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Abstract: Notch �lters are invariably used in communication, control, in-
strumentation, and bio-medical engineering, besides a host of other �elds,
to eliminate noise and power line interferences. Digital notch �lters can be
designed as in�nite impulse response (IIR) as well as �nite impulse response
(FIR) structures. As compared to the latter, IIR �lters have the advantage
that they require lower orders for eÆcient approximation of a given set of
speci�cations. However, IIR �lters are potentially unstable and do not pro-
vide linear phase characteristics, in general. FIR �lters, on the other hand,
are unconditionally stable and can be designed to give exact linear phase
characteristics. We, in this review paper, focus our attention to the recent
design techniques proposed by us for FIR notch �lters.

Standard FIR �lter design methods, such as windowing, frequency sampling
and computer-aided/optimization may be used for designing FIR notch �lters.
However, most of these methods result in ripples in the passbands. In many
situations, maximally 
at (MF) �lters are preferred since they have maximum
attenuation in the stopband and hence can yield the best signal-to-noise ratio.
A number of methods are available in the literature for designing MF digital
�lters. We, in this paper, review the design techniques for computing the
weights of MF FIR notch �lters. A number of design methodologies have
been highlighted that lead to either recursive or explicit formulas for the
computation of weights of FIR notch �lters.

Procedures for the design of FIR notch �lters with maximal 
atness of the
amplitude response (in the Butterworth sense) at ! = 0 and ! = � have
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been given. Empirical formulas for �nding the �lter length N have also been
proposed. By relaxing the linear phase property, it is possible to reduce the
�lter order required for a given magnitude response speci�cations. An FIR
�lter (with non-linear phase) can be derived from a second order IIR notch
�lter prototype. Explicit mathematical formulas for computing the weights
for such FIR notch �lters have been given. Design approaches based on the
use of (i) Bernstein polynomials, and (ii) lowpass �lter design have also been
exploited to obtain maximally 
at FIR notch �lters.

Key words: Digital �lters, FIR �lters, notch �lters.

1. Introduction

1.1 Notch �lters

Digital signal processing (DSP) techniques have rapidly developed in
the recent years due to advances in digital computer technology and inte-
grated circuit fabrication [3], [26], [27]. The use of digital circuits yields high
speed as well as high reliability, and also permits us to have programmable
operations. DSP techniques �nd applications in a variety of areas such as
speech processing, data transmission on telephone channels, image process-
ing, instrumentation, bio-medical engineering, seismology, oil exploration,
detection of nuclear explosion, and in the processing of signals received from
the outer space, besides others. Various types of digital �lters, such as Low-
pass (LP), High-pass (HP), Band-pass (BP), Band-stop (BS), and Notch
�lters (NF), and various types of digital operations such as Di�erentiation,
Integration and Hilbert transformation, to mention a few, are invariably used
in many of the applications just mentioned. In this review paper, we focus
our attention on the design and performance analysis of notch �lters.

1.1.1 Notch �lter characteristics

A notch �lter highly attenuates/ eliminates a particular frequency com-
ponent from the input signal spectrum while leaving the amplitude of the
other frequencies relatively unchanged. A notch �lter is, thus, essentially a
bandstop �lter with a very narrow stopband and two passbands. The ampli-
tude response, H1(!), of a typical notch �lter (designated as NF1) is shown
in Fig. 1 and is characterized by the notch frequency, !d (in radians) and 3-
dB rejection bandwidth, BW . For an ideal notch �lter, BW should be zero,
the passband magnitude should be unity (zero dB) and the attenuation at
the notch frequency should be in�nite.
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Fig. 1. The amplitude response H1(!) of notch �lter: NF1.

We may, alternatively, have the amplitude response, H2(!), of a notch
�lter (designated as NF2) as shown in Fig. 2. H2(!) has 180 degrees phase
shift beyond the notch frequency !d. However, the magnitude response
jH2(!)j is of the same type as that shown in Fig. 1. We review methodologies
for approximating notch �lters of both the types.

Fig. 2. The response H2(!) and jH2(!)j of notch �lter: NF2.

1.2 Digital notch �lter design techniques

Digital Notch �lters may be designed as in�nite impulse response or
�nite impulse response structures by using standard design techniques. The
salient features of these techniques with speci�c reference to notch �lters will
be brie
y discussed.
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1.2.1 IIR designs

In situations where linearity of phase is not important, IIR �lters are
preferred since these require much lower order than the FIR ones for the
same set of magnitude response speci�cations. The commonly used IIR �lter
design methods require transforming the given speci�cations to an equivalent
analog �lter (by using bilinear transformation, for example). We then design
the analog notch �lter and �nally convert it back to the digital domain
through inverse transformation. This approach has the advantage that the
standard results of analog �lter design can be conveniently used. Based upon
this approach, one may design Butterworth, Chebyshev, or elliptic �lters
[24], [26]. Besides these, IIR notch �lters may also be designed by using
Pad�e approximation, least-squares approach or �lter parameter optimization
techniques.

Some modi�ed designs, speci�cally for IIR notch �lters, are also avail-
able. Hirano et al. [12] have realized IIR notch �lter function by applying
bilinear transformation on second order analog transfer function. The de-
sign requires only two multipliers and o�ers independent variation of notch
frequency (!d) and the 3-dB rejection bandwidth (BW ). Laakso et al. [19]
have proposed �rst and second order IIR notch �lters with zeros strictly on
the unit circle and poles close to the zeros to ensure a narrow notch width.
The second order notch �lter given by

H(z) = K
1� 2 cos!0z

�1 + z�2

1� 2r cos!0z�1 + r2z�2
; (1)

can be designed for an arbitrary notch frequency !0. In (1), r is the radius
of the complex conjugate pole pair located at the frequency !0 and K is
a scaling factor. In this design, BW can be controlled through r, being
narrower as r goes closer to the unit circle [19]. However, the quantization
error increases when � = 1 � jrj is made small (since the variance of the
quantization error is proportional to 1=�2 [26]).

In certain applications of signal processing, where it is desired to elim-
inate unknown or time-varying narrow-band or sine-wave components from
the observed time series, we prefer an adaptive notch �lter (ANF). Adaptive
notch �lter designs have been proposed by Thompson [34], Rao and Kung
[29], Friedlander and Smith [8], and Nehorai [21], amongst others. The
computational eÆciency, stability, convergence and numerical robustness of
these methods depend upon the algorithm used for adaptation.

One of the major problems in IIR �lters is that these designs have non-
linear phase response and, therefore, introduce phase distortion in general.
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However, it is possible to reduce phase distortion by cascading an all-pass
phase equalizer.

We now examine some of the design techniques used for FIR notch
�lters.

1.2.2 FIR designs

There are essentially three well known classes of design techniques for
linear phase FIR �lters, namely: frequency sampling, windowing, and op-
timal (in the Chebyshev sense) design. Frequency sampling method is of-
ten not used for notch �lter design because the desired frequency response
changes radically across the notch point leading to large interpolation error.

The window method is easy to use and closed form expressions are avail-
able for the window coeÆcients. Several windows have been reported in the
literature, such as Hamming, Hann, Blackman, Bartlett, Papoulis, Lanczos,
Tukey, Kaiser, Dolph-Chebyshev [26] and Prolate Spheroidal wave sequence
[32]. These windows o�er various trade-o�s between the 3-dB transition
bandwidth and stopband attenuation. However, \FIR �lters based on the
window approach do not yield designs which are optimal in any sense, even
if the window is optimal in some sense" [36, p-53].

Vaidyanathan and Nguyen [35] introduced FIR eigen�lters which are
optimal in the least squares sense. Here, the objective function is de�ned only
as a sum of the passband and stopband errors; the error of approximation in
the transition band is not included. One of the advantages of eigen �lters over
other FIR �lters is that they can be designed to incorporate a wide variety of
time domain constraints such as the step response and Nyquist constraint1

in addition to the usual frequency domain characteristics. This method has
also been extended to include 
atness constraints in the passband.

Out of all the FIR designs, Parks-McClellan iterative design [25] yields
the best results, although, it too has some inherent limitations. Equiripple
designs only consider the speci�ed passbands and stopbands but the transi-
tion bands are not considered in the numerical solution. In fact, transition
regions are considered as 'don't care' regions in the design procedure.

As a result, the numerical solution may fail, especially in the transition
region and for notch �lters in particular. For the optimum design, the �lter

1A Nyquist �lter must satisfy the condition: !p + !s = 2�=k, where !p and !s are,
respectively, the passband and stopband edge frequencies and k is the intersymbol time
duration. Such �lters are extensively used in digital modem systems and also in multirate
signal processing [35].



300 Facta Universitatis ser.: Elec. and Energ. vol. 14, No. 3, Dec. 2001

length is determined by the narrower transition band. If the transition band
is wide, the algorithm may fail in the transition region resulting in overshoot
of the frequency response [6].

Tian-Hu Yu et al. [37] have proposed two methods for designing the
notch �lters by exploiting the aforementioned design techniques. In one of
the methods, a notch �lter (H(!)) is derived from a lowpass �lter (HLP (!))
by using the relation

H(!) = 2HLP (!)� 1: (2)

This transformation provides a change of phase by 180 degrees at the
notch frequency !d i.e. the designed �lter response is of the type NF2 (see
Fig. 2). The frequency response H(!) may further be sharpened by using
the amplitude change function (ACF) [16]. An alternative method in [37]
is based on complementing a narrow passband (tone) �lter, B(!), to obtain
the desired notch �lter by using

H(!) = 1�B(!): (3)

Obviously, a narrow-band �lter B(!) will have a large �lter order. A
number of techniques are, however, available in [1], [4] and [22] for reducing
the number of multiplications.

Another method for designing an FIR notch �lter was proposed by
Er [7] where the symmetry constraint for the coeÆcients was relaxed and,
therefore, the design yields non-linear phase FIR �lters. Two procedures
have been proposed in [7] for varying the null width. In the �rst approach,
the mean squared error between the desired unity response and the response
of the �lter over the frequency band of interest is minimized subject to a
null constraint and its zero derivative constraint at the frequency of interest.
The null width can be increased in discrete steps by setting more derivatives
to zero at the notch frequency.

In the second approach, a null power constraint over a frequency band of
interest is introduced. This approach is found to be more e�ective in control-
ling the null width as compared to the derivative constraint methodology.
Both of these approaches adopt optimization techniques which have been
eÆciently solved in [7]. The limitation of such a design, however, is that
it yields non-linear phase and does not provide closed form mathematical
formula for computation of design weights.

FIR �lters �nd extensive use where frequency dispersion due to non-
linear phase is undesirable, such as in speech processing, digital communica-
tion, image processing, etc.. This is the precise reason that a large number
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of commercial chips carry out signal processing with FIR �lters. We, in this
paper, discuss some recent design techniques proposed by us, highlighting
analytic designs with recursive as well as explicit mathematical formulas
for computation of the weights required in the design of FIR notch �lters.
Also, we have considered notch �lters having maximal 
atness in the two
passbands, i.e. at ! = 0 as well as at ! = � (in the Butterworth sense).
We focus our attention on the design of digital notch �lters of type NF1
as well as NF2. Linear phase and also nonlinear phase designs have been
investigated.

The transfer function H(z) of a causal FIR �lter of length N in terms
of its unit sample response h(i) is given by

H(z) =

N�1X
i=0

h(i)z�i: (4)

For the linear phase requirement, h(i) must satisfy the constraint:

h(i) = �h(N � 1� i); i = 0; 1; 2; : : : ; N � 1 (5)

The �lter length N can be odd or an even integer. However, we choose
N to be an odd integer only so as to avoid problems due to fractional delays.
By using (4) and (5), the transfer function of a symmetric linear phase FIR
�lter can be written as [24]

H(z) = z�n
nX
i=0

di
zi + z�i

2
; n =

N � 1

2
(6)

The weights di are related to the unit sample response h(i) by [24]

di =

�
h(n); i = 0

2h(n� i); i = 1; 2; : : : ; n
(7)

The frequency response H(exp(j!)) of the causal �lter may be written
as

H(z)
���
z=ej!

= e�j!nH0(!); (8)

where H0(!) is the amplitude function2 given by

H0(!) =

nX
i=0

di cos(i!): (9)

2In the literature amplitude function H0(!) is also referred to as the \pseudo mag-
nitude function" or \zero phase amplitude response".
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For the design of NF2 type �lters, we impose the following optimality
criteria:

H0(!)
��
!=0

= 1; (10a)

H0(!)
��
!=�

= �1; (10b)

...

duH0(!)

d!u
��
!=�

= 0; u = 1; 2; : : : ; 2m� 1 (10c)

d�H0(!)

d!�
��
!=0

= 0; � = 1; 2; : : : ; 2(n�m) + 1 (10d)

Here, m is an integer specifying the degree of 
atness at ! = �, which can
have values within the range 1 � m � n. Equations (10) give us (n+1) non-
trivial equations which can be solved to compute the weights (di's). Filters
thus designed are speci�cally useful in applications where linearity of phase
is not an essential requirement. One typical application for such �lters is in
one-dimensional QMF banks [36].

Linear phase maximally 
at notch �lter designs of the type NF1 have
also been accomplished by using Bernstein polynomials as well as by using
notch �lter to lowpass �lter transformation. These approaches lead to ex-
plicit formulas for computation of design weights, as will be shown in the
next section.

2 Designs

2.1 Design of linear phase notch �lter:
Analytical approach [30]

In the methods presented in [7], [37], the weights required for the �lter
structure are found by using computer-aided optimization techniques. How-
ever, by an analytical formulation of this problem, it is possible to �nd the
exact mathematical formula for the weights. We choose the optimality crite-
ria of maximal 
atness of the amplitude response (in the Butterworth sense)
at ! = 0 and ! = � as given by (10). Such a choice leads us to exact mathe-
matical formulas for computing the design weights. It has been shown in [30]
that through this methodology, it is possible to realize, exactly, the desired
notch frequency, !d, besides meeting the speci�ed rejection bandwidth BW .
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2.1.1 Design

Let the frequency response, Hd(!), of the desired FIR digital notch
�lter be given by

Hd(!) =

N�1X
i=0

h(i)ej!i; (11)

where h(i) is the impulse response and N is the �lter length, the �lter order
being N � 1. Imposing symmetry condition, we have [24]

h(i) = �h(N � 1� i): (12)

The design requirement is to have non-zero Hd(!) both at ! = 0 and
! = �. Hence, we take the positive sign in (12) so as to obtain a cosine
series. Imposing (12) on (11) and keeping N odd, we obtain

hd(!) = e�j
!(N�1)

2

N�1
2X

i=0

Di cos(i!); (13a)

where

D0 =h(
N � 1

2
); (13b)

Di =2h(
N � 1

2
� i); i = 1; 2; : : : ;

N � 1

2
(13c)

We derive the desired Hd(!) through the use of two maximally 
at
notch �lters belonging to the class Hm(!), each of order N � 1, such that:

(i) Hm(!) has m degrees of 
atness at ! = � where m can assume
(N � 1)=2 di�erent integer values;

(ii) the notch frequency of Hm(!) is !m i.e. Hm(!m) = 0; and

(iii) Hm(!) is positive for 0 � ! < !m and negative for !m < ! � �.

A typical amplitude response of the notch �lter Hm(!) satisfying the
above constraints is shown in Fig. 3 and has 180Æ phase shift at the notch
frequency, !m. The reason for taking such a response is to evade disconti-
nuities of Hm(!) at ! = !m; also it yields exact formulas for computation
of the weights required for Hm(!). As is clear from Fig. 3, the magnitude
response jHm(!)j is that of a typical notch �lter. We choose m in such a
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way that the resulting amplitude response Hm(!) has a zero at ! = !m,
where !m is just short of !d. Let

Hm(!) =
nX
i=0

di cos(i!); n =
N � 1

2
(14)

where di's are the weights to be computed. Such an expression for Hm(!)
obviously represents amplitude response of an FIR, linear phase digital �lter
[24]. For Hm(!), we impose the optimality criteria as enunciated in (10a)
to (10d) (after replacing H0(!) by Hm(!), of course).

Fig. 3.Frequency response, Hm(!) of notch �lter with 180Æ phase shift
at the notch frequency, !m. The dotted curve gives the
magnitude response jHm(!)j.

Note that the sum of the possible degrees of 
atness at ! = 0 and ! = �
is 2n = N � 1. We need (n+ 1) non-trivial equations to solve for the same
number of unknown weights di's.

The integer m has the range: 1 � m � n giving n di�erent amplitude
responses Hm(!) for a given value of n. Accordingly, the notch frequency
!m can assume n discrete values: !1, !2, : : : , !n. Equations (10a) to (10d)
give us (n + 1) non-trivial equations. These equations can be put in the
matrix form

[aij ][di] = [bi]: (15)

By using Crout's method [9], and following somewhat involved algebraic
manipulations (as in [30]), (15) is transformed to a triangular matrix. The
values of di's are therefore computed from the recursive formula [30]

di = b0i �
nX

j=i+1

a0ijdj
i = n; n� 1; : : : ; 0

(descending order)
(16)
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where the values of b0i and a
0
ij are given by exact mathematical formulas [30].

Table 1 of [30] gives the values of the weights, di's, computed by using
(16) for n = 15 and m varying from 3 to 15. Knowing the weights, the
response curves, jHm(!)j for m varying from 1 to n can be obtained. Figure
4 shows the magnitude response curves for n = 9 and m = 1 to 9.

Fig. 4. Magnitude responses, jHm(!)j, for linear phase
notch �lters for n = 9 and m = 1 to 9.

It is observed that the 3-dB BW of Hm(!) varies with m (keeping n
constant). Also, BW progressively decreases as n increases. It is noted that
the value of BW is maximum for m = b(n+1)=2c3. Moreover, jHm(!)j has
the same BW for m = m0 and m = n+ 1�m0 . This property of jHm(!)j
facilitates computation of weights corresponding to m = n + 1 � m0 from
those corresponding to m = m0 by inspection using the relation

di;m0
= (�1)i+1di;n+1�m0

: (17)

An alternative approach to determine the value of n would be to use
a suitable empirical formula. Kaiser and Reed [17] have proposed empiri-
cal formula for computing the value of n required for a desired transition
bandwidth, �!, of maximally 
at lowpass �lters.

Empirical formulas suitable for the notch �lters are:

n � Integer
n1
2

h� �

BW

�2
�

�

BW
+ 3

io
; (18)

3bxc denotes the integer part of x.
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and

m1 = Integer part offn(0:55 + 0:5 cos!d)g: (19)

Formula (19) has been arrived at after modifying an existing formula,
due to Herrmann [11], for maximally 
at lowpass �lters of order n and 3-dB
cuto� frequency, !c, viz.

m = Integer � n
1 + cos!c

2
: (20)

The formulas given by (18) and (19) hold good for �lter lengths up to
79.

We design Hm1
(!) and Hm2

(!), where m2 = m1 � 1, and obviously
!m1

< !d < !m2
. To obtain desired notch �lter Hd(!) with notch at

! = !d, we use linear mixing of Hm1
(!) and Hm2

(!), i.e.

Hd(!) = �Hm1
(!) + �Hm2

(!); (21a)

where

� =
!m2

� !d
!m2

� !m1

; (21b)

and

� =
!d � !m1

!m2
� !m1

: (21c)

The weights of the desired notch �lters are given by

Di = �d
(m1)
i + �d

(m2)
i : (22)

Note that � and � satisfy the condition: � + � = 1; also to ensure that
Hd(0) = �Hd(�) = 1, we should have

�

�
=
���Hm2

(!d)

Hm1
(!d)

���: (23)

The aforementioned procedure indeed yields the notch frequency of
Hd(!), that is very close to the desired one (!d). The design also retains the
maximal 
atness of the passbands and achieves an exact null at the notch
frequency. The mathematical formulas for computing the weights needed
constitute an attractive feature of this design.
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The rejection bandwidth BW can be made small if suÆciently high
value of n is chosen. For a given n, this �lter provides a �xed range of notch
frequencies, varying from !djm=n to !djm=1.

In this procedure, we need a linear combination of Hm1
(!) and Hm2

(!),
in order to arrive at the desired response Hd(!). The value of Hd(!d) is not
exactly zero; hence �ne tuning is essential to obtain the �nal response Hd(!)
[30]. In the next design, we suggest a semi-analytic method of notch �lter
design which eliminates the necessity of linear mixing as well as that of the
�ne tuning.

2.2 A semi-analytic approach for designing
FIR notch �lter [14]

In this approach, the desired notch �lter can be designed directly, with-
out the need for combination of two �lters or the requirement of �ne tuning.
The design requires less number of weights as compared to the analytic ap-
proach, given in subsection 2.1.

Let the amplitude response, Hd(!), of a typical linear phase FIR digital
notch �lter be given by [24]

Hd(!) =

L�1
2X

i=0

Di cos(i!); (24)

where Di's are the weights
4 to be computed, and L is the length of the �lter

(assumed to be odd ). We let Hd(!) satisfy the criteria (10a) to (10d) and
also the additional constraint:

Hd(!d) = 0: (25)

The constraint (25) is taken care of by increasing the �lter length to
N = L + 2. It may be noted that, to retain linear phase property of the
notch �lter, we have increased the length by 2 to obtain one additional non-
trivial equation. By using (25) in (24) and taking n = (N � 1)=2, we have

nX
i=0

Di cos(i!d) = 0; (26)

4Note that the weights Di's used here are not the same as those found in the de-
sign given in subsection 2.1 by linear mixing. The notation (Di) has been retained for
convenience.
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or
nX
i=0

CiDi = 0; (27)

where

Ci
4
=cos(i!d); i = 0; 1; 2; : : : ; n (28)

Imposing the optimality criteria (10a to 10d) on Hd(!) and by using
(27), we obtain a set of (n + 1) non-trivial equations. These equations
are again solved by using Crout's method. Here, the recursive mathematical
formulas are obtained after somewhat involved manipulation [14]. The value
of n is again found preferably by using the empirical formula (18) and m is
found from

m =

�
bn(0:55 + 0:5 cos!d)c; 1 � n � 20

bn(0:55 + 0:5 cos!d)� 1c; n > 20
(29)

where bxc denotes the integer part of x. The values of n and m found by
above empirical formulas hold good up to N = 65. A design example may
be referred to in [14].

The magnitude responses of a few other notch �lters designed by using
the proposed algorithm are shown in Fig. 5. The speci�ed and the realized
values of various parameters for these designs are given in [14]. It is seen
that in all these designs, we are able to realize the exact notch frequency
(!d). Also, the realized BW is lower than the speci�ed value. This con�rms
the eÆcacy of the suggested methodology.

The proposed design method has been found to give the desired fre-
quency response for �lter length N upto 65. Beyond this value of N , it has
been observed that a small content of ripple appears in the response. We
note that the FIR notch �lters can also be designed by McClellan and Parks
algorithm to obtain equiripple (i.e. minimax) frequency response. We des-
ignate such a design by HEQ(!). If we compare the performance of notch
�lters Hd(!) with that of �lters HEQ(!), we �nd that the 3-dB bandwidth

(BW ) is certainly lower in the case of minimax design, as expected. We
also note that:

(i) Equiripple/Minimax design using Remez algorithm (i.e. McClellan
and Parks approach) is basically iterative in nature and is non-
analytic. As pointed out by Rabiner et al., in [28], \An analytical
solution to the optimal �lter design problem exists for the case of
extra-ripple design with either one passband or one stopband ripple.
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... these cases are either very wideband or very narrowband designs,
and are not generally of much interest, except for the insights they
provide into analytical relations between the various parameters".
In comparison, the semi-analytic design is non-iterative.

(ii) A simple, workable empirical relation between N and the rejection
bandwidth (BW ) speci�cally for FIR notch �lters, is a useful tool
for quick design.

Fig. 5. Ferequency response of notch �lters designed for:
(a) !d =0.8 radian, 3-dB BW =0.44 radian,

(b) !d =2.0 radian, 3-dB BW =0.42 radian, and

(c) !d =2.5 radian, 3-dB BW =0.37 radian.

A semi-analytic approach for designing notch �lters enables us to realize
a notch �lter with a speci�ed notch frequency (!d) and rejection bandwidth
(BW ). The suggested technique has an added advantage that it requires
less number of weights than those required by analytical design.

2.3 Design of FIR notch �lters from
second order IIR prototype [31]

As is well known, IIR �lters are highly eÆcient requiring a much lower
order than that needed with the FIR ones. However, IIR �lters are po-
tentially unstable due to quantization and limit cycle e�ects, particularly
for highly selective IIR notch �lters. In this subsection, we take a typical
IIR notch �lter of second order as a prototype and evolve a conceptually
simpler FIR design to achieve the same high quality performance without
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any instability problem. As will be seen, the frequency response of the de-
rived FIR notch �lter is indeed very close to that of the prototype IIR notch
�lter. Mathematical formulas for computing the design weights have also
been suggested. These formulas take less time for computing the weights as
compared to the designs discussed in subsections 2.1 and 2.2.

2.3.1 The prototype IIR notch �lter

IIR digital notch �lters can be designed by using classical analog �lter
approximation methods. However, one is likely to face two types of problems
[24] in such designs. The design program requires passband and stopband
edge frequencies and ripples as input parameters, and choice of improper
speci�cations can lead to high orders of the �lters. Also, for the design of
digital narrow-band notch �lters, the z-domain poles tend to be very close
to the unit circle. This results in a highly non-linear phase response, high
round-o� noise and potential instability/limit cycles in �nite wordlength
implementations.

A simpler design strategy proposed by Laakso et al. [19] is to design
�rst and second order IIR prototype notch �lters with zeros strictly on the
unit circle and poles close to the zeros.

A second order IIR notch �lter is, however, more versatile since it can
be designed for an arbitrary notch frequency, !0. A typical such �lter has
the transfer function [19]:

F2(z) = K
1� 2 cos!0z

�1 + z�2

1� 2r cos!0z�1 + r2z�2
: (30)

K and r are the parameters as stated earlier. The notch e�ect in (30) is
obtained by placing a pair of complex conjugate zeros at exp(�j!0) while
the frequency response in the passband is made close to unity by placing a
pair of conjugate poles at r exp(�j!0), where r is less than unity but very
close to it. Figure 6 shows the magnitude response of second order IIR notch
�lter for r varying from 0.9 to 0.99. The 3-dB rejection bandwidth (BW
) of these �lters is a function of r and can be reduced by increasing the
pole radius r. However, if r is chosen too close to unity, the round-o� noise,
which is proportional to 1=�2 (� = 1 � r) [5], becomes very large. For
�nite wordlengths, these �lters also introduce limit cycle problems. This is
the precise reason that in many practical applications, we use FIR �lters in
preference to IIR ones. We, in this design, present two design alternatives
for evolving FIR notch �lters from the second order IIR prototype given by
(30).
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Fig. 6. Magnitude response of second order IIR notch �lter [19]
having !0 = 1:2 rads for r = 0:90 (curve a), 0.95 (curve b)
and 0.99 (curve c).

2.3.2 FIR design: Approach - I

We rewrite (30) as

F2(z) = KA(z)B(z); (31a)

where

A(z) =1� 2 cos!0z
�1 + z�2; (31b)

B(z) =
1

1� az�1 + bz�2
; (31c)

with
a = 2r cos!0 and b = r2: (31d)

Clearly,
A(ej!) =1� 2 cos!0e

�j! + e�j2!

=e�j2!(ej! � ej!0)(ej! � e�j!0):
(32)

Dividing 1 by (1�az�1+bz�2), B(z) given in (31c) may be expressed as
a series with increasing powers of z�1. After simple algebraic manipulations,
we get the following elegant form for B(z)

B(z) =

1X
i=0

diz
�i; (33)
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where

di =

b i2 cX
m=0

(�1)m
�
i�m

m

�
ai�2mbm; i = 0; 1; 2; : : : ; (34)

In order to arrive at an FIR structure, we truncate the series for B(z),
given in (33), at the i =M term, say, i.e. we approximate B(z) by

BM (z) =

MX
i=0

diz
�i; (35)

where the coeÆcients (di's) are functions of r and !0 only and are indepen-
dent of M . This property of di's enables us to control BW for a given !0
and M only by varying r. The resulting FIR �lter has the transfer function
H(z) = KA(z)BM (z). Clearly, H(z) is of order N =M + 2. The frequency
response H(exp(j!)) can be readily put in the form

H(ej!) = 2K(cos! � cos!0)e
�j!

MX
i=0

die
�j!i; (36)

which is obviously constrained to have a zero (notch) at ! = !0. We may
also write

H(z) = K
NX
i=0

Diz
�i; (37)

where
Di = di � 2di�1 cos!0 + di�2; (38)

with dk = 0 for k < 0 and k > M . The design weight, Di's, for the proposed
FIR notch �lter can thus be computed exactly from (34) and (38). We shall
investigate the performance of this design after subsection 2.3.3.

2.3.3 FIR design: Approach - II

In the aforementioned treatment, we have truncated the series for B(z)
only (keeping A(z) unaltered). Such an approach, obviously, gives an exact
zero for H(exp(j!)) at ! = !0. Alternatively, we �rst express F2(z) as a
series of in�nite number of terms, and then truncate this series. Clearly,
this will not make H(exp(j!0)) exactly equal to zero, but this approach has
other advantages over the previous one.
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Writing (31a) in the form

F2(z) =K(1� 2 cos!0z
�1 + z�2)

1X
i=0

diz
�i

=K

1X
i=0

�Diz
�i;

(39)

where
�Di = di � 2di�1 cos!0 + di�2; i = 0:1; 2; : : : ; (40)

and dk = 0 for k < 0. By using (34) and (40), we arrive at the following
explicit formula for �Di : [31]

�Di =

b i2�1cX
i=0

Q(i;m) + C(i); i = 0; 1; 2; : : : ; (41a)

where

Q(i;m) =(�1)m(2r cos!0)
i�2mr2m

"�
i�m

m

�

+ (2r cos!0)
�2

�
i� 2�m

m

�
� r�1

�
i� 1�m

m

�#
;

(41b)

and

C(i) =

8><
>:

0; i = 0; 1

(�1)
i
2 ri; i = 2; 4; 6; : : : ;

(�1)
i�1
2 [(i+ 1)r � 2]ri�1 cos!0; i = 3; 5; 7; : : : ;

(41c)

An N -th order notch �lter, �H(z), is obtained by truncating the series
given by (39) at i = N term, that is

�H(z) = K

NX
i=0

�Diz
�i: (42)

The performance of this FIR notch �lter [ �H(z)] is given in the next Sec-
tion, and compared with that of the �ltersH(z) derived through Approach-I.
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2.3.4 Performance of design: - Approaches I & II

The performance of the notch �lters designed by using the aforemen-
tioned designs ( Approaches I and II) has been investigated in respect of

(i) magnitude response,

(ii) relative deviation, and

(iii) group delay

(A) Magnitude response:

The magnitude response jH(exp(j!)j with M = 50 (i.e. �lter order
N = 52), r = 0:85 and !0 = 1:2 rads obtained through (37) (i.e. Approach
I) is shown in Fig. 7. For comparison, the magnitude response jF2(exp(j!))j
of the IIR �lter designed by using (30) (i.e. the prototype �lter) for the same
values of r and !0 is also shown on the same �gure. It is seen that the two
magnitude responses viz. jH(exp(j!))j and jF2(exp(j!))j are indistinguish-
ably close to each other over the entire frequency range 0 � ! � �. This
indicates that the truncation of the system response B(z) at M = 50 has
not a�ected the magnitude response jF2(exp(j!))j signi�cantly. The 3-dB
rejection bandwidth (BW ) in this case (for N = 52, r = 0:85, !0 = 1:2
rads, for example) is found to be 0.3089 rad (= 17:7Æ). In order to obtain
still lower values of BW , we may increase the value of r. For r = 0:91,
N = 52, and the same notch frequency (i.e. !0 = 1:2 rads, for example), the
value of BW is found to be 0.19 rad (= 10:9Æ ).

Fig. 7. Magnitude response, jH(ej!j, (Design Approach-I)
for !0 = 1:2 rads, N = 52 and r = 0:85.
The magnitude response jF2(ej!)j overlaps jH(ej!)j
indistinguishably.
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Fig. 8. Magnitude response, j �H(ej!j, (Design Approach-II)
for !0 = 1:2 rads, N = 52 and r = 0:85.

The magnitude response of the �lters designed by using Approach-II is
shown in Fig. 8, for !0 = 1:2 rads, N = 52 and r = 0:85. The response
obtained here is similar to that shown in Fig. 7. However, if r is changed
to 0.91, we obtain the magnitude response, �H(exp(j!)), as shown in Fig. 9.

Fig. 9. Magnitude response, j �H(ej!j, (Design Approach-II)
for !0 = 1:2 rads, N = 52 and r = 0:91.

It is found that this response has relatively less ripple content as compared
to that by approach-I (although both the cases here have the same �lter
order N ). Moreover, the BW , in this case (Fig. 9) is lower (BW =10:3Æ)
than that of approach-II (which has BW =10:9Æ). Thus, �H(exp(j!)) re-
sults in a closer frequency response to F2(exp(j!)) than that obtained by
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H(exp(j!)) in the passbands, for the same �lter orders of �H(z) and H(z).
We, therefore, infer that the second design alternative can also be used gain-
fully in applications where the requirement of an exact zero value at the
notch frequency is not very stringent, e.g. in adaptive antenna steering or
sonar reverberation suppression. The �rst design approach may be preferred
where full cancellation at !0 is necessary such as in echo cancellation, or in
bio-medical measurements.

(B) Relative deviation:

We de�ne relative deviation for the approximation, say, G(exp(j!))
w.r.t the ideal F2(exp(j!)) by

E(!)
4
=

����� jG(e
j!)j � jF2(e

j!)j

F2(ej!)

�����; 0 � ! � �: (43)

Considering the design approach-I, for the case M = 50 i.e. N = 52,
r = 0:85, !0 = 1:2 rads (Fig. 7) the maximum value, Emax(!), is found to be
0.000457 i.e. �67 dB. The values of Emax(!) forM = 40 and 45 are found to
be �52 dB and �60 dB, respectively, keeping r and !0 the same. Thus the
relative deviation is reasonably small for the proposed design approach. For
the design approach-II, the relative deviation is found to be lower than that
of approach-I. For example, for the case of N = 52, r = 0:85 and !0 = 1:2
rads (Fig. 8) the value of Emax(!) is 0.000169 i.e. �75:4 dB.

(C) Group delay:

It is observed that the group delay responses are indistinguishably close
to each other [31]. Thus the conversion of IIR prototype F2(z) to the pro-
posed FIR designs H(z) as well as �H(z) does not alter its group delay per-
formance signi�cantly.

In situations where the available memory is rather limited, it would be
desirable to have explicit formulas for the weights. The design proposed in
subsection 2.3 gives the explicit formula for the weights, but the �lter itself
has a non-linear phase response.

We now give two di�erent design methodologies, by which explicit for-
mulas are obtained for the design of linear phase notch �lters.

These approaches are based on the use of

(i) Bernstein polynomials, and

(ii) Lowpass �lter design.

Both of these designs result in notch �lters which are maximally 
at at
the combination of frequencies ! = 0 and ! = �.
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2.4 Design of FIR notch �lters by using
Bernstein polynomials [15]

Here, we use Bernstein polynomials to derive an explicit formula for
the weights. This has been possible by expressing the transfer function of
the �lter as a polynomial in cos!. Transfer functions expressed in this
form are particularly convenient for implementing variable cuto� �lters [23].
We have used Bernstein polynomials because they \mimic the behavior of
the function to a remarkable degree" [5, p.116]. Bernstein polynomials are
also well known to yield smooth approximations, in contrast to Chebyshev
approximations (which is characterized by ripple behaviour). Hence, these
polynomials provide an easy method for approximating a function in the
maximally 
at manner (in the Butterworth sense).

2.4.1 Design

We aim to approximate an ideal notch �lter, Hd(!) given by

Hd(!)
4
=

�
+1; j!j < !d

�1; !d < j!j < �
(44)

by using Bernstein polynomials. Consider a function f(x) de�ned in the
interval [0, 1], as shown in Fig. 10, with functional values given by

f(
k

n
)
4
=

�
+1; 0 � k � L

�1; L+ 1 � k � n
(45)

where L+1 and n�L give the number of successive discrete points at which
the function f(k=n) is +1 and �1, respectively. The n-th order (n � 1)
Bernstein polynomial for the function f(x) is given by [5]

Bn(x) =

nX
k=0

f(
k

n
)

�
n

k

�
xk(1� x)n�k: (46)

An alternate expression for (46) is

Bn(x) =

nX
k=0

�kf(0)

�
n

k

�
xk; (47)

where �kf(0) is the k-th forward di�erence of f(k=n) at k = 0, and is
determined from its functional values at k = 0; 1; 2; : : : ; n. From (46), we
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Fig. 10. The function f(x) and f(k=n) used to approximate the notch �lters.

note that at extreme points of the range x, the approximating Bernstein
polynomial Bn(x) is exactly equal to the value of the desired function f(x)
i.e.

Bn(0) =f(0) = 1;

Bn(1) =f(1) = �1:

By using f(k=n) as de�ned in (45) and carrying out some algebraic
manipulations, we obtain the following generalized formula for the values of
�kf(0)

�kf(0) =

8><
>:

1; k = 0

0; 1 � k � L

2(�1)k�L
�

k�1
k�L�1

�
; L+ 1 � k � n

(48)

It is seen from (48) that L forward di�erences of f(x)jx=k=n are zero at
x = 0. Therefore, L also signi�es the order of 
atness of f(x) at x = 0 in
the Butterworth sense. Using the transformation

x =
1� cos!

2
; (49)

in (47), we have

H(!) =

nX
k=0

�kf(0)

�
n

k

��1� cos!

2

�k
: (50)
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By using (48), (50) may be written as (�kf(0) is zero for 1 � k � L) [15]

H(!) = 1 +

nX
k=L+1

2(�1)k�L
�
n

k

��
k � 1

k � L� 1

� nX
i=0

2�k(�1)i
�
k

i

�
cosi !:

(51)

As L can assume values from 0 to n � 1, this implies that we can
have n di�erent notch �lters depending upon the value of L. By simple
manipulations, (51) can be reduced to the form

H(!) =
nX
i=0

ai cos
i !; (52a)

where

ai = 2�n

"
2n
�
0

i

�
+

nX
k=L+1

(�1)k+i�L 2n+1�k
�
n

k

��
k � 1

L

��
k

i

�#
;

i = 0; 1; 2; : : : ; n

(52b)

In design 2.1, we suggested a methodology for obtaining the desired
notch frequency (!d) by linear combination of two (out of n) adjacent notch
�lters mentioned above. In the present context, the procedure gets slightly
modi�ed, as given here.

2.4.2 Design procedure and performance

Problem: Given a speci�ed notch frequency !d and 3-dB rejection band-
width (BW ), we are required to design a maximally 
at FIR
notch �lter by using Bernstein polynomial approach.

Step 1: Obtain the required value of n by using the formula

n � Integer
n1
2

h� �

BW

�2
�

�

BW
+ 3

io
: (53)

This empirical formula is the same as given in (18).

Step 2: Obtain L = L1 which results in a notch frequency !L1
closest to

but less than !d. The value of L1 is found by using

L1 = (n+ 1)� Integer part offn(0:55 + 0:5 cos!d)g: (54)
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This formula has been obtained by modifying the one given by

(19). For L2
�
=L1+1, the corresponding notch frequency, !L2

, will
obviously be closest to but greater than !d.

Step 3: The weights of the desired notch �lter are obtained by linear mixing

of the coeÆcients a
(L1)
i and a

(L2)
i i.e.

ai = �a
(L1)
i + (1� �)a

(L2)
i ; (55a)

where

� =
!L2

� !d
!L2

� !L1

: (55b)

A number of notch �lters were designed by using the formulas (52b),
(53), (54) and (55). Fig. 11, for example, shows the frequency response of
a notch �lter designed for the speci�c values: !d = 1:2 radians and BW
�0.38 radian. The computed values of n, L1, L2, !L1

, !L2
and � are 31,

10, 11, 1.177783 radians, 1.245955 radians and 0.674, respectively. The
realized notch frequency and BW are exactly 1.2 radians and 0.38 radian,
respectively. Also, the suggested formula (52b) for determining the weights
is explicit and requires less memory storage as compared to the recursive
formulas proposed earlier.

Fig. 11. The frequency response jH(!)j:
for L1=10 (� � ��), L2=11 (- - -) and �nal response (|)
for the example considered in Section 2.4.2.

2.5 Design of FIR notch �lters by using
a lowpass �lter [18]

In this design, we present yet another approach for designing linear
phase FIR notch �lters, which is based on the transformation of a lowpass
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�lter. This method allows realization of the speci�ed notch frequency (!d)
exactly besides resulting in 3-dB rejection bandwidth (BW ) better than the
speci�ed one. The notch �lter may be designed with a maximally 
at (MF)
or equiripple characteristics. We give here the MF design in detail, and then
brie
y mention the equiripple case.

2.5.1 Design

Let HLP (!) be the frequency response of a zero-phase lowpass FIR �lter
such that

HLP (0) =1;

HLP (!d) =
1

2
; and

HLP (�) =0:

(56)

We can obtain a notch �lter by using the transformation [37]

H(!) = 2HLP (!)� 1: (57)

Using (56) in (57) results in the notch �lter with

H(0) = 1;

H(�) = �1; and

H(!d) = 0:

(58)

If HLP (!) is maximally 
at with 
atness distributed between ! = 0
and ! = �, then so is H(!). The design problem of a notch �lter is thus
reduced to that of designing a maximally 
at lowpass �lter HLP (!) such
that HLP (!) = 1=2 at ! = !d.

A maximally 
at lowpass �lter HLP (!) can be obtained from Tha-
jchayapong et al. [33] which is a modi�cation of Miller's design [20]. Miller
has suggested transforming the zero phase polynomial

H0(z) =
nX
i=0

Ci(z
i + z�i); (59)

into a rational function Ĥ(q) (q = � + j
) through the bilinear transfor-
mation z�1 = (1 � q)=(1 + q). Then by imposing the condition of maximal


atness of Ĥ(q), for q = j
 with m-th degree of 
atness at 
 = 1 (i.e.
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! = �, because 
 = tan(!=2)), the resulting analog �lter has the transfer
function ([33], eqn.2)

Ĥ(j
) =
1

(1 + 
2)n

(
n�mX
k=0

�
n

k

�

2k

)
: (60)

Clearly, for a given n, (60) yields n di�erent lowpass �lters as m varies from
1 to n. Thajchayapong et al. [33] have suggested a method of obtaining
transitional �lters between two adjacent values of m, say, m1 and m2 =
m1 � 1, by modifying (60) as follows

Ĥ1(j
) =
1

(1 + 
2)n

(
n�m1X
k=0

�
n

k

�

2k + Cn�m2


2(n�m2)

)
: (61)

The value of constant Cn�m2
in (61) is found by forcing Ĥ1(j
)j
=
d =

1=2, where 
d = tan(!d=2). This gives

Cn�m2
=

1



2(n�m2)
d

"
(1 + 
2

d)
n

2
�

n�m1X
k=0

�
n

k

�

2k
d

#
: (62)

Equation (61) is now transformed back to the z-plane by using the
transformation j
 = (1� z�1)=(1 + z�1), and we �nally obtain [18]

�H1(z) =2
�2nzn

(
n�m1X
k=0

�
n

k

�
(�1)k(1� z�1)2k(1 + z�1)2(n�k)

+ Cn�m2
(�1)n�m2(1� z�1)2(n�m2)(1 + z�1)2m2

)
:

(63)

By using the Binomial expansion for (1 + z�1)p, taking causal LPF,
H2(z) = z�n �H1(z) and after some manipulations, we �nally get [18]

�H2(z) =
2nX
i=0

h(i)z�i; n =
N � 1

2
(64a)

where

h(i) =2�2n

"
n�m1X
k=0

2kX
q=0

(�1)k+q
�
n

k

��
2k

q

��
2n� 2k

i� q

�

+ Cn�m2
(�1)n�m2

2m2X
q=0

(�1)i�q
�
2m2

q

��
2n� 2m2

i� q

�# (64b)
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We may also express h(n� i) given by (64) as

h(n� i) = fA(i) + Cn�m2
B(i)g; (65a)

where

A(i) =2�2n
n�m1X
k=0

2kX
q=0

(�1)k+q
�
n

k

��
2k

q

��
2n� 2k

n� i� q

�
; (65b)

B(i) =2�2n
2m2X
q=0

(�1)q+m2+i

�
2m2

q

��
2n� 2m2

n� i� q

�
: (65c)

ai =

�
h(n); i = 0

2h(n� i); i = 1; 2; : : : ; n
: (66)

Thus zero phase notch �lter is given by

H(!) =

nX
i=0

di cos(i!); (67a)

where

di =

�
2a0 � 1; i = 0

2ai; i = 1; 2; : : : ; n

=

�
2h(n)� 1; i = 0

4h(n� i); i = 1; 2; : : : ; n:

(67b)

Hence, the coeÆcients di of the desired notch �lter (having notch at
! = !d) can be computed from (67) and (65).

The values of n and m, required to compute h(n� i) are obtained from
the empirical formulas (18) and (19). Readers may refer to a design example,
given in [18] ,

Equiripple Design:

The aforementioned design procedure can also be adapted for an equirip-
ple notch �lter, ~H(!), by using an equiripple LPF ~HLP (!) in (57). If we

constrain ~HLP (!) as

~HLP (!) =

8>>>>><
>>>>>:

2� Æ1
2

; 0 < j!j < B1

1� Æ2
2

; j!j = !d

�
Æ1
2
; B2 < j!j < �

; (68)
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where B2�B1 =BW , and Æ1 and Æ2 are, respectively, the maximum ripples
in the passband and the stopband of the LPF, then the resulting notch �lter
will have

~H(!) =

8><
>:

1� Æ1; 0 < j!j < B1

�Æ2; j!j = !d

�1� Æ1; B2 < j!j < �

: (69)

The equiripple linear phase LPF ~HLP (!) may be obtained by any of the
conventional methods such as the McClellan and Parks algorithm [27].

Structure:

Equation (57) suggests that an FIR �lter structure meant for lowpass
operation can also be used to perform as a notch �lter without any additional
multiplication (multiplication by 2 amounts to left shift operation). This
implies that if we realize an optimal lowpass �lter by a linear phase FIR
structure, the same can be gainfully exploited as a notch �lter without any
additional multiplication. The performance of such a notch �lter is also
optimal.

3. Conclusions

We have given an overview for di�erent design approaches of Notch
Filters. In preference to IIR designs, FIR designs are more popular. Several
methodologies for designing FIR notch �lters have been presented.

We have �rst proposed, in subsection 2.1, an analytic approach for de-
signing maximally 
at, linear phase, notch �lters of the type NF2 ( i.e. with
180 degrees of phase shift beyond !d; Fig.2). Recursive formulas have been
derived for computing the coeÆcients of notch �lters in this case. The de-
sired notch �lter is obtained by linear combination of two notch �lters with
notch frequency just below and above the speci�ed notch frequency (!d).
A `�ne tuning' is necessary to realize the exact notch frequency. Empirical
formulas have been given for �nding the values of N (�lter length), and m
(degree of 
atness of amplitude response at ! = �) to obtain the desired
BW and !d.

As an improvement over the aforementioned approach, a semi-analytic
design has been proposed in subsection 2.2, which does not require linear
combination of two �lters or even the `�ne tuning'. The computational
requirement for obtaining the design weights has been simpli�ed in this ap-
proach as compared to that in the analytic approach.
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Another straightforward method for designing the notch �lters has been
proposed in subsection 2.3. Explicit formulas have been derived to deter-
mine the weights of maximally 
at FIR notch �lters by using a second or-
der IIR prototype notch �lter. The performance of such a design matches
favourably with that of the IIR prototype. However, the �lters so designed
have non-linear phase response. These designs may be used in some typical
applications where linear phase response is not an important consideration.

In yet another approach, in subsection 2.4 , Bernstein Polynomials have
been used to obtain an explicit formula for designing linear phase maximally

at FIR notch �lters. This design methodology leads to much simpler for-
mulas for computing the weights as compared to the approaches proposed in
subsection 2.1 to subsection 2.3. Another design technique has been evolved
in subsection 2.5 by transforming the given speci�cations (of the notch �l-
ter) to an equivalent lowpass �lter. By exploiting the results proposed in [33]
and [37], new explicit formula for the design of linear phase maximally 
at
notch �lters, with exact null at !d, have been obtained. Explicit formulas as
derived in these approaches have an edge over the recursive formulas from
the point of view of computational complexity.
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