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Abstract: The paper advocates a statistical approach to image denoising
based on a Maximum a Posteriori (MAP) estimation in wavelet domain. In
this framework, a new class of independent identically distributed (i.i.d.) sto-
chastic image priors is considered to obtain a simple and tractable solution in
a close analytical form. The proposed prior model is considered in the form of
Student distribution. The experimental results demonstrate the high �delity
of this model for approximation of the sub-band distributions of wavelet coeÆ-
cients. The obtained solution is presented in the form of well-studied shrinkage
functions
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1. Introduction

Signal and images denoising algorithms which are based on maximum
likelihood (ML) estimates or which do not use any prior information are
known to possess low eÆciency and robustness [1]. The situation can be
drastically improved in the case of MAP-estimate which provides higher
accuracy of estimation. Therefore, the development of accurate and tractable
stochastic image models is of great importance for many applications such
as image restoration, denoising, compression and segmentation.
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However, the proper choice of prior image model is a notoriously diÆ-
cult problem. The problem becomes even more complicated for real world
image which are known to have a high variability that should be reected
by the adequate stochastic image modeling. The non-stationary behavior of
image statistics is an additional factor that complicates the situation. Oppo-
sitely, the desire to use more complex image models that capture interscale
and intrascale image dependencies in wavelet domain results either in iter-
ative estimation procedures based on Expectation Maximization method or
intractable solutions that are very diÆcult for analytical consideration.

2. Problem Formulation

We consider the problem of stochastic image modeling on the example
of stochastic image denoising. We assume the classical formulation of this
problem, i.e. an image O is contaminated by additive white Gaussian noise
(AWGN) n with p.d.f. N

�
0; �2n

�
f = O + n: (1)

The goal is to estimate the original image O based on the noisy image f .
To simplify the stochastic image modeling and sequentially the estimation
problem we use multiresolution image representation [2], [3]

f (x; y) =
X
k

cj0;k�j0;k (x; y) +
2X
i=0

1X
j=j0

X
k

dij;k	
i
j;k (x; y) ; (2)

where c and d - decomposition coeÆcients of two-dimensional function f ;
� and 	i - two-dimensional functions presenting the tensor product result
of the orthogonal functions � and ' with Wavelet basis [3]. Wavelet-based
image representation has a number of advantages in comparison with the
other domains derived from principal component analysis (PCA) framework.
First, such a representation of the images allows to locally de�ne their degree
of smoothness, because orthogonal functions 	 in the wavelet transform
(2) possess speci�ed number of vanishing moments [3]. Secondly, it nearly
decorrelates images with respect to intrascale statistics. Thirdly, it has good
energy compaction. Forth, it partially reects the anisotropy of the human
visual system vortex decomposition due to 3 orientations and multiresolution
image representation. Fifth, it does not produce the blocking artifacts such
as DCT transform which approximates PCA for the class of �rst-order auto-
regressive models.
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It is already well established practice to solve the image denoising prob-
lem using shrinkage data �ltering in the wavelet domain that consists of the
sequence of steps:

� image decomposition using orthogonal basis of wavelet functions d =
Wf ,

� image estimation based on the non-linear processing of the decomposed
coeÆcients ba = Td;

� inverse wavelet transform of bO =W�1ba.
Here W andW�1 denotes operators of direct and inverse wavelet trans-

form; a are wavelet coeÆcients of the original image O in the given wavelet
basis.

The choice of shrinkage function T is very important [2], [4] and can be
derived based on the MAP estimation. Taking into account the distributive
property of orthogonal transformation, the mixture (1) can be represented
as a corresponding sum after the wavelet decomposition

d = a+ n; (3)

where d = Wf is the wavelet transform of the original image f . The or-
thonormality of wavelet transforms preserves the statistical properties of
noise component n that will have the same p.d.f. N

�
0; �2n

�
as in Eq. (3). In

the above formulation, the denoising problem is reduced to the estimation
of ba based on the observed image d.

3. Image Prior Model

The MAP estimators require the de�nition of adequate stochastic im-
age model. In the above case, an appropriate stochastic model should be
speci�ed for wavelet domain.

The orthogonal functions � and ' used in multiresolution analysis [3]
are close to eigenfunctions of covariance image matrix which characterizes
the short-range correlation in real-world images. Thus, the multiresolution
image representation according to Eq. (2) can be considered as an approxi-
mation of Karhunen-Loeve transform [1].

In the case of stationary AR process the wavelets can provide almost
complete decorrelation. Unfortunately, it is not a case for non-stationary
processes such as real images. Nevertheless, the tractability of independent
identically distributed (i.i.d.) models and the low complexity of the obtained
solution motivate to consider this class of model more deeply.



378 Facta Universitatis ser.: Elec. and Energ. vol. 14, No. 3, Dec. 2001

Another important feature of the orthogonal representation (Eq. 2)
consists in a speci�c distribution of the decomposition coeÆcients aj;k. It is
commonly known fact in image processing community, that the distribution
of wavelet coeÆcients is peaked near zero, heavy-tailed and has non-Gaussian
joint statistics. This feature can be explained by the presence of a signi�-
cant amount of at regions in images that contribute to the peak near zero,
and comparative small number of large amplitude coeÆcients corresponding
to edges and textures. The last ones are more signi�cant for image simu-
lation and image quality preservation in comparison with small amplitude
coeÆcients.

The feature of the wavelet coeÆcients aj;k presented above are widely
used for image compression and corresponding rate-distortion analysis as
well as for non-linear image denoising and restoration. The most used
i.i.d. stochastic models of wavelet coeÆcients p (a) are Laplacian distribution
[5], stationary Generalized Gaussian distribution (GGD) [5] (Laplacian and
Gaussian distributions are two particular cases of the GGD), Gaussian mix-
ture distribution [5] and exponential power distribution [3]. The examples
of application of more complex stochastic image models are presented for
Poisson process and Hidden Markov models [6]. This list is not de�nitively
complete and can be essentially extended.

The GGD model is the most used in practice [5]

p (a) =
�� (�)

2�� (1=�)
exp

(
�
�
� (�) jaj

�

��)
; (4)

where � (�) =
p
� (3=�) =� (1=�), � ( � ) is the Gamma function, � and �

are scale and shape parameters.

Although, the GGD models are used for denoising applications and the
close form solutions are reported for the particular shape parameters such as
soft-shrinkage (Laplacian model � = 1) and hard-thresholding (asymptoti-
cally � ! 0) the theoretical analysis of Rao-Cramer bounds of this estimators
remains still a challenging task. Moreover, as it will be shown in this paper,
there is a class of stochastic models that provides even more accurate ap-
proximation of marginal statistics of image coeÆcients and simultaneously
results in the close form solution of image denoising problem.

The results of our analysis of wavelet image coeÆcients indicate that
histogram of their distribution is also accurately approximated by Cauchy
distribution. Moreover, Student distribution (StD), for which Cauchy dis-
tribution is only a particular case, can even more precisely characterize the
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behavior of wavelet coeÆcients for real images. The StD law can be pre-
sented as statistical model of wavelet image coeÆcients in the form

p (a) =
� ((m+ 1) =2)

�
p
m�� (m=2)

�
1 +

a2

�2m

�
�(m+1)=2

; (5)

where � is a power factor, m is a number of the freedom degrees.

We have estimated the parameters of GGD and the proposed StD (Eq.
5) statistical models of wavelet coeÆcients using ML estimate [1]. The es-
timation was accomplished iteratively solving ML system of equations with
two unknown variables, in which high number of investigated samples of
image allows to obtain the suÆcient estimation accuracy. For example, the

de�ned parameters of GGD are equal b� = 5:82 and b� = 0:72 on the level
decomposition j = 9 for "Lena" image, while bm = 2:03 and b� = 2:75 for
StD. The example of histogram approximation of wavelet coeÆcients by the
GGD and StD is shown in the Fig. 1. As one can observe, that the StD
provides even more accurate approximation.

Fig. 1. The approximation of histogram of "Lena" sub-band
decomposition based on GGD and StD models.

The analysis results show that the proposed StD model better describes
distribution in sense of the �2 goodness measure [1] �2StD < �2GGD. The mea-

sure values are calculated using the expression �2 = n
PR

i=1

�
(hi � Pi)

2
=Pi

�
for hypothetical probabilities Pi = P fEig of random value appearance on
i-th interval with i = 1; R which can be determined accordingly with intro-
duced assumptions about distribution law and the occurrence frequencies
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hi = ni=n that were de�ned on the basis of the investigated samples. The
comparison performed based on Kullback-Liebler measure indicates the same
behavior D

�
hjjpStD� < D

�
hjjpGGD�.

4. MAP Denoising

The statistical features of wavelet coeÆcients d in the mixture (3) were
de�ned based on the assumption about independence and identity of image
coeÆcients as well as their additive relation with Gaussian random compo-
nent n. The conditional p.d.f. p (d j a) is speci�ed for unknown parameter
a in the case of additive Gaussian random noise n

p (d j a) = 1p
2��n

exp

 
� (d� a)

2

2�2n

!
: (6)

In this case the MAP estimation problem can be presented via logarithm
maximisation of a posterior probability function p (a j d) [1]

@

@a
ln (p (a j d))

����
a=baMAP

= 0; (7)

where baMAP is statistical estimate of the original image. Taking into account
the Bayesian rule [1] and expression (7) the MAP solution corresponds to
the next problem

@

@a
ln (p (d j a)) + @

@a
ln (p (a))

����
a=baMAP

= 0: (8)

A solution of this equation is obtained using the above expressions for
the likelihood function p (d j a) and a priori function p (a) according to the
introduced prior model. The solution of Eq. (8) makes possible to deter-
mine the non-linear function T of thresholding denoising algorithm. The
substitution of the expressions (4) and (6) in the MAP equation (8) allows
to rewrite it in the next form

d� a� �2n�

�
� (�)

�

��
jaj��1 sgn (a)

�����
a=baMAP

= 0; (9)

where

sgn(a) =

�
1; for a � 0

�1; otherwise
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is the signum function.

In the general case, the solution of equation (9) does not exist in analyt-
ical form. In image denoising problems, the partial solutions are obtained for
� = 1 and 0 (soft-shinkage and hard-thresholding [2], [5] or the approximate
solutions (various types of the shrinkage functions [5] and semi-soft thersh-
olding). An arguments of the critical points can be de�ned by relationship
of the parameters �, � and �n.

The series of curves Fig. 2(a), which corresponds to the nonlinear func-
tions for the MAP-estimation of parameter a based on the GGD prior model
is obtained via numerical determination of roots of the equation (9).

The MAP-estimator based on the proposed StD prior image models
was derived in this paper. After substitution of the corresponding stochastic
models, we have obtained an analytical solution in the form of the cubic
equation with respect to unknown variable a�

m�2 + a2
�
(d� a)� (m+ 1) a�2n

���
a=baMAP

= 0: (10)

It is well-known that the cubic equation has the three roots. In the
case of the MAP equation (10), each of these solutions were found in the
analytical form.

Since the estimation is performed on a set of real functions and the
estimation result belongs to the real set, the corresponding solution of the
equation (10) is also presented analytically in the form of a conditional equal-
ity:

baMAP =

8>><>>:
d

3
� 3A� d2

9C
+ C; Im hCi = 0

d

3
+

3A� d2

18C
� C

2
+
j
p
3

2

�
C +

3A� d2

9C

�
; otherwise

(11)

where A = B + (m+ 1) �2n, B = m�2 and

C =
1

6

n
4
h
d(�9A+ 27B + 2d2)

+ 3
p
12(A3 +Bd4)� 3d2((A+ 9B)2 � 108B2)

io 1

3

:

The series of curves corresponding to non-linear processing function T
are shown in Fig. 2(b) for proposed prior model (Eq. 5) of image.
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Fig. 2. Solution of MAP denoising for the GGD (a) and
proposed StD (b) prior models of images.

5. Results

The proposed analytical expression (Eq. 11) of MAP denoising for
prior model (Eq. 5) makes possible to simplify the estimation procedure
in comparison with the MAP estimator with the GGD prior model (Eq.
4). Due to analytical form of non-linear processing function (Eq. 11) such
approach allows to change softly the estimator parameters according to the
parameters of used prior model and noise variance.

The eÆciency of the proposed method for Gaussian noise removal from
images is numerically evaluated for the series of test images. We present
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here results for test image "Lena". The results of AWGN removal are shown
in Fig. 3 for known and proposed methods. The mean square error (MSE)
was chosen for objective comparison of denoiser performance.

Fig. 3. The denoising methods comparison of the test image (256� 256) -a) at
the presence of additive gaussian noise component N

�
0; �2

n

�
with �n = 35

-b). The processing results of Lee's �lter [3� 3] -c); Sigma-�lter [5� 5]
-d); multiresolution based MAP estimation by the known -e) and proposed
-f) methods.
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The corresponding results are shown in Table 1. Sigma-�lter, locally
adaptive Lee's �lter that corresponds to the MAP estimators for non-
stationary Gaussian image prior model, as well as MAP denoisers for the
GGD family and the proposed method (Eq. 11) were compared.

The results of denoising shown in Table 1 demonstrate the superior
performance of the proposed denoising method.

Table 1. MSE comparison of di�erent denoisers for \Lena" image.

Denoiser The image distortions values

MSE

Image \Lena" without (�n = 25) (�n = 35)

processing 586:13 1158:8

Lee Filter 145:21 258:82

Sigma-�lter 199:06 346:74

MAP method at GGD model 130:02 184:08

MAP method at StD model 122:18 174:18

6. Conclusion

We have proposed a new class of stochastic image models within the
group of i.i.d. models based on Student distribution to model the sub-band
marginal statistics of wavelet image coeÆcients. The proposed model more
accurately approximates the joint p.d.f. of intrascale coeÆcients in compar-
ison with the Generalized Gaussian model. To demonstrate the advantages
of the proposed model for real applications we have considered stochastic
denoising problem based on the MAP estimate. In contrast to the GGD
group of model we have received comparatively simple close from shrinkage
solution.

We will concentrate on theoretical investigation of accuracy of the ob-
tained estimate and compare Rao-Cramer bounds for the AWGN scenario
for the GGD and Student priors in our future research.
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