-
sions for m(!) and �(!) are identical. However, the error formulae for the
integrator in Fig. 1 (Table 1) are more accurate than those given in [11] for
the Shafeeu-91 integrator. The factor by which the phase error and the o�set
voltage error for the integrator from Fig. 1 are reduced, when compared to
the Hsiech-81 integrator, is approximately given by 1=[(1 + k)�]. The gain
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Table 1. Error formulas for SC integrators
with �nite op. amp. gain Ao = 1=�.

Integrator Gain error m(!) Phase error �(!)

Hseiech-81 �(1 +
k

2
)��

k2�2

8 tan2(0:5!TS)

k�

2 tan(0:5!TS)

in Fig. 1 �k0��
[(1 + k)(2 + k)� 2k0(1 + k + k0)]�2

2

k(1 + k)�2

2 tan(0:5!TS)

error of the proposed integrator is reduced by at least a factor 1=k0 (k0 < 1.

3. Two All-pass Filter Topologies with Di�erent
SC Integrators

To compare the performances of the two all-pass topologies they were
used to realize a particular discrete second-order all-pass transfer function
with the following parameters: fo = fP = 6400 Hz, Qo = QP = 3, and a
sampling frequency fS = 128 kHz.

The z-domain transfer function of this all-pass �lter is

H(z) =
z�2 � 1:8076406z�1 + 0:9005767

1� 1:8076406z�1 + 0:9005767z�2
(1)

3.1 SC all-pass biquad topology with di�erent integrators

The balanced all-pass biquad from Fig. 2 of [9] is considered. Sub-
sequently, the Hsiech-81 integrators in the original structure have been re-
placed by the inverting integrator from Fig. 1 and its noninverting counter-
part. The circuit schema of the resulting �lter is shown in Fig. 2. The ca-
pacitor values are A=1.0698, B=3.3928, C=1, D=3.3928, E=1.0698, G=1,
L=1.0698, K=3.0555, Ch=1. As a customary, the capacitors were scaled so
that the minimum capacitance incident on each op. amp. summing junction
is 1.00 unit.

The ideal z-domain transfer function has the form

H(z) =
K

B

1�
h
2 +

A(L�G)

DK

i
z�1 +

�
1 +

AL

DK

�
z�2

1�
h
2�

A(C +E)

BD

i
z�1 +

�
1�

AE

BD

�
z�2

(2)

The same transfer function can be obtained in an unbalanced structure
by connecting the L capacitor to negative of the input voltage. Normally, this
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Fig. 2. Balanced all-pass biquad with GOC integrators.

will require an extra inverter stage. Since in a balanced regime both polarity
inputs are available, the transfer function (2) is readily realized by merely
cross-connecting two L capacitors. We shall assume that corresponding pairs
of capacitors track each other exactly, so that the circuit is described exactly
by (2).

Fig. 3 shows the deviations from the nominally 
at amplitude response
of the all-pass biquad designed with the Hsiech-81 integrator and with the
GOC integrator in Fig. 1 for A0= 100.

It is obvious that the response of the circuit with the GOC integrator
from Fig. 1 follows much more closely the ideal response that those of the
design with the Hsiech-81 integrator.

The steady state output voltages of the all-pass biquad designed with
the Hsiech-81 integrator and with the integrator from Fig. 1 for A0 =100,
are respectively

lim
n!1

Vo(n) = 1:9967Vos1 + 0:01997Vos2

lim
n!1

Vo(n) = 0:03414Vos1 + 0:00420Vos2
(3)
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Fig. 3. E�ect of �nite op. amp. dc gain A0 on the magnitude responses
of the all-pass biquad topology:
|{ ideal response (A0 !1),
- - - with Hsiech-81 integrator (A0 = 100),
. . . with GOC integrator in Fig. 1 (A0 = 100.)

3.2 SC all-pass ladder topology with di�erent integrators

In [10], a new approach was presented for the exact discrete-time z-
domain design and synthesis of SC LDI ladder all-pass network having gen-
eral n-th order transfer function on the form

H(z) =
znD(z�1)

D(z)
(4)

whereD(z) represents an n-th order strictly Hurvitz polynomial with real co-
eÆcients. The corresponding structure (employing a leapfrog con�guration)
requires n+1 op. amps. for its implementation, i.e. only one op. amp. more
than the theoretical minimum under a two-phase clocking scheme. The SC
implementation has been obtained by employing inverting and non-inverting
Hsiech-81 integrators.

A second-order SC LDI ladder all-pass �lter is shown in Fig. 4 where
the Hsiech-81 integrators have been replaced by the inverting integrator from
Fig. 1 and its noninverting counterpart.

The required clock waveforms are depicted in Fig. 1(b). The subcircuit
associated with the topmost op. amp. 1 acts as SC adder for producing
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Fig. 4. Balanced ladder all-pass �lter with GOC integrators.

the transfer function H(z) as a combination of its constituent decomposed
parts. However, during the intervals 1 the output voltage of op. amp. 1 is
pulled near to zero (Vos1), and the op. amp. must have a high slew rate and
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fast settling time to enable the output to slew back and forth at each clock
transition.

The normalized capacitor values are C1 = 2, C2 = 1, Cf1 = 1, Cf2 =
18:1160, Cf3 = 1:0698, Ch1 = Ch2 = Ch3 = 1.

The ideal z-domain transfer function has the form

H(z) =

1�
h
2 +

C1

Cf2

�
1�

C2

Cf3

�i
z�1 +

�
1 +

C1

Cf2

�
z�2

1 +
C1

Cf2
�

h
2 +

C1

Cf2

�
1�

C2

Cf3

�i
+ z�2

(5)

Fig. 5 shows the deviations from the nominally 
at amplitude response
of the ladder all-pass �lter designed with the Hsiech-81 integrator and with
the GOC integrator in Fig. 1 for A0 = 100.

Fig. 5. E�ect of �nite op. amp. dc gain A0 on the magnitude responses
of the ladder all-pass topology:
|{ ideal response (A0 !1),
- - - with Hsiech-81 integrator (A0 = 100),
. . . with GOC integrator in Fig. 1 (A0 = 100).

It is obvious that the response of the circuit with the GOC integrator
from Fig. 1 follows much more closely the ideal response that those of
the design with the Hsiech-81 integrator. The steady state output voltage
of the all-pass biquad designed with the Hsiech-81 integrator and with the
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integrator from Fig. 1 for A0 = 100, are, respectively

lim
n!1

Vo(n) = 3:84615Vos1 � 0:05710Vos2 + 1:90374Vos3

lim
n!1

Vo(n) = 0:11968Vos1 � 0:06695Vos2 + 0:04295Vos3
(6)

3.3. Comparison of the two all-pass topology

Fig. 6 shows the deviations from the nominally 
at amplitude response
due to op. amp. �nite gain A0 = 100 for the two all-pass topologies designed
with the GOC integrator from Fig. 1.

Fig. 6. Magnitude responses of the two all-pass GOC topologies:
case i) all-pass biquad topology from Fig. 2,
case ii) all-pass ladder topology from Fig. 4

(C2 = 1, Cf1 = 1, Cf3 = 1:0698),
case iii ) all-pass ladder topology from Fig. 4

(C2 = 10, Cf1 = 10, Cf3 = 10:698).

Compared the two all-pass designs we note that the error in case ii)
is about twice worse than case i). To reduce the in
uence of the �nite op.
amp. gain on the magnitude response of the all-pass ladder topology from
Fig. 4 the capacitance ratios k0

1
= Ch1=Cf1 and k0

3
= Ch3=Cf3 must be

smaller. The corresponding curve, (case iii), for k0
1
= 0:1 (Cf1 = 10) and

k0
3
= 0:09348 (Cf3 = 10:698, C2 = 10) is depicted in Fig. 6. In this case the

two all-pass topologies have nearly the same maximum magnitude errors,
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but the total capacitance of the ladder topology is approximately �ve time
larger.

Table 2 compares the complexities of the two all-pass topologies in terms
of component count and area requirement.

Table 2. Comparison of the complexity of the two all-pass topologies

Circuit number number number

op. amps. C switches total C C spread

biquad topology 2 18 46 34.101 3.393

ladder topology

(C2 = 1, Cf1 = 1, 3 26 46 68.3761 18.116

Cf3 = 1:0698)

ladder topology

(C2 = 10, Cf1 = 10, 3 26 46 177.628 18.116

Cf3 = 10:698)

4. Conclusion

A recently proposed balanced version of the single-ended gain- and
o�set- compensated Shafeeu-91 integrator have been compared with the
earlier one uncompensated Hsiech-81 integrator. The errors of the novel
integrator are considerably smaller. The feasibility of this integrator has
been demonstrated by designing two SC balanced all-pass topologies for a
given second-order transfer function. The resulting networks have better
performances than the same circuits based on the Hsiech-81 integrator.

The all-pass biquad topology with GOC integrators has a maximum
capacitor ratio of 3.393 and a total capacitance of 34 units. This is a sig-
ni�cant saving over the SC all-pass ladder topology with GOC integrators,
which needed 178 units of capacitance and a capacitance spread of 18.116
for the same maximum magnitude error.
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