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Abstract: The new integral equation analysis for skin e�ect in thin strip

conductor is presented. The analytical, iterative and numerical procedure for

solving this integral equation is proposed. The numerical procedure is based

on the point matching method and polynomial approximation for current

density distribution in thin strip conductor. The proposed procedure can be

successfully used in skin e�ect analysis of a large number of strip conductors

with various cross sections (at, circular, elliptical, parabolic, as well as cross

section with sharp edges such as L, T, H pro�les). The obtained numerical

results converge very quickly with increasing of degrees of polynomial current

approximation even in the cases when skin e�ect level is signi�cant. The

theoretical investigations are supported by several examples and the obtained

results for current density distribution in strip conductors and for resistance

and inductance per unit conductors length are presented.

Key words: Skin e�ect, strip conductors, polynomial approximation, integral

equation.

1. Introdution

One of the present authors proposes in Ref.1 a general procedure for

obtaining integral equations using di�erential equations and corresponding

boundary conditions. This procedure is used in the present paper for the

study of skin e�ect in thin strip conductors having known, but arbitrary

shaped cross section. So one new integral equation for analyzing skin e�ect
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is formulated. Unfortunately, with the exception of several geometrically

simple cases, such as is the �nite-width at or circular strip conductor, an

exact solution of the proposed integral equation can not be obtained analyti-

cally. Using this integral equation, an iterative procedure is presented in this

paper for the approximate solution of low frequency skin e�ect [2]. Then the

current density distribution in the strip conductor is expanded into in�nite

decreasing series versus angular frequency. After that, one simple but general

numerical procedure for approximate numerical solving of skin e�ect integral

equation is presented [3]. Then the current density distribution in the strip

conductor is approximated using �nite polynomials with unknown complex

coeÆcients and the point matching method is used for approximate solving

of integral equation [4]. Very good convergence and accuracy are obtained,

even in the case of high skin e�ect level. The proposed procedure is very

useful for solving skin e�ect in a large number of strip conductor examples

with known, but arbitrary cross sections. Part of the obtained numerical

results for current density distribution and for resistance and inductance per

unit strip conductor length is presented in the paper.

2. Short Theoretical Presentation

An in�nite-length strip conductor of uniform cross section and negli-

gible thickness b ! 0 is observed (Fig. 1). Under the assumption that

only conductive axial current exists in the conductor and that there is not

axial propagation, the function of current density distribution satis�es the

following di�erential equation

d2J

dv2
+ k2h2J = 0; for u = u0; v1 � v � v2; (1)

where: J = J(v) denotes the axial current density component in the strip

conductor, k2 = �j!��, k = (1 � j)=Æ, f is frequency, ! = 2�f is angular

frequency and Æ = 1=
p
���f is the depth of the penetration of strip material

having conductivity � and magnetic permeability �. j =
p
�1 is imaginary

unit.

The equation (1) has been written in a cylindrical coordinate system

u; v; z formed by use of the analytic complex variable function,

w = f(z = x+ jy) = u(x; y) + jv(x; y); (4)

when the Cauchy-Riemann conditions have been satis�ed [5].
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Fig. 1. Cross section of strip conductor.

The strip conductor is put in the coordinate surface u = u0 and extents

from v = v1 to v = v2.

Lam�e's coeÆcients are determined by

h = hu = hv =

���� dzdw
���� ; hz = 1: (3)

After transforming di�erential equation (1) into form

d2J

dv2
+ p2J =

�
p2 � k2h2

�
J; (4)

where p is an arbitrary constant, which can be determined at will, the solu-

tion of current density distribution can be presented as linear combination

of homogeneous and particular integral. So it is possible to formulate the

following integral equation for determining current density distribution in a

strip conductor,

J =C1 cos [p(v � v1)] +
C2

p
sin [p(v � v1)]

+
1

p

Z v

v1

�
(p2 � k2h2)J

����
v=s

sin [p(v � s)]ds;

(5)

where C1 and C2 are constants.

In the case when p = 0, the integral equation becomes considerably

simpler and has the following form

J(v) = C1 + C2(v � v1) + k2
Z v

v1

(h2J)
���
v=s

(s� v)ds; (6)
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where C1 = J(v = v1) and C2 = J
0

(v = v1)

After determining the current density distribution in the conductor, it

is possible to calculate the electric and magnetic �eld components, as well

as the resistance and inductance per unit strip conductor length.

So the electric �eld has in the conductor only axial component,

E =
J

�
: (7)

Transversal components of the magnetic �led in the strip conductor are

Hu =
1

k2h

dJ

dv
and Hv = 0: (8)

The total current in the strip conductor can be determined as

I =b
�
Hu(v = v2)�Hu(v = v1)

�
�b

Z v2

v1

(hJ)
���
u=u0

dv:
(9)

The power per strip conductor unit length can be expressed as

Z
0

II� = b [E(v = v1)H
�

u(v = v1)�E(v = v2)H
�

u(v = v2)] ; (10)

where

Z
0

= R
0

+ j!L
0

(11)

is impedance per unit conductor length.

R
0

and L
0

are resistance and inductance per unit strip conductor length,

respectively.

3. About Integral Equation Solving

Unfortunately, with the exception of several geometrically simple cases,

such as the �nite-width at (Fig. 2) and circular strip conductor (Fig. 3),

an exact solution of the integral equations (5) and (6) can not be obtained

analytically.

Fig. 2. Thin at strip conductor.



D.Veli�ckovi�c and S.Aleksi�c: A numerical procedure for solving skin ... 257

Fig. 3. Thin circular strip conductor.

In the case of at thin strip conductor two following symmetry condi-

tions exist, J(�x) = J(x) and J
0

(x = 0) = 0 and the integral equation (6)

can be written as

J(x) = J(0) + k2
Z x

s=0

J(s)(s� x)ds; (12)

where J(0) denotes the value of current density distribution at strip center

point, x = 0.

The exact solution for current density distribution is

J(x) = J(0) cos(kx) = J(0)

r
ch(2x=Æ) + cos(2x=Æ)

2
e
jarctg( th[x=Æ]tg[x=Æ] ): (13)

The resistance and inductance per unit strip conductor length are

R
0

=
1

2b�Æ

sh(a=Æ) + sin(a=Æ)

ch(a=Æ) � cos(a=Æ)
(14)

and

L
0

=
�Æ

4b

sh(a=Æ) � sin(a=Æ)

ch(a=Æ) � cos(a=Æ)
: (15)

For low frequency, when Æ !1,

R0 = R00 =
1

ab�
and L0 = L00 =

�a

12b
: (16)
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For high frequency, Æ ! 0,

R0 =
Rs

2b
; L0 ! 0; (17)

where Rs =
p
��f=� is surface resistance.

In the case of the shell from Fig. 3, the integral equation (6) has the

form

J(�) = J(0) + k2a2
Z �

0

J(s)(s� �)ds (18)

and the exact solution for current density distribution satisfying symmetry

conditions J(��) = J(�) and J
0

(� = 0) = 0 i S

J(�) = J(0) cos(ka�); (19)

where J(0) is the current density in the conductor center point, � = 0.

The resistance and inductance per unit strip conductor length are

R
0

=
1

2b�Æ

sh(2a�=Æ) + sin(2a�=Æ)

ch(2a�=Æ) � cos(2a�=Æ)
(20)

L
0

=
�Æ

4b

sh(2a�=Æ) � sin(2a�=Æ)

ch(2a�=Æ) � cos(2a�=Æ)
: (21)

For low frequency, when Æ !1,

R
0

= R
0

0 =
1

2�ba�
and L

0

= L0
0 =

�a�

6b
: (22)

For high frequency, Æ ! 0,

R
0

=
Rs

2b
and L

0

! 0; (23)

where Rs =
p
��f=� is surface resistance.

In Fig. 4 the resistance and inductance per unit circular strip length

versus skin e�ect level are presented.
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(a) (b)

Fig. 4. Resistance (a) and inductance (b) per unit
of thin circular strip length versus skin e�ect level.

4. Iterative Solution of Integral Equation

An approximate solution of the integral equation (6) can be obtained

using iterative procedure for low frequency analysis. Then the current den-

sity distribution can be expanded in in�nite decreasing series versus angular

frequency.

By example, for thin strip conductor having parabolic cross section (Fig.

5) the integral equation (6) can be presented as

J(u) = C1 + k2
Z u

s=0

(h2J)
���
u=s

(s� u)ds; C1 = J(0); (24)

where the following conformal mapping is used,

w2 = j2z; (25)

so

x = uv; y =
v2 � u2

2
(26)

and Lam�e's coeÆcients are determined as

h = hu = hv =
p
u2 + v2: (27)

The parabolic strip conductor is positioned in the coordinate surface

v = v0 and extents from u = �u0 to u = u0.
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Fig. 5. Thin strip conductor with parabolic form.

The current density distribution can be expanded in in�nite series

J(u) =

1X
n=0

J2n(u)k
2n; (28)

where

J2n+2(u) =

Z u

s=0

(s2 + v20)(s� u)J2n(s)ds; n = 0; 1; : : : ; J0 = C1: (29)

So it can be obtained:

J2(u) =�
1

2

�
u2v20 +

u4

6

�
J0;

J4(u) =
1

24

�
u4v40 +

7

15
u6v20 +

u8

28

�
J0;

J6(u) =�
1

720

�
u6v60 +

11

14
u8v40 +

211

1260
u10v20 +

5

616
u12

�
J0;

J8(u) =
1

40320

�
u8v80 +

10

9
u10v60 +

1201

2970
u12v40 +

4867

90090
u14v20 +

u16

528

�
J0;

J10(u) =�
1

3628800

�
u10v100 +

95

66
u12v80 +

643

858
u14v60 +

30973

180180
u16v40

+
4031

2450448
u18v20 +

3

6688
u20

�
J0; etc.

(30)
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5. Numerical Solution of Integral Equation

The integral equations (5) and (6) can be solved numerically in the

general case of thin strip conductors of arbitrary form of cross section. Then

very good convergence and accuracy can be obtained using point matching

method with polynomial approximation for current density distribution,

J(v) =

NX
n=0

Jn(v � v1)
n;

J0 =C1 = J(0);

J1 =C2 = J
0

(v = v1);

(31)

where Jn are the unknown complex coeÆcients to be determined.

After the integral equation (6) is satis�ed with the solution (31) and

the obtained expression left and right sides are matched in as many points,

vmi, as the number of unknown complex coeÆcients, the following linear

equations system can be obtained,

J(vmi) = J(v1) + J
0

(v1)(vmi � v1) + k2
Z vmi

v1

(h2J)
���
v=s

(s� vmi)ds: (32)

Although the matching points can be arbitrarily set, including the con-

ductor's ends, it is natural that they should be selected so as to be equidis-

tant from coordinate v or from the arc length corresponding to the conductor

cross section.

After solving linear equations system (32) and determining the unknown

complex coeÆcients, the necessary calculation can be realized on the stan-

dard way.

6. Examples

Example 1

Although the exact solution of current density distribution of thin cir-

cular strip conductor from Fig. 3 is know (20), the numerical point matching

procedure for approximate numerical determining current density distribu-

tion in strip conductor will be �rst presented in this example, in order to

verify numerical procedure and compare approximate and exact values.
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The current density distribution will be approximated as

J(�)

J(0)
= 1 +

NX
n=2

Jn

���� ��
����
n

; (33)

so the existing symmetry conditions, J(�) = J(��) and dJ=d�j�=0 = 0; are

automatically satis�ed.

Substituting approximate solution (33) into integral equation (18) and

matching the obtained expression the following system of linear equations is

obtained

NX
n=2

Jn

"�
�i

�

�n

� j
2

(n+ 2)(n+ 1)

�a�
Æ

�2��i
�

�n+2
#
= j

�
a�

Æ

�2

; (34)

where

�i = �
i

N � 1
; i = 1; 2;K;N � 1; (35)

de�nes the position of matching points.

Table 1 shows the convergence of the numerically obtained results for

the current density distribution, J(�)=J(0), when a�=Æ = 5 and polynomials

of di�erent degrees are used. The exact values calculated by formula (19)

are presented in the last column of the same table.

Table 1. Current density distribution in the thin circular strip
conductor from Fig. 3, for a�=Æ = 5 and di�erent
degrees in polynomial current approximation (33).

RefJ(�)=J(0)g
�=� N = 5 N = 6 N = 7 N = 10 N = 15 exact

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.1 0.8900198 0.9781713 1.0004733 0.9896027 0.9895849 0.9895849

0.2 0.8435860 0.8037250 0.8315809 0.8337743 0.8337300 0.8337300

0.3 0.4921265 0.1323604 0.1630655 0.1664661 0.1664029 0.1664029

0.4 �1:0630936 �1:5985934 �1:5610738 �1:5655722 �1:5656258 �1:5656258
0.5 �4:5906213 �4:9279098 �4:9316852 �4:9128392 �4:9128446 �4:9128446
0.6 �10:068465 �9:8716399 �10:025937 �9:9670703 �9:9669099 �9:9669098
0.7 �16:023745 �15:167731 �15:571721 �15:520151 �15:519732 �15:519732
0.8 �18:872340 �17:264089 �17:895537 �17:850741 �17:849852 �17:849852
0.9 �12:258539 �9:0500821 �9:7244338 �9:4899778 �9:4887874 �9:4887874
1.0 13.605309 21.6685080 21.087448 21.049511 21.0505562 21.050556
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Table 1. Continue.

ImfJ(�)=J(0)g
�=� N = 5 N = 6 N = 7 N = 10 N = 15 exact

0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.0960814 0.3051422 0.2425678 0.2497954 0.2498264 0.2498264

0.2 0.8080736 0.9819332 0.9993544 0.9889401 0.9888977 0.9888977

0.3 2.1944605 2.0343894 2.1383619 2.1239571 2.1239456 2.1239456

0.4 3.6472770 3.2324871 3.3064377 3.2980262 3.2978948 3.2978948

0.5 4.0209455 3.5825958 3.6393421 3.6210348 3.6208789 3.6208788

0.6 1.7611119 1.2374318 1.4341467 1.4140431 1.4137226 1.4137226

0.7 �4:9665183 �6:1544672 �5:8313155 �5:8026803 �5:8028762 �5:8028762
0.8 �18:147344 �20:659747 �20:747225 �20:652859 �20:653077 �20:653077
0.9 �39:789032 �42:831724 �44:104054 �43:992780 �43:991799 �43:991799
1.0 �71:792682 �70:042347 �71:523628 �71:157009 �71:155260 �71:155260

Table 1. Continue.

j J(�)=J(0) j
�=� N = 5 N = 6 N = 7 N = 10 N = 15 exact

0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.1 0.8951909 1.0246614 1.0246614 1.0206426 1.0206329 1.0206329

0.2 1.1681696 1.2689235 1.2689235 1.2935154 1.2934545 1.2934545

0.3 2.2489654 2.0386907 2.0386907 2.1304705 2.1304541 2.1304541

0.4 3.7990522 3.6061717 3.6061717 3.6507524 3.6506567 3.6506567

0.5 6.1026065 6.0925601 6.0925601 6.1031043 6.1030161 6.1030161

0.6 10.2213262 9.9488950 9.9488950 10.0668768 10.0666729 10.0666729

0.7 16.7757774 16.3687975 16.3687975 16.5694357 16.5691119 16.5691119

0.8 26.1818891 26.9234828 26.9234828 27.2981602 27.2977441 27.2977441

0.9 41.6345877 43.7773984 43.7773984 45.0047147 45.0035050 45.0035048

1 73.0704706 73.3174915 73.3174915 74.2051323 74.2037530 74.2037528

Table 1. Continue.

argfJ(�)=J(0)g
�=� N = 5 N = 6 N = 7 N = 10 N = 15 exact

0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 0.1075378 0.3023853 0.2378632 0.2472549 0.2472886 0.2472886

0.2 0.7639005 0.8848685 0.8767756 0.8703224 0.8703274 0.8703274

0.3 1.3501877 1.5058264 1.4946864 1.4925807 1.4926099 1.4926099

0.4 1.8544147 2.0300662 2.0119017 2.0139997 2.0140284 2.0140284

0.5 2.4222506 2.5129741 2.5058476 2.5064277 2.5064488 2.5064488

0.6 2.9684308 3.0168909 2.9995128 3.0006617 3.0006910 3.0006910

0.7 3.4421503 3.5270552 3.4999083 3.4993814 3.4994013 3.4994013

0.8 3.9074093 4.0162916 4.0006535 3.9996382 3.9996681 3.9996681

0.9 4.4135283 4.5041579 4.4953728 4.4999279 4.4999491 4.4999491

1 4.8996763 5.0124134 4.9990977 5.0000045 5.0000247 5.0000247
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The values of approximate and exact ratio jJ(�)=J(0)j, for various skin
e�ect levels, a�=Æ = 5, and 2.5, in thin circular strip conductor from Fig. 3

are presented in the Table 2.

Table 2. Intensity of current density distribution, jJ(�)=J(0)j,
in the thin circular strip conductor from Fig. 3, for di�erent ratio

a�=Æ = 5, 2.5 and 0.5.

a�=Æ = 0:5, N = 8 a�=Æ = 2:5, N = 15 a�=Æ = 5, N = 15

�=� numerical exact numerical exact numerical exact

0.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

0.1 1.0000021 1.0000021 1.0013006 1.0013013 1.0206329 1.0206329

0.2 1.0000333 1.0000333 1.0206329 1.0206329 1.2934545 1.2934545

0.3 1.0001687 1.0001687 1.1007146 1.1007150 2.1304541 2.1304541

0.4 1.0005332 1.0005332 1.2934542 1.2934545 3.6506567 3.6506567

0.5 1.0013013 1.0013013 1.6326567 1.6326582 6.1030161 6.1030161

0.6 1.0026966 1.0026966 2.1304544 2.1304541 10.0666729 10.0666729

0.7 1.0049904 1.0049903 2.7961016 2.7961016 16.5691119 16.5691119

0.8 1.0084993 1.0084993 3.6506480 3.6506567 27.2977441 27.2977441

0.9 1.0135818 1.0135819 4.7330578 4.7330394 45.0035050 45.0035048

1.0 1.0206329 1.0206329 6.1030147 6.1030161 74.2037530 74.2037528

Table 3 shows the ratio R
0

=R
0

0 and L
0

=L
0

0 for di�erent order of power

series and di�erent skin e�ect levels, a�=Æ, in thin circular strip conductor

from Fig. 3. R
0

0 and R
0

0 are static, direct current resistance and inductance

per unit conductor length and R
0

and L
0

are dynamic values at an angular

frequency !.

Table 3. Resistance and inductance per unit conductor length for thin circular
strip conductor from Fig. 3, for di�erent skin e�ect level and for

di�erent degrees in polynomial current approximation.

a�=Æ = 0:5, N = 8 a�=Æ = 2:5, N = 15 a�=Æ = 5:0, N = 15

N R
0

=R
0

0
L

0

=L
0

0
R

0

=R
0

0
L

0

=L
0

0
R

0

=R
0

0
L

0

=L
0

0

3 1.0055429 0.9984305 2.5215024 0.6019019 5.2880075 0.2093928

4 1.0055421 0.9984277 2.4643376 0.6160309 5.1304865 0.2978267

5 1.0055423 0.9984175 2.4736980 0.6111445 4.9484326 0.3110225

6 1.0055424 0.9984167 2.4764487 0.6101848 4.9579549 0.3052080

7 1.0055424 0.9984167 2.4769103 0.6100381 4.9862631 0.3013694

8 1.0055424 0.9984167 2.4769399 0.6100294 4.9973915 0.3001803

9 1.0055424 0.9984167 2.4769371 0.6100302 4.9994541 0.2999849

10 1.0055424 0.9984167 2.4769365 0.6100304 4.9994831 0.2999826

15 1.0055424 0.9984167 2.4769365 0.6100304 4.9993721 0.2999920

exact 1.0055424 0.9984167 2.4769365 0.6100304 4.9993721 0.2999920
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As it is seen in the presented tables, very good convergence and accuracy

of the numerical results are obtained using low degrees of polynomials in the

approximations of current density distribution, even in the case of signi�cant

skin e�ect level.

Example 2

For elliptically shaped thin strip conductor (Fig. 6),

u = u0 =
1

2
ln

a+ b

a� b
; �v0 � v � v0;

where z = x + jy = c chw, w = u + jv, x = c chu cos v, y = c shu sin v,

c =
p
a2 � b2 is the eccentricity and a = c chu0 and b = c shu0 are semi-axes,

Lam�e's coeÆcients are

h = hu = hv = c

r
ch(2u) � cos(2v)

2
; (36)

so the integral equation (6) is

J(v) = J(0) + k2c2
Z v

0

(sh2u0 + sin2 s)J(s)(s� v)ds: (37)

Fig. 6. Thin strip conductor with elliptical cross section.
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The integral equation (37) is approximate numerical solved using the

presented point matching procedure with the following approximation for

current density distribution,

J(v)

J(0)
= 1 +

NX
n=2

Jn

���� vv0
����
n

; (38)

so the existing symmetry conditions, J(v) = J(�v) and jdJ=dvjv=0 = 0, are

automatically satis�ed.

The modulus and argument of the ratio J(v)=J(0) versus v=v0 and x=a,

for c=Æ = 0:5 at N = 8; c=Æ = 1:5 at N = 15 and c=Æ = 3 at N = 25 are

presented in Figs. 7 and 8, where a=c = 2b=c = 2=
p
3 and v0 = �=2:

(a) (b)

Fig. 7. Intensity of current density distribution in elliptically shaped
thin strip conductor versus v=v0 and x=a, for di�erent ratio c=Æ,

when a=c = 2b=c = 2=
p
3 and v0 = �=2:

The ratios R
0

=R
0

0 and L
0

=L
0

0 for di�erent degrees in polynomial approx-

imation of current density distribution and for di�erent skin e�ect level are

presented in Table 4. R
0

0 and L
0

0 are static, direct current resistance and

inductance per unit conductor length and R
0

and L
0

are dynamic values at

an angular frequency !.

Example 3

For V-shaped thin strip conductor (Fig. 9), u = 0;�� � v � �, where
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(a) (b)

Fig. 8. Argument of current density distribution in elliptically shaped
thin strip conductor versus v=v0 and x=a, for di�erent ratio c=Æ,

when a=c = 2b=c = 2=
p
3 and v0 = �=2:

Table 4. Resistance and inductance per unit conductor length for elliptically
shaped thin strip conductor from Fig. 6, for di�erent ratio c=Æ, when

a=c = 2b=c = 2=
p
3 and v0 = �=2:

c = 0:5Æ c = 1:5Æ c = 3Æ

N R
0

=R
0

0
L

0

=L
0

0
R

0

=R
0

0
L

0

=L
0

0
R

0

=R
0

0
L

0

=L
0

0

3 1.0133119 0.9929766 1.7353386 0.7361778 3.5500935 0.2454963

4 1.0130925 0.9990073 1.6879252 0.7733736 3.5558465 0.3715012

5 1.0132055 0.9954273 1.6859951 0.7711668 3.4189485 0.4071383

6 1.0132095 0.9953351 1.6892845 0.7683768 3.3927854 0.4060817

7 1.0132079 0.9953726 1.6904633 0.7675407 3.4084515 0.4003042

8 1.0132079 0.9953732 1.6905789 0.7674676 3.4218464 0.3971080

9 1.0132079 0.9953731 1.6905447 0.7674892 3.4265610 0.3961528

10 1.0132079 0.9953732 1.6905304 0.7674977 3.4271683 0.3960421

20 1.0132079 0.9953732 1.6905293 0.7674983 3.4267514 0.3961145

30 1.0132079 0.9953732 1.6905293 0.7674983 3.4267513 0.3961145

z = x+ jy = C
(ew � 1)p(ew + 1)2�p

ew
; w = u+ jv; (39)

C =
c

2(2� p)

�
2� p

p

�p=2

; 0 � p � 1; (40)

Lam�e's coeÆcients on the strip surface are

h = hu = hv = 2C cos jv + p� 1j
���tgv

2

���p�1 ; (41)
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so the integral equation (6) is

J(v) = J(0) + 4k2C2

Z v

0

(cos s+ p� 1)2
�
tg
s

2

�2p�2
J(s)(s� v)ds; (42)

where J(0) denotes the value of current density at the point B1.

Fig. 9. Thin strip conductor with V-shaped cross section.

The coordinates of characteristic points on V-shaped cross section are

given in Table 5.

Table 5. Position of characteristic points of thin strip with
V-shaped cross section.

point x y u v

B1 x! +0 y = 0 u = 0 v = 0

A1 x = c cos p�
2

x = c sin p�

2
u = 0 v = arctg

p
2p�p2

1�p

B2 x! �0 y = 0 u = 0 v = ��
A2 x = c cos p�

2
x = �c sin p�

2
u = 0 v = �arctg

p
2p�p2

1�p

The integral equation (42) is approximate numerical solved using the

presented point matching procedure with the following approximation for

current density distribution,

J(v)

J(0)
= 1 +

NX
n=2

Jn

��� v
�

���n ; (43)
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so the existing symmetry conditions, J(v) = J(�v) and dJ
dv

��
v=0

= 0; are

automatically satis�ed.

The real part, imaginary part, modulus and argument of the ratio

J(v)=J(0) versus v=� and x=a, for c=Æ = 0:5 at N = 8, c=Æ = 1:5 at N = 15

and c=Æ = 3 at N = 25 are presented in Figs. 10 and 11.

(a) (b)

Fig. 10. Real part (a) and imaginary part (b) of current density distribution
in V-shaped thin strip conductor versus v=� for di�erent ratio c=Æ.

(a) (b)

Fig. 11. Intensity (a) and argument (b) of curent density distribution
in V-shaped thin strip conductor versus v=� for di�erent ratio c=Æ.

The ratios R
0

=R
0

0 and R
0

=R
0

0 for di�erent degrees in polynomial approx-

imation of current density distribution and for di�erent skin e�ect level are

presented in Table 6. R
0

0 and L
0

0 are static, direct current resistance and

inductance per unit conductor's length and R
0

and L
0

are dynamic values

at an angular frequency !.



270 Facta Universitatis ser.: Elec. and Energ. vol. 14, No. 2, August 2001

Table 6. Resistance and inductance per unit conductor length for
V-shaped thin strip conductor from Fig. 9, for di�erent ratio c=Æ.

c=Æ R
0

=R
0

0
L

0

=L
0

0

0.1 1.002 1.000

0.5 3.100 0.877

1.0 5.969 0.448

1.5 8.038 0.312

6. Conclusion

A new integral equation is proposed for the skin e�ect solution in thin

strip conductors of arbitrary, but known cross section. Several approaches

for solving this integral equation are presented: exact analytical, iterative

and approximate numerical point matching procedure with polynomial ap-

proximation for current density distribution in the strip conductors. The

numerous calculations show that the proposed point matching method with

polynomial approximation of current density distribution in strip conductor

gives very exact results which converge very quickly with increasing of de-

grees of polynomials in the approximations of current density distribution,

even in the case when skin e�ect level is signi�cant.

Since the presented integral equation is founded on the conformal map-

ping, it may be concluded that the proposed procedure is applicable in a

large number of examples when strip conductors cross sections are very dif-

ferent and complex.
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