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Using negated control signals in Quantum Computing
Circuits

Claudio Moraga

Abstract: White dots have been used in the schematic representation of reversible
circuits to indicate that a control variable has to be inverted to become active. The
present paper argues that the use of negated control signalsmay also offer advantages
for the realization, by reducing the number of elementary components. In the case of
quantum circuits, this contributes to reduce the quantum cost. It is shown that mixed
polarity Reed Muller expressions, possibly extended with Boolean disjunctions, are
very helpful to design quantum computing circuits including negated control signals.

Keywords: RM expressions; white dots; quantum computing circuits; negated con-
trol signals.

1 Introduction

Reversible computing is particularly attractive, because it contributes to reduce
power dissipation [1, 2] in digital circuits. It has applications in nanotechnology,
low power adiabatic CMOS, and optical computing. Reversible computing is of
particular interest for research in quantum computing, since “quantum gates” must
be reversible [3].

There is substantial work done on the design of reversible circuits (see e.g.
[4–7]). In this paper the method based on Mixed Polarity Reed Muller expres-
sions and hybrid Reed Muller - De Morgan expressions will be specially analyzed,
together with controlled gates using negated control signals. The gates setNOT,
CNOT, Toffoli will be used in the discussed examples. Toffoli gates are sometimes
also called CCNOT gates. “C” stands for “controlled”. Whenever control-signals
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424 C. Moraga:

have the value 1, the corresponding controlled gate takes an action; otherwise it
behaves as the identity. Toffoli-type gates will be introduced, where 0-valued con-
trol signals contribute an activation. The symbols used for these gates areshown in
Fig. 1, where⊕ denotes an inverter whenever it stands alone or an XOR when it is
controlled. (Recall thatx⊕1 = x) The black dots denote the conjunction of control
variables. Should an action take place when one (or more) control signalshave the
value 0, up to now, they should first be complemented. Several authors are using
“white dots” instead, to indicate that a control variable is effective, when ithas the
value 0. (See Fig. 2). It is easy to see that a single white dot is equivalentto an
inverter, meanwhile two white dots in a Toffoli gate corresponds to a NOR gate.
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Fig. 1. Inverter and controlled gates.
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Fig. 2. Negated control signals and equivalent white dot representations.

2 Design based on the Reed Muller transform

The selected set of gates to realize reversible circuits, may be associated tothe
set{AND, XOR, 1} used for digital circuits. Consequently, methods to obtain
AND-XOR expressions (see e.g. [8]), particularly, the well known Reed Muller
transform, will be used here [9].

Example 1 Let f : [0,1]3 → [0,1] be specified by the truth vectorF =
[1,1,0,1,0,0,0,1]T and let the arguments be ordered asx2, x1, x0.

By using the space efficient algorithm introduced in [10], the Reed Muller spec-
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trum of F may be calculated as follows:

S f =RRRMMM3 ·FFF = vec(RRRMMM2 · (vec−1(FFF)) ·RRRMMMT
1 )
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wherevec(XXX) denotes vectoring the matrix X by ordering its columns to build a
vector

S f = vec
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(2)

and since the used Reed Muller basis is

BRM = [1 x2]⊕ [1 x2]⊕ [1 x0]

= [1 x0 x1 x1x0 x2 x2x0 x2x1 x2x1x0]

then

f (x) = BBBRM ·SSS f = 1⊕ x2⊕ x1⊕ x2x1⊕ x1x0 (3)

leading to the “one-to-one” naive realization shown in Fig. 3.

x

x2

1

x0

1 Å Å Å Å f (x)

Fig. 3. “Naive” reversible realization of (3).

However it is simple to show that sincex2⊕ x1⊕ x2x1 = x2∨ x1 andx⊕1 = x,
then Eq. (3) turns into

f (x) = x2∨ x1⊕ x1x2 = x2x1⊕ x1x2 (4)

where the first expression represents a “hybrid Reed Muller DeMorgan” expres-
sion, combining GF(2) and Boolean operations. Equation (4) leads to the realiza-
tions shown in Fig. 4.
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Fig. 4. Reversible realizations of Eq.(4).

Remark:In this simple example, a direct inspection of Eq. (3) allowed to ob-
tain Eq. (4). For more complex cases this complexity reduction would be very
difficult, if at all possible. However, in the context of Reed Muller expressions, Eq.
(4) represents a (possibly optimal)mixed polarity version of Eq. (3). Finding the
optimal mixed polarity for a given Reed Muller expression is inNP, but there are
some good heuristics in the literature (see e.g. [8, 11,12]). Several of these heuris-
tics start from a fixed polarity expression. The better the fixed the polarity initial
expression, the better the expected mixed polarity resulting expression. Finding the
optimal fixed polarity expression is also in NP, but the algorithm disclosed in [13]
to obtain the optimal polarity is possibly the fastest known.

For instance, the optimal fixed polarity expression for Eq. (3) is:

f (x) = x2x1⊕ x1x0⊕ x0 (5)

which obviously suggests reducingx1x0⊕ x0 to x0(x1⊕1) = x1x0.

The key question is however, whether a “NOR controlled Toffoli” gate, asre-
quired to realize Eq. (4) has a simple quantum realization without using addi-
tional inverters for the control signals? And in the most general case, are there
quantum efficient realizations for generalized Toffoli gates of typeT (x,y,z) =
(x,y,z⊕ f (x,y)), where f denotes any Boolean function?

Notice that Eq. (4) suggests the pseudo-equivalenceclaimed in Fig. 5, where
at the right hand side, black inverted triangles are used to represent theOR of
control signals, considering their similarity with the∨ sign used in logic to denote
a disjunction.
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Fig. 5. Hypothetical equivalent realizations.
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3 Generalized Toffoli gates

3.1 The OR-Toffoli gate

It is simple to deduce the unitary matrix representation of an OR(CC)NOT gate,as
shown below. Important is however, whether an efficient quantum realization for it
is possible.

OR(CC)NOT ↔
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Following [3] and taking in account that

x∨ y =
1
2
[x+ y+(x⊕ y)] (6)

where “+” denotes the arithmetic sum, a simple quantum realization with a cost of
5 is possible, as shown in Fig. 6, whereV denotes the “square root of NOT”. The
CNOT gate surrounded by a dotted line does not affectz′; it only recovers the input
value ofy as control variable whenx = 1.
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Fig. 6. Quantum realization and symbolic representation of an OR-Toffoligate.

It is fairly simple to see that ifz is free to be an ancillary qubit, then withz = 0,
OR(x,y) is obtained, meanwhile withz = 1, NOR(x,y) is obtained. By the way,
this NOR-gate would provide an efficient realization of Eq. (4) and supports the
claim illustrated in Fig. 5.

3.2 Toffoli gates with one complemented input

A simple analysis of the structure of the efficient realization of a Toffoli gatedis-
closed in [3] allows obtaining controlling states|01〉 and|10〉 without needing an
additional inverter at the respective input.
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Consider the structure shown in Fig. 7, whereX, Y and Z denote arbitrary
unitary matrices. The gate surrounded by dash-lines satisfies reversibilityby re-
covering the y control signal whenx = 1. Table 1 summarizes the behaviour of the
circuit under different control inputs.
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Fig. 7. Abstract “Barenco-type” structure.

Table 2 shows the resulting extensions on Toffoli gates with a quantum costof
5. It is fair to mention that one of these “new” gates was mentioned in [14], but
however does not seem to have received much attention in the RC/QC community.
Furthermore notice that if in Fig. 7 the gate surrounded by dash-lines is deleted, a
generalization of the Peres gates is obtained. The

Table 1. Generalized Toffoli gates

Behaviour of the generalized gates

|x〉 |y〉 X X X |z′〉

|0〉 |0〉 no no no |z〉

|0〉 |1〉 yes yes no XY|z〉

|1〉 |0〉 yes yes yes YZ|z〉

|1〉 |1〉 yes no yes XZ|z〉

4 Illustrative cases

Black and white dots may be arbitrarily combined to generate control structures
with more than two control signals, taking in account that white dots “react” to 0-
valued control signals without inverting them. In Fig. 8, for instance, the first two
circuits have a direct realization with gates of Table 2.

In the circuit at the right of Fig. 8, some form of cascading gates with two
control signals and an ancillary line may be considered. The expected output is:

z′′ = z′⊕abc = z′⊕ (a∨b) c (7)
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Fig. 8. Mixed control signals.

Table 2. Toffoli gates accepting also negated control signals

By choosing

X = Y = Z andZ = Va

z′ = z⊕AND(NOT(x),y) z’z
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By choosing

Y = Z = V andX = Va

z′ = z⊕AND(x,NOT(y)) [9] z’z
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X = Z = V andY = Va

z′ = z⊕AND(x,y) [3] z’z
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It is simple to see that an AND-NOR-Toffoli decomposition is fairly obvious.
Fig. 9 shows an efficient realization, where by using Peres-based OR gates a total
quantum cost of 13 may be achieved. Notice that for reversibility, the second OR-
(Peres) gate recoversb and generatesa∨ (a⊕ b), which equalsa∨ b. Therefore,
the 1 ancillary qubit is also recovered.
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Fig. 9. Realization ofz′′ = z′⊕abc = z′⊕ (a∨b)c with a quantum cost of 13.

Notice that by adapting the method recently disclosed in [15] or by extending
the analysis shown in Fig. 7 and Table 1 to the scheme shown in section 7 of [3], as
discussed in [16], a realization with also a quantum cost of 13,but without requiring
an ancillary line is obtained, as shown in Fig. 10. In this case, elementary unitary
matricesW andW ∗ are however required, whereW 4 =NOT andW ∗ denotes the
complex conjugate (and inverse) of W.
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Fig. 10. Realization ofz′′ = z′ ⊕ abc = z′ ⊕ (a∨b)c with a quantum cost of 13 and no
ancillary line.

Example 2 Example 2: Letf : {0,1}4 → {0,1} be specified by the truth vector
F = [1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0]T , and let the arguments be ordered asx3, x2, x1,
x0. Its Reed Muller Spectrum is given by

S f = RM4 ·F = vec(RM2 · (vec−1(F) ·RMT
2 ) (8)

S f = vec
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S f = [1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0]T

(9)

Since the used Reed Muller basis is

BRM =[1 x3]⊕ [1 x2]⊕ [1 x1]⊕ [1 x0]

=[1 x0 x1 x1x0 x2 x2x0 x2x1 x2x1x0 x3 x3x0 x3x1

x3x1x0 x3x2 x3x2x0 x3x2x1 x3x2x1x0]

(10)

Then
f (x) =BRM ·S f

=1⊕ x0⊕ x2⊕ x2x1⊕ x2x1x0⊕ x3x0⊕ x3x2⊕ x3x2x0
(11)

This expression corresponds to the zero polarity, meaning that no variable is
used complemented. A usual measure of the complexity of the expression is the
number of its terms. In this case, this complexity is 8.

It is simple to see thatf (x) may also be written as:
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f (x) =1⊕ x0⊕ x2⊕ x2x1⊕ x3x0⊕ x3x2⊕ (x1⊕ x3)x2x0

f (x) =1⊕ x0⊕ x2⊕ x3x0⊕ (x1⊕ x3)(x2x0⊕ x2)
(12)

leading to the realization shown in Fig. 11, with a quantum cost of 20 and one
ancillary line (besides the target line).
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Fig. 11. Realization of the zero-polarity Reed Muller expression forf (x).

Using the algorithm [13] it may be found that the best polarity is obtained
when all four variables are complemented, leading to the following expression,
with complexity 5.

fbest−pol(xxx) = x2⊕ x1x0⊕ x2x1x0⊕ x3⊕ x3x2x0

It is relatively simple to deduce the following mixed polarity expression with
complexity 4 and its equivalent hybrid expression:

fMPRM(xxx) =x2⊕ x3⊕ x2x1x0⊕ x3x2x0

fMPRM(xxx) =x2⊕ x3⊕ (x2x1⊕ x3x2)x0

fhybrid(xxx) =x2⊕ x3⊕ (x2x1⊕ (x3∨ x2))x0

fhybrid(xxx) =x2⊕ x3⊕ (x2x1⊕1⊕ (x3∨ x2))x0

(13)

The hybrid expression has the realization shown in Fig. 12, with a quantum
cost of 17 and one ancillary line besides the target line, taking advantage of some
of the new gates introduced earlier.
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Fig. 12. Realization of the hybrid-MPRM expression.

Notice that if the output at the ancillary line is considered as garbage, then the
last gate could be Peres-based and this would additionally reduce the quantum cost
by 1.
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It is interesting to point out that thesecond best polarity expression (with a
complexity of 6 terms)- was obtained when complementing onlyx0.

f2nd.best(xxx) = x0⊕ x2⊕ x3⊕ x3x0⊕ x1x2x0⊕ x3x2x0 (14)

This second best expression leads however to an MPRM expression withcom-
plexity 5 and a realization, as shown in Fig. 13, with a quantum cost of 18 if CNOT
and Toffoli gates are used. The quantum cost may be reduced to 17 if thelast
CCNOT gate is chosen to be a Peres gate.

fMPRM(xxx) =x0⊕ x2⊕ x3x0⊕ (x1⊕ x3)x2x0

=x2⊕ x3x0⊕ (x1⊕ x3)x2x0
(15)
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Fig. 13. Realization based on the second best polarity.

Finally, by complementingx0 and x3, one of the 3rd . best expressions with
complexity 7 may be obtained, which however leads to an MPRM expressionalso
of complexity 4 (as in the case of the best polarity) and identical to the best hybrid
expression obtained from the second best polarity! (Compare Eqs. (15) and (17))

f3rd.best(xxx) =1⊕ x2⊕ x3⊕ x3x0⊕ x2x1x0⊕ x2x0⊕ x3x2x0 (16)

fMPRM(xxx) =x2⊕ x3x0⊕ x2x1x0⊕ x3x2x0

=x2⊕ x3x0⊕ (x1⊕ x3)x2x0 (17)

Table 3. Summary of the main observations in example 2.

Polarity Number of terms of
the FPRM expre-
sion

Number of terms of
the hybrid/MPRM
expression

Quantum cost

0 8 —- 20

best (5) 4 17/(16)

2nd
.best (6) 4 18/(17)

3nd
.best (7) 4 18/(17)
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5 Conclusions

5.1 Remarks

In the classical FPRM transform, the last spectral coefficient corresponds to the
odd-parity of the truth vector of the function being transformed, since the last row
of the transform matrix is a row of 1s [17]. This means that the RM expression
of a function with odd Hamming weight, will include the term corresponding to
the conjunction of all variables, and this is a term with an expensive quantumre-
alization. The same argument allows the same conclusion in the case of MPRM
expressions. In the context of ESOP realizations the appearance of a term compris-
ing the conjunction of all variables in the case of functions with an odd numberof
minterms has already been addressed in [8]. The inclusion of hybrid ReedMuller
De Morgan expressions may however occasionally alleviate this problem.

For instance, the following function has a Hamming weight of 7:

f (x3,x2,x1,x0) = x3x2⊕ x1x0⊕ x3x2x1x0 = x3x2∨ x1x0 (18)

The GF(2) expression in Eq. (18) requires the realization of the 4-literalscon-
junction, which is quantum-expensive; meanwhile its Boolean equivalent only re-
quires 2-literals conjunctions. The difference in quantum cost (if 2 ancillary lines
besides the target line are allowed) is however only 2.

As illustrated in Example 2, an MPRM expression with lowest complexity,
does not necessarily follow only from an FPRM expression with lowest complexity.
MPRM expressions with minimal complexity do not necessarily have a realization
with the same lowest quantum cost. The number of terms in the RM expression
does not uniquely characterize the realization complexity (quantum cost). The dis-
tribution of complemented literals plays an important role and this is not specified
by the number of terms of an MPRM expression.

5.2 Summary

In the design of reversible circuits, the use of negated control signals does not only
simplify the representation of circuit schemes, but may also reduce the quantum
cost. Furthermore, besides ANDing the control variables, the other basicconnec-
tives NAND, OR and NOR are applicable. These additional connectives also have
a direct “Barenco-type” efficient quantum realization. In the case of some com-
plemented control variables, the De Morgan laws should be observed to select the
most economical realizations. Obtaining a circuit with white dots to operate with
negated control signals is closely related to optimal Reed Muller expressionswith
mixed polarity. Formal methods to obtain minimal hybrid Reed Muller De Morgan
expressions must however be developed.
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The fact that the paper is based on Reed Muller expressions instead of ESOP
expressions should not be understood as an implicit claim that results obtained via
MPRM are better than results that might have been obtained via ESOP. It only
reflects the higher familiarity of the author with RM than with ESOP. In the case
of working with ESOP, also formal methods to obtain minimal hybrid ESOP De
Morgan expressions would have to be developed.
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