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Using negated control signalsin Quantum Computing
Circuits

Claudio Moraga

Abstract: White dots have been used in the schematic representaticverfsible

circuits to indicate that a control variable has to be ireero become active. The
present paper argues that the use of negated control sigaslalso offer advantages
for the realization, by reducing the number of elementamponents. In the case of
gquantum circuits, this contributes to reduce the quantush dbis shown that mixed

polarity Reed Muller expressions, possibly extended wittolBan disjunctions, are
very helpful to design quantum computing circuits inclgdiregated control signals.

Keywords: RM expressions; white dots; quantum computing circuitgjated con-
trol signals.

1 Introduction

Reversible computing is particularly attractive, because it contributes teceed
power dissipation [1, 2] in digital circuits. It has applications in nanoteldgyo

low power adiabatic CMOS, and optical computing. Reversible computing is of
particular interest for research in quantum computing, since “quanttes’gaust

be reversible [3].

There is substantial work done on the design of reversible circuits (gee e
[4-7]). In this paper the method based on Mixed Polarity Reed Muller expre
sions and hybrid Reed Muller - De Morgan expressions will be specialliyaed,
together with controlled gates using negated control signals. The gatbi©3et
CNOT, Toffoli will be used in the discussed examples. Toffoli gates anestimes
also called CCNOT gates. “C” stands for “controlled”. Whenever cdisiignals
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424 C. Moraga:

have the value 1, the corresponding controlled gate takes an actionvisthér
behaves as the identity. Toffoli-type gates will be introduced, wherdigaon-

trol signals contribute an activation. The symbols used for these gatekawe in

Fig. 1, where® denotes an inverter whenever it stands alone or an XOR when it is
controlled. (Recall that® 1 = X) The black dots denote the conjunction of control
variables. Should an action take place when one (or more) control sigmadshe
value 0, up to now, they should first be complemented. Several authotsiag
“white dots” instead, to indicate that a control variable is effective, wheastthe
value 0. (See Fig. 2). Itis easy to see that a single white dot is equivalemt
inverter, meanwhile two white dots in a Toffoli gate corresponds to a NOR gate

a—r—a

a b

a
a—@—a x—Pp—Yy x—— Y

y=x®a y=x®ab

Fig. 1. Inverter and controlled gates.

y=x®a y=x®ab =x®avb

Fig. 2. Negated control signals and equivalent white dot represergation

2 Design based on the Reed Muller transform

The selected set of gates to realize reversible circuits, may be associdted to
set{AND, XOR, 1} used for digital circuits. Consequently, methods to obtain
AND-XOR expressions (see e.g. [8]), particularly, the well known R®iller
transform, will be used here [9].

Examplel Let f : [0,1]° — [0,1] be specified by the truth vectoF =
[1,1,0,1,0,0,0,1]" and let the arguments be ordereckas<, Xo.

By using the space efficient algorithm introduced in [10], the Reed Mylecs
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trum of F may be calculated as follows:

St =RM3-F = vec(RM; - (vec }(F))-RM])
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wherevec(X) denotes vectoring the matrix X by ordering its columns to build a
vector
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and since the used Reed Muller basis is
Brv =[1 %] @[1 X[l X
=[1 Xo X XiXo X2 XoXg XoX1 XoX1Xo)
then
f(X) =Brv - St = 1@ X2 & X1 D XoX1 B X1 X0 3)

leading to the “one-to-one” naive realization shown in Fig. 3.

Xa

X1

X0

I —4 J )

Fig. 3. “Naive” reversible realization of (3).

However it is simple to show that singe® X1 & xoX3 = X2 V X1 andx@ 1 =X,
then Eq. (3) turns into

f(X) =X VX1 © X1 X2 = XoXq D X1 X2 (4)

where the first expression represents a “hybrid Reed Muller DeMbrgeres-
sion, combining GF(2) and Boolean operations. Equation (4) leads todlieare
tions shown in Fig. 4.
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Fig. 4. Reversible realizations of Eq.(4).

Remark:In this simple example, a direct inspection of Eq. (3) allowed to ob-
tain Eq. (4). For more complex cases this complexity reduction would be very
difficult, if at all possible. However, in the context of Reed Muller expiess, Eq.

(4) represents a (possibly optimatyxed polarity version of Eq. (3). Finding the
optimal mixed polarity for a given Reed Muller expression idNiR, but there are
some good heuristics in the literature (see e.g. [8,11,12]). Severatsd tieuris-
tics start from a fixed polarity expression. The better the fixed the polaittglin
expression, the better the expected mixed polarity resulting expressiamdrthe
optimal fixed polarity expression is also in NP, but the algorithm disclosed3j [1
to obtain the optimal polarity is possibly the fastest known.

For instance, the optimal fixed polarity expression for Eq. (3) is:
f(X) = XoX1 © X1X0 © X0 (5)

which obviously suggests reducifgxy @ Xo to Xo(X1 & 1) = X1 Xo.

The key question is however, whether a “NOR controlled Toffoli” gateeas
quired to realize Eq. (4) has a simple quantum realization without using addi-
tional inverters for the control signals? And in the most general casethare
quantum efficient realizations for generalized Toffoli gates of tygg y,z) =
(x,y,z® f(X,y)), wheref denotes any Boolean function?

Notice that Eq. (4) suggests the pseudo-equivaletaeed in Fig. 5, where
at the right hand side, black inverted triangles are used to represe@Rhaf
control signals, considering their similarity with thesign used in logic to denote
a disjunction.

N T T
X1 X1

Xo Xo
0 fx) 1 Sx)

Fig. 5. Hypothetical equivalent realizations.
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3 Generalized Toffoli gates

3.1 TheOR-Toffoli gate

It is simple to deduce the unitary matrix representation of an OR(CC)NOT agmte,
shown below. Important is however, whether an efficient quantum etiglizfor it
is possible.

1 0 0 0 0 0 0 (
01 00O0OTO0OTGUC
0 001 0O0TO0TU
0 01 0O0O0TO0TGUC
OR(CC)NOT « 0000010 d
0 000 1O0O00(Cd
0O 0O0O0O0OOOT O 1
0 00000 1 (
Following [3] and taking in account that
1
XVy=S[X+y+(X@y)] (6)

2

where “+” denotes the arithmetic sum, a simple quantum realization with a cost of
5 is possible, as shown in Fig. 6, whéredenotes the “square root of NOT”. The
CNOT gate surrounded by a dotted line does not affedtonly recovers the input
value ofy as control variable whex= 1.

x i : X x— ¥ — x
1 1
1 1
y I oo N
D

Fig. 6. Quantum realization and symbolic representation of an OR-Tgffitd.

It is fairly simple to see that i is free to be an ancillary qubit, then with= 0,
OR(x,y) is obtained, meanwhile with= 1, NOR(x,y) is obtained. By the way,
this NOR-gate would provide an efficient realization of Eq. (4) and stppbe
claim illustrated in Fig. 5.

3.2 Toffoli gateswith one complemented input

A simple analysis of the structure of the efficient realization of a Toffoli ghte
closed in [3] allows obtaining controlling statél) and|10) without needing an
additional inverter at the respective input.
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Consider the structure shown in Fig. 7, whetgY andZ denote arbitrary
unitary matrices. The gate surrounded by dash-lines satisfies reverdilyility-
covering the y control signal when= 1. Table 1 summarizes the behaviour of the

circuit under different control inputs.

_————

1 1
X : : X
VLo
y T A T '__\i_.: y
z X Y Z z’

Fig. 7. Abstract “Barenco-type” structure.

Table 2 shows the resulting extensions on Toffoli gates with a quantunottost
5. It is fair to mention that one of these “new” gates was mentioned in [14], bu
however does not seem to have received much attention in the RC/QC community
Furthermore notice that if in Fig. 7 the gate surrounded by dash-lines iedgeke
generalization of the Peres gates is obtained. The

Table 1. Generalized Toffoli gates

Behaviour of the generalized gates

X T X | X | X | 12
0) | 00 | no | no | no | [2
0) | 1) | yes | yes | no | XY[2)
1) | [0) | yes | yes | yes | YZ[2)
1) | 1) | yes | no | yes | XZ[2)

4 [|llustrative cases

Black and white dots may be arbitrarily combined to generate control strgcture
with more than two control signals, taking in account that white dots “react*to 0
valued control signals without inverting them. In Fig. 8, for instance, tis¢ tfivo
circuits have a direct realization with gates of Table 2.

In the circuit at the right of Fig. 8, some form of cascading gates with two
control signals and an ancillary line may be considered. The expecteat agitp

Z=Z@abc=7Zd(avh)c (7)
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Fig. 8. Mixed control signals.

Table 2. Toffoli gates accepting also negated control signals
By choosing

X ——o— X
X=Y=ZandZ=V?

Z =26 AND(NOT(x),y) JZ/ D N

<

By choosing
Y=Z=VandX =V2 ¥ ;
7 — 26 AND(X,NOT(y)) [ JZ’ .
By choosing

X —e— X

X=Z=VandY =V2
Z=z®&AND(xy) [3]

O——my 2z’

It is simple to see that an AND-NOR-Toffoli decomposition is fairly obvious.
Fig. 9 shows an efficient realization, where by using Peres-based@R g total
quantum cost of 13 may be achieved. Notice that for reversibility, thense©®R-
(Peres) gate recovebsand generateaV (a® b), which equalsaa Vv b. Therefore,
the 1 ancillary qubit is also recovered.

(Peres) (Peres)
a a
b ; a®b ? b
1 S @ 1
C C
z ’ \) Z”

Fig. 9. Realization of’ = Z ©abc = Z @ (aV b)c with a quantum cost of 13.

Notice that by adapting the method recently disclosed in [15] or by extending
the analysis shown in Fig. 7 and Table 1 to the scheme shown in section 7 a$ [3]
discussed in [16], a realization with also a quantum cost obd3yithout requiring
an ancillary line is obtained, as shown in Fig. 10. In this case, elementary unitary
matricesW andW* are however required, wheW#* =NOT andW* denotes the
complex conjugate (and inverse) of W.



430 C. Moraga:
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Fig. 10. Realization of’ = Z @ abc = Z @ (aV b)c with a quantum cost of 13 and no
ancillary line.

Example2 Example 2: Letf : {0,1}* — {0,1} be specified by the truth vector
F=[101001111111100]b, and let the arguments be orderecasc, X1,
Xo. Its Reed Muller Spectrum is given by

St = RMy-F = vec(RM; - (vec 1(F) -RMJ) (8)
1 0 00 [1 01 1 11 1 1
S —vee[ |t L OO (0110 0101
F= 1010 |1121107]10011
1111 |0110 (0001
10 1 1 [1 1 1 1 110 1 9)
S —veef[ |t 1O jOT O L) 1011
F= 0101|001 1)~ 0100
0101 |0 00 1 0100
St=[1100101101001100

Since the used Reed Muller basis is

Brv =[1 3] ®[1 Xx]®[1 Xt]D[1Xo]
=[1 X X1 XXo X2 XeXo XoX1 XoXiXo X3 XgXo Xsx1  (10)
X3X1X0 X3X2 X3XoXp XaXoX1  X3XoX1Xo)
Then
f(X) =Brm - S¢ (11)
=1 Xo D X2 D XoX1 B X2X1X0 D X3X0 D X3X2 D X3X2X0

This expression corresponds to the zero polarity, meaning that no leaigab
used complemented. A usual measure of the complexity of the expression is the
number of its terms. In this case, this complexity is 8.

It is simple to see that(x) may also be written as:
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f(X) =1 Xo D X2 B XoX1 D X3Xo P X3X2 D (X1 B X3)X2X0
f(X) =165 Xo B X2 XgXo B (X1 B X3) (XoXo B X2)

leading to the realization shown in Fig. 11, with a quantum cost of 20 and one
ancillary line (besides the target line).

12)

I —b—a— f(x )

Fig. 11. Realization of the zero-polarity Reed Muller expressiorf {aj.

Using the algorithm [13] it may be found that the best polarity is obtained
when all four variables are complemented, leading to the following expressio
with complexity 5.

fhest—pol (X) = X2 ® X1Xo B X2X1Xo © X3 © X3X2Xo
It is relatively simple to deduce the following mixed polarity expression with
complexity 4 and its equivalent hybrid expression:
fmMPRM (X) =X2 @ X3 © X2X1X0 B X3X2X0
fmPRM (X) =X2 ® X3 @ (X2X1 @ XaX2)Xo
frybria (X) =Xo X3 B (X2X1 B (X3 V X2) )Xo
fhybrid(x) =Xo B X3 D (X2X1 B 1D (X3 V X2))Xo

The hybrid expression has the realization shown in Fig. 12, with a quantum
cost of 17 and one ancillary line besides the target line, taking advantagpene
of the new gates introduced earlier.

X, ;
x2

(13)

=
—e

S
D
%
fan
N\

1 o A
— o

37 ﬁlybrid (x )

Fig. 12. Realization of the hybrid-MPRM expression.

fan)

Notice that if the output at the ancillary line is considered as garbage, then th
last gate could be Peres-based and this would additionally reduce theeuzost
by 1.
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It is interesting to point out that thgecond best polarity expression (with a
complexity of 6 terms)- was obtained when complementing agly

fand.best (X) = Xo D X2 D X3 B XaXo B X1X2Xo B X3X2Xo (14)

This second best expression leads however to an MPRM expressiooomith
plexity 5 and a realization, as shown in Fig. 13, with a quantum cost of 18@TN
and Toffoli gates are used. The quantum cost may be reduced to 17 ldgthe
CCNOT gate is chosen to be a Peres gate.

fmpPrM (X) =X0 D X2 D X3X0 B (X1 B X3)X2Xo

et A (15)
=X B X3Xo B (X1 B X3)X2X0
x}
X,
X D b—
xO
0 &
1 v fMPRM('x)

Fig. 13. Realization based on the second best polarity.

Finally, by complementingg andxs, one of the &. best expressions with
complexity 7 may be obtained, which however leads to an MPRM exprealson
of complexity 4 (as in the case of the best polarity) and identical to the best hybrid
expression obtained from the second best polarity! (Compare Egsarfii317))

fard.best (X) =1 X2 B X3 B X3Xo D XoX1X0 B X2Xo D X3X2Xo (16)
fmpPRM (X) =X @ XaXo B X2X1Xo B X3XoXo
=X D XaXo D (X1 B X3)X2Xo (17)

Table 3. Summary of the main observations in example 2.

Polarity | Number of terms of] Number of terms of| Quantum cost
the FPRM expre-| the hybrid/ MPRM
sion expression
0 | 8 | — | 20
best | (5) | 4 | 17/(16)
2" best | (6) | 4 | 18/(17)
3" bet | 7) | 4 | 18/(17)
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5 Conclusions

5.1 Remarks

In the classical FPRM transform, the last spectral coefficient cavrefspto the
odd-parity of the truth vector of the function being transformed, since Stedav
of the transform matrix is a row of 1s [17]. This means that the RM expnessio
of a function with odd Hamming weight, will include the term corresponding to
the conjunction of all variables, and this is a term with an expensive quargum
alization. The same argument allows the same conclusion in the case of MPRM
expressions. In the context of ESOP realizations the appearanceof edpris-
ing the conjunction of all variables in the case of functions with an odd nuwiber
minterms has already been addressed in [8]. The inclusion of hybrid Reker
De Morgan expressions may however occasionally alleviate this problem.

For instance, the following function has a Hamming weight of 7:

f(X3,X2,X1,X0) = XaXo & X1X0 D XaXoX1X0 = X3X2 V X1X0 (18)

The GF(2) expression in Eqg. (18) requires the realization of the 4-litecais
junction, which is quantum-expensive; meanwhile its Boolean equivaldéptren
quires 2-literals conjunctions. The difference in quantum cost (if 2 angiliaes
besides the target line are allowed) is however only 2.

As illustrated in Example 2, an MPRM expression with lowest complexity,
does not necessarily follow only from an FPRM expression with lowaspbexity.
MPRM expressions with minimal complexity do not necessarily have a realization
with the same lowest quantum cost. The number of terms in the RM expression
does not uniquely characterize the realization complexity (quantum cde)dis-
tribution of complemented literals plays an important role and this is not specified
by the number of terms of an MPRM expression.

52 Summary

In the design of reversible circuits, the use of negated control signatsruti only
simplify the representation of circuit schemes, but may also reduce theuguan
cost. Furthermore, besides ANDiIng the control variables, the other taisitec-
tives NAND, OR and NOR are applicable. These additional connectiseshave

a direct “Barenco-type” efficient quantum realization. In the caseoofescom-
plemented control variables, the De Morgan laws should be observetbt tee
most economical realizations. Obtaining a circuit with white dots to operate with
negated control signals is closely related to optimal Reed Muller expressitins
mixed polarity. Formal methods to obtain minimal hybrid Reed Muller De Morgan
expressions must however be developed.
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The fact that the paper is based on Reed Muller expressions inste&0d E
expressions should not be understood as an implicit claim that resultsaxbtam
MPRM are better than results that might have been obtained via ESOP. It only
reflects the higher familiarity of the author with RM than with ESOP. In the case
of working with ESOP, also formal methods to obtain minimal hybrid ESOP De
Morgan expressions would have to be developed.
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