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Abstract: Modern numerical methods can be used for very precise mod-

eling of antenna towers. However, creation of precise models can be very

tedious and the corresponding analysis can be very time consuming. The pa-

per investigates under which conditions the complex antenna towers can be

equivalented by single-wires.
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1. Introduction

VLF, LF and MF ranges extends over a very large range of wavelengths,

from 100 km to 100 m. This means that realizable structures are small

with respect to the wavelength at VLF, while at MF the electrical height of

antennas can be one-half wavelength or little bit more. In order to maximize

the radiation eÆciency these antennas should be made as much physically

large as possible. Typical antenna heights employed for broadcasting in these

frequency ranges are from 50 m to 300 m [1].

The antennas are usually realized as variants of monopole antennas that

can be top-loaded and as simple arrays of such antennas. The monopole an-

tennas, which are relatively fat, can be realized as self-supporting towers.

The monopole antennas, which are relatively thin (e.g. anti-fading anten-

nas), are made in the form of cages or cylindrical masts, which must be
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supported by guy ropes or self-supporting towers. In what follows all such

monopole antennas will be termed as antenna towers. One typical antenna

that contains di�erent types of antenna towers is the cage T-type radiator

suspended between two grounded self-supporting towers, as shown in Fig. 1

[2].

Not only construction of antenna towers is very expensive, but also

construction of scaled models for laboratory purposes. Hence, it is very

important to have analytical and/or numerical tools that enable fast and

accurate evaluation of antenna characteristics. At the beginning (after the

work of Pocklington in 1897 [3]) simple monopole antennas were treated as

single wires and sinusoidal approximation along these wires was assumed.

For example, using the method of induced electromotive force Labus deter-

mined input impedance of simple monopole antenna in 1933 [4]. However,

such approximation is justi�ed only for very thin wires. The in
uence of wire

thickness was �rst taken into account by Siegel and Labus in 1934, which

was derived from theory of lossy transmission lines [5]. The in
uence of

wire thickness was taken more precisely into account by Hallen in 1938, who

iteratively solved the integro-di�erential equation, later called by his name

[6]. R. W. P. King and his associates analyzed many wire antennas using

improved Hallen's method, which culminated in his classical monograph in

1956 [7]. However, the method applied by King was still very limited: a)

basically, it is analytical method that required high knowledge to be applied

to new structures, and b) it can not handle multiple wire structures.

New era in analysis of wire structures has begun with method of mo-

ments [8], which is introduced in numerical electromagnetics by Harrington

in 1968. The MoM enabled numerical solution of integral equations for cur-

rents along various thin-wire structures, including multiple wire junctions

[9], [10]. (\Thin-wire" means that current over wire surface has only ax-

ial component dependent only on axial coordinate. This assumption is also

called \thin-wire approximation".) Based on this theory a variety of com-

mercial software packages appeared (e.g. AWAS in 1991 [11]), which enables

analysis of arbitrary wire structure even to users not familiar with numerical

modeling.

In some cases, \thin wire approximation" does not give accurate or even

acceptable results (e.g. for fat wires, or for close wires, where proximity e�ect

is pronounced, etc.) [12]. These cases wire structures need to be modeled

partly or completely as solid metallic body (by plates). In that case both

components of surface current should be represented as dependent on two

independent surface coordinates. There are also many commercial software
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Fig. 1. The cage T-type radiator suspended between
two grounded self-supporting towers.

packages that can handle solid metallic bodies (e.g. WIPL-D [13]).

Obviously, modern numerical software packages enable very precise

modeling of composite wire and plate structures, including antenna tow-

ers. For example, the antenna shown in Fig. 1 can be modeled in detail,

using 3376 wires. However, such analysis takes a lot of CPU time (e.g. 1

hour per frequency at Pentium 2 on 450 MHz). Experience from the past

shows that very good results can be obtained if a complex tower structure is

equivalented by single wire. In that case the antenna shown in Fig. 1 can be

modeled by only 8 wires. Such analysis is �nished in whole frequency range

in less than 1 sec. Hence, such model is very suitable for an optimization.

The question is how precisely one should model antenna tower to obtain

enough accurate results. To answer to this question let us �rst introduce

techniques for precise modeling of composite metallic structures in Section

2. These techniques will be applied in Section 3 to di�erent antenna towers,

giving us information about optimal modeling. Finally, the optimal modeling

will be applied to some complex examples in Section 4.

2. Precise Modeling of Composite
Wire and Plate Structures

Analysis of composite wire and plate structures is usually based on the

MoM solution of Electric Field Integral Equations (EFIEs) [14,15]. The
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EFIE is obtained starting from the boundary condition that tangential com-

ponent of electric �eld is equal to zero over metallic surfaces and expressing

this �eld in terms of known impressed �eld and �eld due to unknown in-

duced currents. According to the MoM the unknown currents in the EFIE

are expanded into �nite series of known basis functions multiplied with un-

known coeÆcients. The EFIE is multiplied with known test functions and

integrated throughout the domains of the test functions, resulting in a sys-

tem of linear equations. Using standard methods (Gaussian elimination, LU

decomposition) the unknown coeÆcients are easily determined. Very precise

modeling of composite structures can be achieved if basis and test functions

are properly adopted. Very good choice for test functions is when they are

equal to basis functions. This variant of MoM is known as the Galerkin

method. Choice of test functions is performed into two steps: geometri-

cal modeling and approximation of currents. Very 
exible approximation of

currents is achieved by using polynomial basis functions that automatically

satis�es continuity of currents at wire and plate ends and junctions. In what

follows particular attention will be paid to geometrical modeling of wires,

plates, wire-to-plate junctions, plate modeling of wires and wire-grid mod-

eling of plates, which is of the most interest from the view-point of precise

modeling of antenna towers.

Fig. 2. Right truncated cone.

Very 
exible geometrical modeling of wires can be performed by right

truncated cones. A right truncated cone is determined by position vectors
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and radii of its beginning and its end, r1 and a1, and r2 and a2, respectively,

as shown in Fig. 3. The parametric equations of the cone axis and its local

radius can be written in the form

ra(s) =
1� s

2
r1 +

1 + s

2
r2; �1 � s � 1; (1a)

a(s) =
1� s

2
a1 +

1 + s

2
a2; �1 � s � 1; (1b)

where s is local coordinate along a cone generatrix. In order to de�ne para-

metric equation of the cone surface, let us adopt a local cylindrical coordinate

system in such a manner that the z-coordinate axis coincides with the cone

axis. In that case the parametric equation of the cone surface can be written

as

r(�; s) = ra(s) + a(s)i�(�); �1 � s � 1; �� � � � �; (2)

where � is the circumferential angle, measured from the x- axis, and i�(�)

is the radial unit vector, perpendicular to the cone axis.

As special cases, the truncated cone degenerates into a right cylinder

(a1 = a2), an ordinary cone (a2 = 0), a 
at disc (a2 = 0, r1 = r2), and a

frill (r1 = r2). The right truncated cone and its degenerate forms can be

used for modeling of cylindrical wires with 
at (frill-like) or conical changes

of the wire radius, as well as of 
at and conical wire ends and feeds.

Metallic surfaces are modeled by bilinear surfaces. A bilinear surface is,

in general, a nonplanar quadrilateral, which is de�ned uniquely by its four

arbitrarily spaced vertices, as shown in Fig. 3. Hence, it can be used for

eÆcient modeling of both 
at and curved surfaces. The parametric equation

of element can be written in the form

r(p; s) =r11

(1� p)(1� s)

4
+ r12

(1� p)(1 + s)

4

+ r21

(1 + p)(1� s)

4
+ r22

(1 + p)(1 + s)

4
� 1 � p � 1; �1 � s � 1

(3)

where r11, r12, r21, and r22 are the position vectors of its vertices, and p

and s are local coordinates. After elementary transformations this equation

can be written as

r(p; s) =rc + rpp+ rss+ rpsps

� 1 � p � 1; �1 � s � 1
(4)
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where rc = (r11 + r12 + r21 + r22)=4, rp = (�r11 � r12 + r21 + r22)=4,

rs = (�r11+r12�r21+r22)=4 and rps = (r11�r12�r21+r22)=4. Depending

on the values of the vectors rp, rs, and rps, a bilinear surface takes di�erent

degenerate forms: 
at quadrilateral (rp, rs, and rps are coplanar), rhomboid

(rps = 0), rectangle (rps = 0 and rp � rs = 0), etc.

Fig 3. Bilinear surface.

Geometrical modeling of wire-to-plate junctions is performed using spe-

ci�c segmentation technique, as shown in Fig 4. Each plate at the junction

is subdivided into two, three or four plates in such a manner that short

edges of subplates surround the wire end. In addition, it is forced that total

current 
owing out from the junction domain (consisting of the short edges

and the wire end) is zero [16].

If wires are fat, or mutually very close such that proximity e�ect is pro-

nounced, precise modeling requires that wire be represented as plate struc-

ture. For example, cylindrical part of wire can be represented by four (six,

eight) narrow strips, in which case the cross-section the of equivalent wire

is square (hexagon, octagon). In that case the wire end is represented by

one (two, four) plates. It is shown that very good results can be obtained

even with small number of strips, if surface area of the cross-section of the
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Fig 4. Wire-to-plate junctions.

equivalent wire is equal to the surface area of the circular cross-section of

original wire.

In some cases it is convenient to represent plate structure by wire grids

and vice versa, wire grid model by plates [17]. A plate is represented by

wire grid in the following way. First step is to subdivide bilinear surface

into N + 1 strips along s-axis, where N is dividing factor, as illustrated for

N = 4 in Fig. 5(a). (In this case, for convenience, starting and ending

p and s-coordinates are adopted to be 0 and 1.) Subdivision is performed

by a set of N + 2 s-coordinate lines, whose p-coordinates are p0 = 0, pi =

(2i�1)=2N , i = 1; : : : ; N , pN+1 = 1. Note that widths of all inner strips are

approximately equal, while widths of outer strips are approximately twice

smaller. Next step is to replace each strip with the equivalent wire. For an

inner strip the equivalent wire is placed in the middle of the strip, while for

outer strip the equivalent wire is placed along the edge of bilinear surface,

as shown in Fig. 5(b). The radius of the equivalent wire is determined as

r = F �w=2, where w is strip width and F is ful�llment factor. In general

case the strip width changes linearly along the strip. Hence, the equivalent

wire is obtained in the form of a right truncated cone. (Such kind of wires

is supported by software package WIPL-D.) It is obvious that thus obtained

set of wires approximate s-current component of starting plate. In a similar

way we obtain a set of wires that approximate the p-current component of

starting plate, as shown in Fig. 5(c). Finally, we combine these two sets of

wires into a wire grid, as shown in Fig. 5(d).
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The same procedure is applied to all plates in starting solid surface

model. In particular, let us consider junction of two plates, as shown in

Fig. 6(a). In order that wire-grid models of these plates can be correctly

connected, both plates need to be meshed with the same dividing factor N ,

as shown in Fig. 6(b). Besides that, note that after meshing of connected

plates we obtain that N + 1 wires of one wire grid, which are placed along

the junction of the plates, coincide with N + 1 wires of another wire grid.

Obviously, each pair of coinciding wires should be merged into single wire.

To maintain the ful�llment factor the radius of thus obtained wire should be

equal to the sum of radii of original wires, as shown in Fig. 6(c).

(a) (b)

(c) (d)

Fig. 5. Conversion of a bilinear surface into a wire grid.

Thus, very general algorithm for automatic wire-grid modeling is ob-

tained. By numerical experiments it is found that in most cases best match-

ing with solid surface model is achieved if ful�llment factor correspond to the

\same surface area" rule (F = 0:32). Besides that it is found that practically

all cells in wire grid should be enough small, e.g. smaller than 0:1� � 0:1�.

Obviously, it is optimal that all cells be of approximately the same size.
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(a) (b)

(c)

Fig 6. Wire grid modeling of two connected plates.

3. Various Models of Antena Towers

Very precise model of antenna tower takes into account its mechani-

cal construction, as shown in Figs. 7(a), (b), (c) and (d). Basically the

construction consists of rectangular cells. The cell can be empty (model

\empty" shown in Fig. 7(a), or it can contain: diagonal rod (model \diago-

nal" shown in Fig. 7(b), two rods (model \triangle" shown in Fig. 7(c), four

rods (model \diamond" shown in Fig. 7(d), etc. All these models can be

considered as wire-grid models of solid metallic tower (modeled by 9 plates),

as shown in Fig. 7(e). Finally, solid tower can be equivalented by three wires

of (conical wire at feed, long cylindrical wire and 
at disk wire at the top of

the tower), as shown in Fig. 7(f). This model will be termed as simpli�ed

wire model.

Let us compare results for input impedance if tower height is h = 110

m and base width is a = 10 m. Fig. 9 shows result for plate and simpli�ed

model. Very good agreement between results is observed, which means that

equivalence between plate and simpli�ed wire model is valid even for rela-

tively thick towers. Figs. 10(a) and (b) shows results for the \empty" and

the \triangle" model for di�erent radii of wires compared with plate model.

It is seen that by increasing the radii the result obtained by the \empty"

model approaches to the results obtained by plate model. This is explained

by the fact that \ful�llment factor" of the \empty" model approaches to its

optimal value of F = 0:32. Results obtained by \triangle" model shows bet-

ter convergence to the \plate" model then result obtained by the \empty"
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(a) (b) (c) (d) (e) (f)

Fig. 7. Di�erent cage models.

model. This is explained by the fact that for the same radius the ful�llment

factor of \triangle" model is almost doubled when compared with that of

the \empty" model. In addition the cells in the \triangle" model are three

times smaller than cells in the \empty" model.

However, for thin cages the results are not much dependent of the ful-

�llment factor. For example, let us consider tower broadcast MF antenna

supported by four guy ropes, as shown in Fig. 8. The tower height is

h = 110 m and base width is a = 2 m. The ropes are connected to the

tower at height of 79.2 m and grounded at distance 72.6 m from the tower.

Diameter of ropes is 3 m. Fig. 8(a) shows simpli�ed wire model, while Figs.

8b, c, and d shows \empty", \diagonal" and \triangle" models of the tower

respectively. Radius of wires in last three models used for the tower is 5 cm,

which means that ful�llment factor is relatively low. Fig. 11 shows result

for input admittance for all four models. It is concluded that for thin towers

the results are not much dependent on ful�llment factor.

Having in mind above results and some other results not shown here, we

can conclude: the simpli�ed wire model can be used for precise analysis of

thin towers and those thick towers, whose ful�llment factor is relatively large.
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(a) (b)

(c) (d)

Fig. 8. Di�erent models of tower broadcast MF antenna:

(a) simpli�ed wire model, (b) model \empty",

(c) model \diagonal" and (d) model \triangle".

For precise analysis of thick towers, whose ful�llment factor is relatively

small, their mechanical construction should be modeled in detail. Particular

case, when even thin cage tower can not be equivalented by single wire is

the case when an antenna mast is placed inside the cage, so that the cage

has partial screening e�ect with respect to the tower.

4. Numerical Examples

As a �rst example, let us consider the T-antenna shown in Fig. 1. It is

obvious that the T-antenna itself belongs to the class of thin towers, while

supporting towers belong to the class of thick towers. The simpli�ed wire

model is shown in Fig. 12. According to the conclusions at the end of

previous section the simpli�ed wire model is satisfactory for the T-antenna,
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Fig. 9. Input impedance of simpli�ed wire model and plate model
of tower antenna shown in Fig. 7.

(a) (b)

Fig. 10. Input impedance of \empty" model (a) and \triangle" model (b)
compared with that of \plate" model of the tower (all shown in Fig. 7),
for di�erent wire radii.
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Fig. 11. Input admittance of tower broadcast MF antenna
shown in Fig. 8, for di�erent tower models.

but may be not satisfactory for supporting towers. It is shown that by

omitting supporting towers from the simpli�ed model the input impedance

of the antenna is not changed much, i.e. that mutual coupling between

the T-antenna itself and supporting towers is relatively small. Hence, we

conclude that simpli�ed wire model probably suÆces for precise modeling

of such antenna. Fig. 13 shows input admittance of the antenna for precise

model (shown in Fig. 1) and simpli�ed wire model (shown in Fig. 12). Good

agreement between results obtained by these two model is observed.

As a second example let us considered scaled model of anti-fading an-

tenna from ref. [18], the model of which is shown in Fig. 14(a). The antenna

is of dipole type. Each arm is in the form of cylindrical mast, whose length

is 1100 mm and diameter is 12 mm. The cage, whose length is 550 mm

and diameter is 32 mm, is connected to the top of each arm. The gener-

ator is connected between the middle of each arm and the nearest end of

corresponding cage. A capacitor is placed at the beginning of two-wire line.

(On the other side the line extends to two arms of the antenna.) The mast

and the cage are modeled in three ways: full plate model (Fig. 14(b), plate

model of the mast and wire model of the cage (Fig. 14(c)), and full wire

model (Fig. 14(d)). Note, that in this case the cage can not be modeled by
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Fig. 12. Simpli�ed wire model of antenna shown in Fig. 1.

Fig. 13. Input admittance of two equivalent models of T-antenna,
shown in Figs. 1 and 12.

single wire. It is shown that all three models give almost the same results.

Fig. 15 shows gain of the antenna for di�erent length of two-wire line. The

results are in very good agreement with measured results from ref. [18].
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(a) (b) (c) (d)

Fig. 14. (a) Full model of anti-fading antenna. Models of one arm:
(b) plate, (c) wire-to-plate, and (d) wire.

Fig. 15. Gain of anti-fading antenna from Fig. 14,
for di�erent lengths of two-wire line.
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5. Conclusion

Modern numerical methods enable very precise modeling of antenna

towers, taking into account all details of their complex mechanical construc-

tion. From the electrical point of view this complex construction can be

equivalented by single wire in the case of thin towers and those thick towers,

whose ful�llment factor is relatively large. The only exception is thin cage

towers with the antenna mast inside.
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