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Abstract: This paper presents the results of our studies concerning the ap-

plication of the neural networks to the �eld strength prediction in indoor

environment. The proposed model consists of a multilayer perceptron trained

with measurements. The results of the prediction show a good agreement

with the measurements

Key words: Arti�cial neural networks, neural model, indoor environment,

propagation models.

1. Introduction

The basis for a propagation model may be either theoretical or empir-
ical, or a combination of these two. Theoretical propagation models allow
recognition of the fundamental relationships that apply over a broad range of
circumstances. They also allow de�nition of relationships that exist among
any combination of input parameters. Empirical models are derived from
measurements and observations and o�er a major advantage in that all en-
vironmental in
uences are implicit in the result regardless of whether or
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not they can be separately recognized and theoretically studied. Empiri-
cal models o�er the opportunity to provide probabilistic descriptions of the
propagation phenomena. The validity of empirical models is limited only
by the accuracy with which individual measurements are made and by the
extent to which the environment of the measurements adequately represents
the physical environment in which the model is to be applied [1].

Indoor radio propagation is a very complex and diÆcult radio propa-
gation environment because the shortest direct path between transmit and
receive locations is usually blocked by walls, ceilings or other objects. Sig-
nals propagate along the corridors and other open areas, depending on the
structure of the building.

In modeling indoor propagation the following parameters must be con-
sidered: the location of the transmitter and the receiver antennas, the loca-
tions within a building, the types of interiors (rooms, corridors, etc) and the
construction materials [1].

An alternative approach to the �eld strength prediction in indoor en-
vironment is given by prediction models based on arti�cial neural networks
[6]. The advantages of these models are given by the 
exibility to adapt to
di�erent environments, the high speed processing and the ability to process
a large amount of data. The problem of �eld strength prediction is viewed
as a function approximation problem consisting of a nonlinear mapping from
a set of input variables containing information about the potential receiver
onto a single output variable representing the predicted �eld strength.

2. Neural Network Overview

In our studies we have used multilayer feedforward networks, commonly
referred to as multilayer perceptrons (MLP). The basic component of a neu-
ral network is the neuron. Figure 1 shows the con�guration of a multilayer
perceptron with one hidden layer and one output layer. The network shown
here is fully interconnected. This means that each neuron of a layer is con-
nected to each neuron of the next layer so that only forward transmission
through the network is possible, from the input layer to the output layer
through the hidden layers. Two kind of signals are identi�ed in this net-
work:

{ The function signals also called input signals that come in at the input of
the network, propagate forward (neuron by neuron) through the network
and reach the output end of the network as output signals;

{ The error signals that originate at the output neuron of the network
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Fig. 1. The con�guration of the multilayer perceptron.

and propagate backward (layer by layer) through the network.

The output of the neural network is described by the following equation
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where N represents the number neurons in the input layer and M repre-
sents the number of neurons in the hidden layer, w0j represents the synaptic
weights from neuron j in the hidden layer to the single output neuron, xi
represents the ith element of the input vector, Fh and F0 are the activation
function of the neurons from the hidden layer and output layer, respectively,
wji are the connection weights between the neurons of the hidden layer and
the inputs.

The learning phase of the network proceeds by adaptively adjusting
the free parameters of the system based on the mean squared error E, de-
scribed by Eq. (2), between predicted and measured path loss for a set of
appropriately selected training examples

E =
1

2
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where yi is the output value calculated by the network and di represents the
expected output.

When the error between network output and the desired output is min-
imized, the learning process is terminated and the network can be used in
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a testing phase with test vectors. At this stage, the neural network is de-
scribed by the optimal weight con�guration, which means that theoretically
ensures the output error minimization.

The goal of the prediction is not only to produce small errors for the set
of training examples but also to be able to perform well with examples not
used in the training process. This generalization property is very important
in practical prediction situation where the intention is to use the propagation
prediction model to determine the coverage area of potential transmitter
locations for which no or limited measured data are available.

The selection of the set of training examples is very important in order
to achieve good generalization properties [2]. The set of all available data
is separated in two disjoint sets that are training set and test set. The test
set is not involved in the learning phase of the networks and it is used to
evaluate the performance of the neural model.

In our application the neural network is trained with the Resilient Back-
propagation algorithm. In order to determine the direction of the weight
update only the sign of the derivative is used. The magnitude of the deriv-
ative has no e�ect on the weight update. The size of the weight change is
determined by a separate update value. The update value for each weight
and bias is increased whenever the derivative of the performance function
with respect to that weight has the same sign for two successive iterations.
If the derivative with respect to that weight changes sign from the previous
iteration, the update value is decreased. If the derivative is zero, there are
no changes in the update value. Whenever the weights are oscillating the
weight change will be reduced. If the weights continue to change in the same
direction for several iterations, then the magnitude of the weight change will
be decreased. A more detailed description of this algorithm can be found in
[5].

3. The Measurements

The measurements were conducted in the 1890 MHz frequency band,
at the Hellenic Telecommunication Organization premises following di�er-
ent scenarios. A detailed description of the measurement procedure can be
found in [4]. Each 
oor of the building consists of a circular sector of 60m
in circumference located at the center of each 
oor and 3 branches depart-
ing from the circular sector, where at each branch there are one main long
corridor and two short back corridors with oÆces 
anked on both sides of
corridors, as shown in Fig 2.
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Fig. 2. The building topology and the transmitter positions.

OÆces are in consecutive order and are separated by soft partitions.
Measurements were done along the corridors and inside the oÆces, in all
three branches. In every position of the receiver inside the oÆces about 10000
samples of the received power were recorded while the receiving antenna was
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rotating. The transmitting antenna was located always in the same sector of
the eleventh 
oor in two di�erent sites (position: 1 or 2 in Fig. 1). The base
station antenna heights used were 2.2m, 2.6m and 2.7m. The measurements
were performed using two di�erent types of transmitting antenna: OMNI
and directional. The receiving antenna was always an OMNI antenna. Our
study includes the single 
oor scenario and the procedure used to select the
measurement data is described below.

In order to train the neural network we have used the measurements
collected from two branches, denoted sector B, where the transmitter was
always located, and sector A. The fast fading was eliminated, in the case of
longitudinal measurements (along the corridors), by averaging the measured
received power using a 2? windowing technique [3]. In the case of static
measurements the average values of the recorded samples in every position
of the receiver inside the oÆces were computed. In this way we have obtained
two values for the received power in each oÆce (with closed doors respectively
with open doors) for each combination of the position, height and gain of
the transmitter antenna.

Following the �ltering process of the measured data we obtained more
than 1400 measurement locations corresponding to the non-line-of-sight
(NLOS) case.

The performance of the neural network model is evaluated by making
a comparison between predicted and measured values based on the absolute
mean error, standard deviation and root mean squared error. The absolute
error between the measured and predicted path loss is computed with

Ei =
���PLmeasured

i � PL
predicted
i

��� (3)

where i represents the number of the measured sample. The absolute mean
error is computed by
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where N is the total number of measured samples. The standard deviation
is determined from the absolute error and the mean absolute error
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The RMS error is given by

RMS =
p
�2 + �2 (6)
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4. Results

In our study we consider the feed-forward multilayer perceptron trained
with the Resilient Backpropagation algorithm. The inputs of the neural
network are the following:

{ three inputs for the transmitter site: position, gain and height of the

{ antenna,

{ two inputs for the distance between transmitter and the staring point
of the measurements and the distance covered by the mobile unit,

{ two inputs describing the receiver site; three inputs for the smallest
number of walls and

{ windows penetrated by the ray between transmitter and receiver and
their accumulated losses.

The input parameters that describe the transmitter and receiver loca-
tion are quantized so the e�ect of each parameter is more obvious for the
neural network [6]. For example, the parameters like size of the corridors
where the receiver is located are quantized as follows: 1 for the large corridor
and 0.3 for the medium corridor. All parameters are normalized to the range
[-1, +1].

The output layer consists of one neuron that provides the normalized
received power. Two hidden layers of 18 neurons have been used in the
architecture of the network.

A data set of 289 patterns (input/desired output pairs) was divided
in 2 di�erent sets: 271 patterns used for training and 18 patterns used for
validation. A set of 1155 training patterns was used to test the model. In
Table 1 are represented the absolute mean error, the standard deviation and
the root mean squared error obtained for the training set, the test set and
in case of one particular route of the receiver.

Table 1. Results of the prediction.

Training patterns Test patterns Particular route

Mean Error [dB] 2.77 3.05 2.33

Std. Dev. [dB] 2.31 3.15 1.79

RMS [dB] 3.61 4.38 2.94

In Fig. 3 is represented a comparison between predicted and measured
values when the transmitter is in position 1 and the receiver is located along
the main corridor in sector A. For this particular route, the values for the
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Fig. 3. Comparison between predictions and measurements with the transmitter
in position 2 and the receiver located in sector A, along the main corridor.

absolute mean error, standard deviation and RMS are presented in Table
1. The percentage of the predicted values with a mean error below 5 dB is
81.55 % in the case of the entire test set respectively 90.17 % in the case of
the particular route.
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