
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 437-449

Rule-Based Optimization of AND-XOR Expressions

Danil Knysh and Elena Dubrova

Abstract: The problem of finding a minimum AND-XOR expression for a given
Boolean function is known to be very hard. In this paper we investigate whether a
rule-based approach can help minimizing AND-XOR expressions for functions which
are too large to be handled by algorithmic-based approaches. We apply a simple
greedy search based on a set of local transformations to the positive polarity Reed-
Muller expression of Boolean functions. Our experiments on large functions show
surprisingly good results. We achieve 23% reduction in the number of literals on av-
erage. We believe that much better results can be achieved if a more sophisticated
non-greedy search is used. The purpose of this paper is to motivate more research in
this direction.

Keywords: Reed-Muller expression; AND-XOR expression; local transformation;
greedy search.

1 Introduction

Logic optimization approaches can be divided into algorithmic-based (or global
transformation) methods and rule-based (or local transformation) methods [1].

Rule-based methods use a set of rules which are applied when certain patterns
are found. A rule transforms a pattern for a local sub-expression, or a sub-circuit,
into another equivalent one. Since rules need to be described, and hence the type
available of operations/gates must be known, the rule-based approach usually re-
quires that the description of the logic is confined to a limited number of opera-
tion/gate types such as AND, OR, XOR, NOT etc. In addition, the transformations

Manuscript received July 3, 2011. An earlier version of this paper was presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Conference Centre, Tuusula, Finland.

D. Knysh is with Taganrog Institute of Technology, CAD/FACF, 347 928 Taganrog, Russia (e-
mail: wiseman33@ya.ru). E. Dubrova is with Royal Institute of Technology, ES/ICT/KTH, 164 46
Kista, Sweden (e-mail:dubrova@kth.se)

Digital Object Identifier: 10.2298/FUEE1103437K

437

438 Danil Knysh and Elena Dubrova:

have limited optimization capability since they are local in nature. Examples of
rule-based systems include LSS [2] and LORES/EX [3].

Algorithmic methods use global transformations such as decomposition or fac-
torization, and therefore they are much more powerful compared to the rule-based
methods. However, general Boolean methods, including don’t care optimization,
do not scale well for large functions. Algebraic methods are fast and robust, but
they are not complete and thus often give lower quality results. For this reasons,
industrial logic synthesis systems normally use algebraic restructuring methods in
a combination with rule-based methods.

For the case of AND-XOR optimization, many two- and multi-level algorithmic
approaches have been proposed (see Chapter 2 of [4] for an excellent overview).

Most two-level minimization algorithms focus on finding the best polarity for
input variables, e.g. [5, 6, 7]. Very good results have been achieved in multi-level
minimization, especially for arithmetic functions [8].

We presented an approach to boolean function AND-XOR minimization based
on binary trees expression of Reed-Muller form. We applied simple local transfor-
mations to the positive polarity Reed-Muller expression of Boolean functions. We
tested our algorithm on large functions and we got results about 23% minimization.

For some functions, the improvement is over 50%.

We also made experiments to different NLFSR minimization and we achieved
25% reduction of area and power after synthesis in RTLCompiler (Cadence).

The paper is organized as follows. Section 2 describes main notions and defini-
tions used in the sequel. Section 3 presents the main idea of the proposed rule-based
approach. Section 4 describes the algorithm. Section 5 summarizes experimental
results. Section 6 concludes the paper and discusses open problems.

2 Preliminaries

In 1954 Reed [9] and Muller [10] observed that any Boolean function can be ex-
pressed as an expansion using AND and XOR operations. Their work leads to
better implementations of some practical Boolean functions using AND-XOR ar-
rays rather than AND-OR arrays [11].

An n-variable Boolean function has 2n canonicalfixed-polarity Reed-Muller
expressionsof type:

f (x1,x2, . . . ,xn) = c0⊕c1
·
x1 · . . . ·cn

·
xn ⊕c2n−1

·
x1

·
x2 . . .

·
xn,

where
·
xi is eitherxi or a complement ofxi , according to the polarity vector, and

Rule-Based Optimization of AND-XOR Expressions 439

c j ∈ {0,1}, j ∈ {0,1, . . . ,2n−1} are constants.

If all variables appear in the above expression uncomplemented, it is called
positive polarity Reed-Muller expression. The positive polarity Reed-Muller ex-
pression is also known asAlgebraic Normal Form (ANF)in cryptographic commu-
nity, where it is used for representing feedback functions of Linear and Non-Linear
Feedback Shift Registers (FSRs) [12, 13]. By minimizing the number of literals in
a positive polarity Reed-Muller expression, we can reduce the area of the combi-
national logic implementing the feedback functions of an FSR. This is important
for FSR-based stream ciphers such as Achterbahn [14], Grain [15], Dragon [16],
Trivium [17], VEST [18], and [19]. At present, FSR-based stream ciphers are the
most promising candidates for cryptographic primitives for advanced contactless
technologies like RFID because they have the smallest hardware footprint of all ex-
isting cryptographic systems [20]. Since low-cost RFID tags which cannot afford
more than a few hundreds of gates for security functionality [21], minimizing the
area of a stream cipher is very important. See [22] for examples of positive polarity
Reed-Muller expressions used in existing stream ciphers.

3 Intuitive Idea

Our goal is to further reduce the number of literals in a given positive polarity
Reed-Muller expression of a Boolean function. We do it by subsequently applying
three transformation rules:x · y⊕ x · z = x · (y⊕ z). x⊕ 1 = x, x · 1 = x. In our
implementation of the algorithm, we represent the Reed-Muller expression by a
binary tree with internal nodes labelled by AND and XOR operations, and rest
nodes are labelled by variables or constants. For example, the circuit representing
the expressionf (x1,x2,x3) = 1⊕x1x2⊕x3x1x2 is shown in Figure 3.

Fig. 1. Example binary tree representation of RM-expression

The first rule,x · y⊕ x · z = x · (y⊕ z), factors out a literal common for two

440 Danil Knysh and Elena Dubrova:

product-terms.

If eithery or z is a constant 1, then the rule reduces tox ·y⊕x = x · (y⊕1). So,
the transformationx·y⊕x= x·y is done in two steps. Applying the first rule allows
us reduce one gate (see Figure 2a). The second rule switches from fixed-polarity
RM-form to mixed-polarity RM-form (see Figure 2b). And the third rule as the
first one reduces one gate (Figure 2c).

a)

b)

c)
Fig. 2. Rules base: a) the first rule, b) the second rule, c) the third rule.

The search is carried out starting from the root of the binary tree depth-first. We
look for patterns corresponding to the transformation rules and apply them on first-
found basis. For example, if we have an expression 1⊕ x1x2⊕ x2x3, we identify
that the literalx2 is common for the product-termsx1x2 andx2x3 and factor it out as
1⊕x2(x1⊕x3). If we have an expression 1⊕x1⊕x1x2, we identify that the literal
x1 is common for the product-termsx1 andx1x2 and factor it out as 1⊕x1(x2⊕1).
By applying the transformationx2⊕1 = x2 we then further reduce this expression
to 1⊕x1x2.

4 Rule-Based Algorithm

The pseudo-code of the algorithm is shown in Algorithm 1. The input is a positive
polarity Reed-Muller expression of a Boolean function.

The output is an AND-XOR expression of this Boolean function with a smaller
number of literals.

Rule-Based Optimization of AND-XOR Expressions 441

Algorithm 1 Minimizes the number of literals in a given positive polarity Reed-Muller expression.

1: C := C0; /*C0 is the binary tree representing the Reed-Muller canonical form*/
2: cost:= |C|; /* |C| is the number of vertices inC*/
3: while |C| < costdo
4: for every vertexv in C do
5: f lag(v) := true;
6: matchlist(p) := MATCH(v); /*M ATCH(v) returns the best match forv and -1 if there is no

match*/
7: end for
8: for every vertexv in C do
9: if f lag(v) = true then

10: if matchlist(v) 6= −1 then
11: C := APPLY(v,matchlist(v));
12: MARKAFFECTED(C); /*Sets f lag(v) = f alsefor all verticesv affected by the applied

local transformation*/
13: end if
14: end if
15: end for
16: end while
17: ReturnC;

The input Reed-Muller expression is represented by a binary tree with internal
nodes labelled by AND and XOR operations, and leaf nodes labeled by variables.
The tree is traversed depth-first. The procedure MATCH(v) tries to match the sub-
graph rooted at vertexv to any of the patterns for which a local transformation is
defined. We use the following three transformations:

1. x ·y⊕x ·z= x · (y⊕z),
2. x⊕1 = x,

3. x ·1 = x.

The match which reduces the number of literals the most is returned. Only
transformations which reduce the number of literals are considered. In case of
multiple matches with equal cost, the first match is returned. In case of no match,
-1 is returned.

The first rule is main in our rule base, let us consider how to apply it on binary
trees:

1. Start from the root of tree,

2. Look for XOR node recursively,

3. If found then looking for common subgraph recursively (Figure 3a),

4. If found copy subgraph in temp (variable tmp), and replace it by 1 in tree
(Figure 3b),

442 Danil Knysh and Elena Dubrova:

5. Add new AND node and connect it with common subgraph and XOR node
(Figure 3c).

a)
b)

c)

Fig. 3. An example of applying the first rule.

The optimization algorithm iteratively traverses the binary tree marking pos-
sible sub-graph transformations vertices and then, after the marking, replaces as
many of them as possible. The procedure APPLY(v) applies a given transforma-
tion to a vertexv. After the tree has been locally transformed by APPLY, the flags
assigned to vertices affected by the transformation are set tofalse. The procedure

Apply is only called for a vertex product,v, if its flag is true.

The algorithm stops iterating when no further minimization can be made. Full
process of optimization for the function:f (x1,x2,x3) = 1⊕x1x2⊕x3x1x2 is shown
in Figure 4.

5 Experimental Results

To evaluate the proposed approach, we applied it to more then 30 benchmark cir-
cuits with 15 and more inputs (we choosed it because it have a big number of inputs,
it is important for NLFSR). The original benchmarks were inespresso(two-level
AND-OR) format. We transformed them to the positive polarity Reed-Muller ex-
pression using our implementation of the Functional Decision Diagrams (FDD)-
based algorithm [23] in CUDD package [24].

The results are summarized in Table 1. Columns 1, 2 and 3 show the name
of the benchmark, the number of primary inputs and primary outputs, respectively.
Columns 4 and 5 show the number of literals in the original positive polarity Reed-
Muller expression and in the AND-XOR expression computed using the presented
rule-based approach.

Rule-Based Optimization of AND-XOR Expressions 443

Fig. 4. An example of full process of optimization.

Our current implementation supports single output functions only. For
multiple-output functions, we calculate the number of literals separately for each
output. The numbers shown in columns 4 and 5 are the sums of literals for all
outputs, without taking sharing into account.

In the last column, we show the run time of the presented approach (a total sum
of run times for each individual output).

The difference between number of cells in PPRM-expression and the result of
our algorithm for this benchamrk is shown on Figure 5

Fig. 5. Experimental results for some benchmark functions with 15 or more inputs

As we can see, on average, we achieve 23% reduction in the number of literals

444 Danil Knysh and Elena Dubrova:

using 30.6 min for all outputs (which is 1 min per output on average).

Table 1. Experimental results for 30 benchmark functions with 15 or more inputs.

Number of Literals L1−L2
L1

Time,
Name Inputs Outputs L1, Original PPRM L2, Optimized sec
alcom 15 38 590 283 0.52 151
bc0 26 11 102807 61719 0.4 1209
cps 24 109 1254725 842617 0.33 8224
ex4 128 28 492009 438561 0.11 1057
soar 83 94 1851018 1775561 0.04 4381
spla 16 46 1516116 1087487 0.28 4754
pdc 16 40 1306776 1006523 0.23 4681
t1 21 23 4544 3040 0.33 906
ti 47 72 140494 99330 0.29 4084

ts10 22 16 5616 4080 0.27 2114
x9dn 27 7 21775743 21730592 0.002 1084
in4 32 20 3069036 2965936 0.03 2417
in6 33 23 49866 38399 0.23 758
in7 26 10 1269250 1164289 0.08 529
jbp 36 57 84808 53610 0.37 607

mark1 20 31 7315436 6726301 0.08 4091
misg 56 23 823 542 0.34 302
mish 94 43 245 177 0.28 151
misj 35 14 115 76 0.34 2
opa 17 69 55489 34037 0.39 2114
b3 32 20 2753233 2660698 0.03 2267
b4 33 23 49831 38389 0.23 758

chkn 29 7 769518 735422 0.04 917
ibm 48 17 20128 12422 0.38 604
in2 19 10 116031 74972 0.35 1060
in3 35 29 612307 489596 0.2 1371
in5 24 14 32676 23403 0.28 1057
vg2 25 8 6996204 6948513 0.01 482
x6dn 39 5 124964 81280 0.35 755
x7dn 66 15 442103 350452 0.21 2265

average 37.47 30.73 1740416.7 1648276.9 0.23 1838.4

Also we evaluated our Algorithm on random NLFSRs as well as on NLFSRs
of existing stream ciphers (just boolean functions without flip-flops). We compared
numbers of cells and area of scheme of NLFSR. All characteristics are achieved by
RTLCompiler. We tested 40 different NLFSRs.

The results of comapring between RM-exprerssion of NLFSR and expression in
our algoriyhm before syntesis in RTLComlier are showed in Table 2. We also com-
pared area and number of cells in PPRM-expression and our algorithm expression

Rule-Based Optimization of AND-XOR Expressions 445

after synthesis in RTLCompiler. The results showed in Table 3. This experiment
showes ability of our algorithm to improve sinthesis work of RTLComplier about
10%. The results of our algorithm work dependen on number of common literals
in RM-from of Boolean function.

Let us look at one of the most popular NLFSR - grain128 and compare its
expression in RM-form and our algorithm form:

x62 ⊕ x60 ⊕ x52 ⊕ x45 ⊕ x37 ⊕ x33 ⊕ x28 ⊕ x21 ⊕ x14 ⊕ x9 ⊕ x0 ⊕ x63x60 ⊕
x37x33⊕x15x9⊕x60x52x45⊕x33x28x21⊕x63x45x28x9⊕x60x52x37x33⊕x63x60x21x15⊕
x63x60x52x45x37⊕x33x28x21x15x9⊕x52x45x37x33x28x21 - 50 nodes

After perfoming the algorithm we obtained

x62 ⊕ x60 ⊕ x52 ⊕ x45 ⊕ x37 ⊕ x33 ⊕ x28 ⊕ x21 ⊕ x14 ⊕ x9 ⊕ x0 ⊕ x63x60 ⊕
x37x33⊕ x15x9⊕ x60x52x45⊕ x28(x33x21⊕ x63x45x9)⊕ x60(x52x37x33⊕ x63(x21x15⊕
x52x45x37))⊕x33x28x21(x15x9⊕x52x45x37) 43 nodes

So we reduced 7 nodes.

6 Conclusion

This presents a greedy local transformation-based method for optimizing AND-
XOR expressions using literal count as objective. Our experimental results show
that we achieve 23% reduction in the number of literals on average compared to the
positive polarity Reed-Muller expression.

The main drawback of the discussed technique is that the optimization algo-
rithm is greedy.

A greedy algorithm might get stuck quite fast in a local minimum instead of
exploring all possibilities.

Further work remains to explore more sophisticated search approaches.

Another drawback of the presented algorithm is a simplistic optimization ob-
jective.

The use of literals as an objective function often results in poor circuit structures
since the number of literals is only loosely correlated with the delay of the mapped
circuit.

In our future work we will consider more complex objective functions, e.g.
providing the choice of minimizing the number of literals or number of levels.

446 Danil Knysh and Elena Dubrova:

Table 2. Experimental results for NLFSRs.

NLFSR in RM-form NLFSR our Algorithm difference difference
Cells Area Cells Area Number of Area

Cells
1 2 3 4 5 6 7 8
1 VEST-1 31 194 19 110 38,71 43,30
2 VEST-2 33 207 23 138 30,30 33,33
3 VEST-3 30 188 22 128 26,67 31,91
4 VEST-4 30 188 21 125 30 33,51
5 VEST-5 32 207 23 135 28,13 34,78
6 VEST-6 35 219 22 128 37,14 41,55
7 VEST-7 32 200 24 144 25 28
8 VEST-8 26 169 21 119 19,23 29,59
9 VEST-9 27 169 20 113 25,93 33,14
10 VEST-10 33 207 25 147 24,24 28,99
11 VEST-11 31 194 23 135 25,81 30,41
12 VEST-12 30 188 23 135 23,33 28,19
13 VEST-13 35 219 26 150 25,71 31,51
14 VEST-14 32 207 23 132 28,13 36,23
15 VEST-15 32 200 25 147 21,875 26,5
16 VEST-16 34 213 24 144 29,41 32,39
17 VEST-17 32 200 22 132 31,25 34
18 VEST-18 28 182 20 119 28,57 34,62
19 VEST-19 27 169 20 116 25,93 31,36
20 VEST-20 34 213 22 132 35,29 38,03
21 VEST-21 33 207 23 138 30,30 33,33
22 VEST-22 36 225 22 135 38,89 40
23 VEST-23 32 200 22 128 31,25 36
24 VEST-24 35 219 26 153 25,71 30,14
25 VEST-25 32 207 22 132 31,25 36,23
26 VEST-26 32 200 22 132 31,25 34
27 VEST-27 34 213 26 153 23,53 28,17
28 VEST-28 32 200 23 138 28,13 31
29 VEST-29 32 200 23 132 28,13 34
30 VEST-30 28 182 24 135 14,29 25,82
31 VEST-31 25 157 20 122 20 22,29
32 VEST-32 31 194 23 132 25,81 31,96
33 Achterbahn-1 51 326 44 282 13,73 13,50
34 Achterbahn-2 37 250 34 225 8,11 10
35 Achterbahn-3 37 244 34 225 8,11 7,79
36 Achterbahn-4 67 426 56 351 16,42 17,61
37 Achterbahn-5 66 413 53 332 19,70 19,61
38 Achterbahn-6 67 432 54 338 19,40 21,76
39 grain128 18 133 18 113 0 15,04
40 grain80 39 263 38 244 2,56 7,22

average 24,43 28,92

Acknowledgment

The first author would like to thank Swedish Institute for the funding for his 1-year
research visit to the Royal Institute of Technology.

Rule-Based Optimization of AND-XOR Expressions 447

Table 3. Experimental results for NLFSRs after synthesis in RTLCompiler.

NLFSR in RM-form NLFSR our Algorithm difference difference
Cells Area Cells Area Number of Area

Cells
1 2 3 4 5 6 7 8
1 VEST-1 15 60 12 44 20 26,67
2 VEST-2 20 64 14 51 30 20,31
3 VEST-3 11 51 11 43 0 15,69
4 VEST-4 24 101 11 48 54,17 52,48
5 VEST-5 27 113 17 67 37,03 40,71
6 VEST-6 17 62 13 60 23,53 3,23
7 VEST-7 21 75 15 48 28,57 36
8 VEST-8 12 50 13 51 -8,33 -2
9 VEST-9 14 53 10 40 28,57 24,53
10 VEST-10 20 70 14 52 30 25,71
11 VEST-11 21 63 13 49 38,10 22,22
12 VEST-12 18 61 14 46 22,22 24,59
13 VEST-13 27 86 17 65 37,04 24,42
14 VEST-14 20 74 14 50 30 32,43
15 VEST-15 16 55 19 69 -18,75 -25,45
16 VEST-16 21 70 15 56 28,57 20
17 VEST-17 16 66 15 60 6,25 9,09
18 VEST-18 17 62 16 58 5,88 6,45
19 VEST-19 16 56 12 44 25 21,43
20 VEST-20 16 57 17 58 -6,25 -1,75
21 VEST-21 19 81 17 57 10,53 29,63
22 VEST-22 21 69 16 60 23,81 13,04
23 VEST-23 22 93 18 65 18,18 30,12
24 VEST-24 22 73 12 48 45,45 34,25
25 VEST-25 22 77 16 65 27,27 15,58
26 VEST-26 18 62 12 51 33,33 17,74
27 VEST-27 14 48 14 48 0 0
28 VEST-28 15 54 15 57 0 -5,56
29 VEST-29 20 77 15 58 25 24,68
30 VEST-30 21 78 10 44 52,38 43,59
31 VEST-31 15 60 10 44 33,33 26,67
32 VEST-32 13 48 9 45 30,77 6,25
33 Achterbahn-1 22 85 20 69 9,09 18,82
34 Achterbahn-2 27 142 27 135 0 4,93
35 Achterbahn-3 27 99 30 127 -11,11 -28,28
36 Achterbahn-4 51 199 44 185 13,73 7,04
37 Achterbahn-5 19 86 22 93 -15,79 -8,14
38 Achterbahn-6 19 89 20 95 -5,26 -6,74
39 grain128 15 80 15 80 0 0
40 grain80 27 165 30 154 -11,11 6,67

average 17,28 15,18

References

[1] R. K. Brayton, C. McMullen, G. Hatchel, and A. Sangiovanni-Vincentelli,Logic
Minimization Algorithms For VLSI Synthesis. Kluwer Academic Publishers, 1984.

448 Danil Knysh and Elena Dubrova:

[2] J. A. Darringer, W. H. Joyner, C. L. Berman, and L. Trevillyan, “Logic synthesis
through local transformations,”IBM J. Res. Dev., vol. 25, pp. 272–280, July 1981.

[3] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma, and S. Murai, “A
rule based logic reorganization system lores/ex,” inComputer Design: VLSI in Com-
puters and Processors, 1988. ICCD ’88., Proceedings of the 1988 IEEE International
Conference on, Oct. 1988, pp. 262 –266.

[4] T. Sasao and M. Fujita,Representations of discrete functions. Kluwer Academic
Publishers, 1996.

[5] H. Wu, M. Perkowski, X. Zeng, and N. Zhuang, “Generalized partially-mixed-
polarity reed-muller expansion and its fast computation,”Computers, IEEE Trans-
actions on, vol. 45, no. 9, pp. 1084 –1088, Sept. 1996.

[6] R. Drechsler, M. Theobald, and B. Becker, “Fast ofdd-based minimization of fixed
polarity reed-muller expressions,”Computers, IEEE Transactions on, vol. 45, no. 11,
pp. 1294 –1299, Nov. 1996.

[7] G. W. Dueck, D. Maslov, J. T. Butler, and a. S. N. Y. V. P. Shmerko, “A method to
find the best mixed polarity reed-muller expression using transeunt triangle,” in5th
Int. Reed-Muller Workshop (RM’2001), May 2001, pp. 82–92.

[8] J. Saul, “Logic synthesis for arithmetic circuits using the reed-muller representa-
tion,” in Design Automation, 1992. Proceedings., [3rd] European Conference on,
Mar. 1992, pp. 109 –113.

[9] I. S. Reed, “A class of multiple-error-correcting codes and the decoding scheme,”
Transactions of the IRE Professional Group on Information Theory, vol. 4, pp. 38–
49, 1954.

[10] D. E. Muller, “Application of Boolean algebra to switching circuit design and to error
detection,”IRE Transactions on Electronic Computers, vol. 3, pp. 6–12, 1954.

[11] T. Sasao and P. Besslich, “On the complexity of mod-2l sum pla’s,”Computers, IEEE
Transactions on, vol. 39, no. 2, pp. 262 –266, Feb. 1990.

[12] S. Golomb,Shift Register Sequences. Aegean Park Press, 1982.

[13] E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs,”IEEE
Transactions on Information Theory, vol. 55, no. 11, pp. 5263–5271, November
2009.

[14] B. Gammel, R. G̈ottfert, and O. Kniffler, “Achterbahn-128/80: Design and analysis,”
in SASC’2007: Workshop Record of The State of the Art of Stream Ciphers, 2007, pp.
152–165.

[15] M. Hell, T. Johansson, and W. Meier, “Grain - a stream cipher for constrained envi-
ronments.” citeseer.ist.psu.edu/732342.html.

[16] K. Chen, M. Henricken, W. Millan, J. Fuller, L. Simpson, E. Dawson, H. Lee, and
S. Moon, “Dragon: A fast word based stream cipher,” ineSTREM, ECRYPT Stream
Cipher Project, 2005, report 2005/006.

[17] C. D. Canniere and B. Preneel, “TRIVIUM specifications.” cite-
seer.ist.psu.edu/734144.html.

[18] B. Gittins, H. A. Landman, S. O’Neil, and R. Kelson, “A presentation on VEST
hardware performance, chip area measurements, power consumption estimates and
benchmarking in relation to the aes, sha-256 and sha-512,” Cryptology ePrint
Archive, Report 2005/415, 2005, http://eprint.iacr.org/.

[19] B. M. Gammel, R. G̈ottfert, and O. Kniffler, “An NLFSR-based stream cipher,” in
ISCAS, 2006.

Rule-Based Optimization of AND-XOR Expressions 449

[20] M. Robshaw, “The estream project,”New Stream Cipher Designs: The eSTREAM
Finalists, LNCS 4986, pp. 1–6, 2008.

[21] A. Juels, “RFID security and privacy: a research survey,”Selected Areas in Commu-
nications, IEEE Journal on, vol. 24, no. 2, pp. 381–394, Feb. 2006.

[22] E. Dubrova, “F2G transforaation of NLFSRs,” 2011,
http://web.it.kth.se/ dubrova/fib2gal.html.

[23] U. Kebschull and W. Rosenstiel, “Efficient graph-based computation and manipula-
tion of functional decision diagrams,” inDesign Automation, 1993, with the Euro-
pean Event in ASIC Design. Proceedings. [4th] European Conference on, Feb. 1993,
pp. 278 –282.

[24] F. Somenzi,CUDD: CU Decision Diagram Package, Release 2.3.1. University of
Colorado at Boulder, 2001.

