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Classes of Bent Functions Identified by Specific Normal
Forms and Generated Using Boolean Differential
Equations

Bernd Steinbach and Christian Posthoff

Abstract: This paper aims at the identification of classes of bent fanstin order
to allow their construction without searching or sieving.

In order to reach this aim, we studied first the relationsleipeen bent functions
and complexity classes defined by ®yecific Normal Formsf all Boolean functions.
As result of this exploration we found classes of bent fuuriwhich are embedded
in different complexity classes defined by thpecific Normal Form

In the second step to reach our global aim, we utilized thedazlasses of bent
functions in order to express bent functions in terms ofvééitie operations of the
Boolean Differential Calculus.

In detail, we studied bent functions of two and four variabl&his exploration
leads finally toBoolean differential equatiorthat will allow the direct calculation of
all bent functions of two and four variables. A given genieeglon allows to calculate
subsets of bent functions for each even number of Booleaablas.

Keywords: Bent function; classification; specific normal form; Boaiddifferential
calculus; Boolean differential equation; XBOOLE.

1 Introduction

Bent functionsf (xy, ..., Xn) are special Boolean functions having valuable proper-
ties for applications in cryptography.
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A summary of the knowledge about bent functions in the context of Boolean
Algebras was published recently by Butler and Sasao [1]. Our papewfotheir
approach, including the fact that only even valuegifare considered. This follows
from the original definition of [2].

Naturally, the representation of a function does not have an influent¢leeon
function itself. It is, however, very common to use for bent functions épeasen-
tation in the form of Exclusive-Sum-Of-Products (ESOPS).

The research over the last 10 years in the field of minimal ESOPs has lead to th
discovery of a new normal form [3] calleBpecific Normal FornSNF) [4]*. The
SNF is a unique ESOP out of all possible ESOPs of a Boolean functiontddbe
property that the number of cubes in the SNF is a very simple possibility to glassif
Boolean functions with regard to their complexity [5] [6], SNFs will be usmdlie
analysis of bent functions in section 3. Using the SNF, the most complex &vole
functions [7], [8] can be detected and generated. We analyze in thes pap
the bent functions are distributed over the classes of SNFs. Especialyant to
check whether the bent functions belong to these most complex Booleaohm

Boolean Differential Calculus [9], [10], [11], allows to study the charmd the
behavior of Boolean functions. Changes of function values can tramsd linear
function into a bent function or vice versa. Hence, we study in this pap&rthe
Boolean Differential Calculus (BDC) can help to classify the bent funstion

The bent functions are a small set of Boolean functions. In concludimgrks
of [1], bent functions are characterized as very rare, theyaaranishingly small
fraction of the total number of functionghen the number of variables increases.
In the same book chapter, it is stated ttiegre is no formal method of constructing
all bent functions These two properties make the bent functions very valuable for
cryptography [12]. We will weaken the second of these statements.

It has been shown in the PhD thesis [13] that the solution of a Booleamnatiffe
tial equation is a set of Boolean functions. In this PhD thesis severabagipes to
solve Boolean differential equations are given. When a Boolean eliffial equa-
tion for the set of bent functions in a selected Boolean space of an ewehen
of variables has been found, a formal method for constructing all bewctibns is
available. Section 4 explores these issues.

2 Basic Concepts

Bent functionsf(x) =f(xy,...,X,) are Boolean functions that have the largest
Hamming distance to any linear functidn(x).

Iprevious publications used "special” or "specialized”.
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Definition 1. The function fx) is alinear function if it can be written as
f(x) =adaixi @aXe @ ... an X 1)
with &g, a1, .. .,a, € B given constants.

Since there ara+ 1 independent constants*2 linear functions can be found.
Furthermore, there are?2Boolean functions altogether. Hencé, 2 2"1 func-
tions do not show the property of lineartty.

Definition 2. The Hamming distance iél,g) between two functions(X) and
9(x), is the number of positions (argument vectors) with different values.

Example. The number of positions where the functiohsndg differ from
each other is equal to the number of values 1 of the functieng and can be
evaluated using Karnaugh maps:

f = X1 X ® X3Xs g=X1X3DX2 X4 feg=(X1DXs) (X2 B X3)

X3 X4 f X3 X4 g X3 X4 g

0 0[O0 010 0 0[0[00d 0 0[O0 010

0 1[0[0[1]0 0 1[0[1[1]0 0 1[0[1][0[0

1 1[1[10[1 1 1[0[1[0[1 1 1/ 1/0[0[0

1 0[0[0[1]0 1 0[0[01]1 1 0[0[0 01
0110 % 0110 % 0110 %
0011xq 0011xq 0011xq

or function tables:

X1 0000 0000 1111 1111
X2 0000 1111 0000 1111
X3 0011 0011 0011 0011
X4 0101 0101 0101 o101
f 0001 0001 0001 1110
g 0000 0101 0011 0110
feg | 0001 0100 0010 1000

As result, we gehd(f,g) = 4.

Definition 3. Thenonlinearity NL(f) of a nonlinear Boolean function(X) is the
minimum of all Hamming distances between this function and all linear functions.

We also can say that this is equal to the minimum number of truth table entries
that must change in order to convéfi) into a linear function.
This definition implies somalgorithmic considerations:

2Some authors make a difference betwagr= 0 andag = 1. Only the functions of the first set
are linear functions, the functions of the second set are caffadfunctions.
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e We must calculate the Hamming distance of the given function to all linear
functions.

e The minimum of the found values is the nonlinearity of the given function.

In order to find the nonlinearity of each nonlinear functiofl,22"1 nonlin-
ear functions must be tested again®t™2linear functions, i.e.(22' — 2™1).2n+1
Hamming distances have to be calculated, basically. This huge amount ofreompa
isons can be restricted to one half, i(é?” —2M1). 2" where only linear functions
f!(x) (1) with ag = 0 are used for comparisons. Due to the complement caused for

ap = 1, the Hamming distances for the remaining linear functifiiis) can be cal-

culated using a simple differenbel( f (x), f! (x)) = 2" —hd(f(x), f! (x)). However,
the reduction by a constant factor of 2 does not change the expormmialexity
to calculate the nonlinearity of each nonlinear function.

The termbent functionwas introduced in 1976 by Rothaus [2]. However, his
considerations have been based on the algebraic struct@alofs fields The
setB = {0,1} together withA as multiplication and® as addition satisfies the
axioms of a Galois fiel@>F(B) as well asB" with the same operations (indicated
by GF(B")). Functions fronGF(B") into GF(B) allow the definition of &ourier-
transformation and for bent functions all Fourier-coefficients had to be equal to
+1. It could be shown that such functions exist onhynifs even. In this case
the set of bent functions is equal to the set of functions with maximal nomiipea
Therefore it is common to define bent functions only wimeis even. However,
the concept of maximal nonlinearity can also be applied whisrodd. This needs
further investigations.

Definition 4. Let f(x) be a Boolean function of n variables, where n is eveix) f
is abent functionif its nonlinearity is as large as possible.

This means that after the calculation of the nonlinearity of each nonlinear fun
tion the maximum of all these values has to be found, and all nonlinear fuaction
with this maximum nonlinearity are the bent functiofaéxy, .. ., Xn).

The simplest bent functions exist for= 2.

Here we have eight linear functions

f(X1,%2) = a0 @ a1 X1 ® azxe,

according to the three constamtsa;,a; € B.

apaa; | 000 001 010 011 100 101 110 111
f ’ 0 X2 X1 X1 D X2 1 1% 1dX1 1EX1PX




Classes of Bent Functions Identified by Specific Normal Forms... 361

There is only one nonlinear terrixp, all nonlinear functions can be built by
adding one linear function to this nonlinear term, and we get

X% ®0, XX @ X, X1Xp @ X1, X1X2 B X1 P X2,
XX B L, XXoPXPl, XXo®X1®Ll, XiXoPX1PXd 1.

For all the nonlinear functions the nonlinearity is equal to 1, thereforefall o
them are bent functions because this is the maximum value.

In order to evaluate the bent functions in the context of $pecific Normal
Form (SNF), we introduce the basic concepts of the SNF, too. An algebraie pro
erty of the exclusive-or operation and the Boolean variabt@an be seen in the
following formulas:

= X1, (2)
X = 1@&x, (3
1 = X®X. (4)

These three formulas show that each element of théxsgt1} can be expressed
by the two other elements. The application of these formulas from the left to the
right doubles the number of cubes and is called expansion. For edablezof a
given ESOP the applicable formula (2), (3), or (4) is executed from tihéol¢he
right in the algorithmExp(f) which was defined in [4].

A second important property of the exclusive-or operation for a Booleac-
tion f and a cub€ is shown by the following formulas:

f = fao0,
0 = CacC,
f = feCacC.

¢ From these formulas follows that two identical cubes can be added tmoved
from any ESOP without changing the represented function. Utilizing tharse f
mulas, all pairs of identical cubes are removed from a given ESOP yf the
algorithmR(f) which was defined in [4], too.

Using the algorithms Exg( and R(f), it is possible to create a specific ESOP
with a number of remarkable properties which are specified and provedfl.in [
Please notice that we have changed the term "specialized”, used in tigjthim
better understandable term "specific” for the definition of the SNF.

Definition 5. Take any ESOP of a Boolean function f. The ESOP resulting from
SNFf) = R(Exp(f))
is called theSpecific Normal Form (SNF)of the function f.
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3 Basic Results

3.1 Distribution of Bent functions into SNF classes

The number of cubes &N f) is a simple measure of the complexity of a Boolean
function f(x). In the first experiment we study the distribution of bent functions
over SN f)-classes.

Tab. 1. Distribution of 8 Bent Functions ov&iNHK f)-Classes for all 16 Boolean
Functions of 2 Variables.

Cubes in the | Number of
SNF | Minimal ESOP| all Functions| Bent Functions
0 ‘ 0 l 1 ‘ 0
4 1 9 4
6 2 6 4

Table 1 shows first that there are bent functions of different complexifiddi-
tionally it can be seen that the SNF - classes consist of bent functiorth¢éogéth
functions that are not bent functions. There are 4 bent functions®@¥asiables
which belong to the class of the most complex Boolean functiois.in

Table 2 shows again that bent function of four variables are distributed o
several SNF - classes. Consequently, the bent functions in the BespaasB*
have again different complexities. Contrary to the Boolean spac® bent func-
tion of four variables belongs to the class of the most complex Boolean fasctio
overB*. An interesting observation of this first experiment is that for all bentfun
tions fy, of four variables, the number of cubes in tBBIF f,) modulo 4 is equal
to 2. A more detailed analysis is necessary to detect further propertiesnof b
functions.

3.2 Identification of classes of Bent functions

Meier and Staffelbach have found in [14] that the weight of bent funstiof n
variables is equal to

14 93-1

Therefore we study the SNF of such functions more in detail. Especially, we
distinguish for bent functions of four variables between the allowed w&igh

22 -2 =6and 2+2' = 10. Table 3 reveals that for each bent function of the
weight 6 exists an associated bent function of the weight 10. Theseqghdient
functions are complements of each other. The complement of a bent funtthom
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Tab. 2. Distribution of 896 Bent Functions into ClassesStfF(f) for all 65536
Boolean Functions of 4 Variables.

Cubes in the | Number of

SNF | Minimal ESOP| all Functions| Bent Functions

0 0 1 0
16 1 81 0
24 2 324 0
28 2 1296 0
30 2 648 48
32 3 648 0
34 3 3888 240
36 3 6624 0
36 4 108 0
38 3 7776 384
40 3 2592 0
40 4 6642 0
42 3 216 0
42 4 14256 192
44 4 12636 0
46 4 3888 0
46 5 1296 16
48 5 1944 0
50 5 648 16
54 6 24 0

weight 6 requires an EXOR-operation with a constant 1 which leads toefddir
tional cubes in the SNF of the bent function of weight 10. It should be mesdio
that in some cases the minimal ESOPs of a bent fundijand their complement
f, contain the same number of cubes.

Within the set of bent functions of each SNF - class and each weight we ide
tified classes of 2= 16 bent functions characterized by the following property. If
f(X1,%2,X3,X4) IS @ bent function then

f(X1 @ C1, X2 B C2, X3P C3,X4 B Ca) ©)

is a bent function too, wherg € {0,1}.

Please notice, in general such a class is not a known affine class wbiehted
by an EXOR of a selected Boolean function and all linear functions of tlodeBn
space.

For a later evaluation we enumerate the classes of bent functions ofddur v
ables having a weight of six. As representative bent functions, wetsken
each class that function which can be expressed by an ESOP of pdisiiads.
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Tab. 3. Distribution of 896 Bent Functions o8N F( f)-Classes foB* distinguished
between the Weights 6 and 10.

Cubes in the Number of Bent Functions
SNF | Minimal ESOP| of Weight 6 | of Weight 10
30 2 48 0
34 3 192 48
38 3 192 192
42 4 0 192
46 5 16 0
50 5 0 16

Additionally we give a minimal ESOP and the Karnaugh-map of the selected rep-
resentative bent functions.

This detailed analysis is summarized in the appendix of this paper and shows
that each bent function of four variables can be expressed by aR B&Dconsists
of conjunctions of two variables. This verifies the general propositicdRathaus
[2] about the degree of Reed-Muller forms of bent functions for thel®n space
B*.

For each bent functioffy, of classCi,i = 1,...,28, exists a complementary bent
function f,,. In the Karnaugh-maps of the representative bent function of the com-
plementary classeSG,i = 1,...,28, the values zero and one are exchanged in
comparison to the 28 class€s The representative bent functidg,; of the com-
plementary classé3G can be built by an EXOR - operation with the constant 1:

Tbri:fbl’i@l izl,...,27,
and
Firop =X1X2 B X1 X3 B X1 X4 B X2 X3 B Xo Xg B X3X4 -

There is no ESOP expression of representative bent funcfigns=1,...,3
for B* having less products than the positive polarity expression given in the ap-
pendix. To complete this analysis, we give the minimal ESOPs of representativ
bent functionsTbrimin,i =4, ...,28 for B* which need fewer cubes than the expres-
sion where the complement is realized by an EXOR operation with the constant
1.

Tt = X1 %2 © X% B X1 X3 borSuin = X1 X2 B X3Xa B X1 Xq
Forgn = X1 X2 © X3 %4 O X2 X3 Tor. =X ®XXe D XX
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Torgm, = X1 X & XX X1 Xz f bromn = X1 X3P X2 X4 B X1 X4
Forion, = XX © X Xa G XoXg Forttye = XX XXe O X%
Toriom, = X1X4 ®XeXs B X1 X2 forig, =X Xa®XX3®X1X3
Tbr14min = X1 X4 D X2 X3 D X2 Xy Tbrlk‘m = X1 X4 D Xo X3 D X3 X4

Tbrlamn = X1 X3 D X1 X4 D X1 X2 D X3Xq
Tbr17mm = X2 X3 D X2 X4 D X1 X2 P X3X4
Torig,, = X1 X2 @ X1 X3 B X3 Xa B X2 X3
Tbrl%in = X1 X2 D X1 X4 D X3 X4 D X2 X4

?brzqmn = X1 X2 D X1 X4 D X1 X3 D X2 X4
Toro1, = XoXa ® Ko Xa © X1 X3 B X3 X
Toraz,, = X1 X ® X1 Xs O X Xa D Rp X3
Tbrzamn = X1 X3 D X1 X4 DB X2 X4 P X3 X4

?br24min = X1 X2 D X1 X3 P X1 X4 B X2 X3
Toras,, = XeXa ®RoXa & X1 X4 B X3 X
Torag,, = X1 X2 B X1 X4 B X2 X3 B Xo X4
Tbr27min =X1X3D X1 Xq B X2 X3 D X3Xg

Tbrzsmin = X1 X2 X4 D X1 X2 X4 D X1 X3 D X2 X3 D X3 X4

This detailed analysis shows that for each bent function of four vasdhkre
exists an ESOP consisting of pairs of variables. All representativefbeations
of four variables include non-negated variables only. From this ptpperd (5)
follows that for each bent function of four variables exists an ESOPaaf of
variables where each variable appears in a single polarity. The numiseichf
pairsk, the weightw of the bent function and the number of variabtes the

Boolean spac®&" determine directly the number of cub}é§b'\'F(n, K, W)‘ of a bent
function in their SNF:

ICENF(n = 4,k,w)| = 2"+ 2" 2kt w .
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4 Boolean Differential Equations of Bent Functions

4.1 Boolean differential calculus

The Boolean Differential Calculus (BDC) is a comprehensive and foWtaeory.
Some introduction into the BDC including selected applications are given im{B] a
[10]. A comprehensive description of the BDC in connection with a largaber

of applications has been published in [11]. Here we repeat a smalldefinitions
which are required to express the bent functions.

Definition 6. Let f(x) = f(x;,x1) be a Boolean function of n variables with =
(X1, Xi-1,X+1,---,%n). Then

af(x)
(9Xi

= f(x =0,x1) ® f(x = 1,X1) (6)

is the (simple) derivative with regard tg.x

The result of a simple derivative operation is a new Boolean fungtiahich
does not depend on the variabdeanymore % has been set to 0 and to 1). The
derivativeis equal to 1 iff the change of the variablechanges the function value
for constant values of the remaining variabkgqsince 0p 1 =19 0 = 1); other-
wise it is equal to 0.

The simple derivative operation of the Boolean Differential Calculus altows
verify whether a given function is linear. From both Definition 1 and Definiio
follows directly that

df(x)

0%

Hence, any linear functiof(x) must satisfy either

of(x)
ax O ()
or 51
X
Ix =1 (8)

for each variable.

Due to (7) the constant functiorfs= 0 andf = 1 are linear functions. All the
other linear functions can be built by extending these constant lineatidaady
variablesx; (which are added bgp).
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Definition 7. Let f(x) = f(xo,X1) be a Boolean function of n variables, where
X0 = (X1,..+,Xk)s X1 = (X1, - - -, %n), ANAX1 = (X1, ---,%Xn). Then

0 f(xo,X1)

%o = f(Xo,Xl) D f(io, Xl) 9)

is the vectorial derivative with regard tq,.

The vectorial derivative results in a Boolean function that dependsiergeon
both the variables ofy (which have been included in the derivative operation) and
the remaining variables ofi. There are certain functiorf§xo, x1) where the result
of a vectorial derivative operation does not depend on some of tlaesdbles.

The vectorial derivative is equal to 1 if the simultaneous change of thables
of Xp changes the function value for fixed values of the remaining variables of
This is caused by the EXOR-operation in (9) that is equal to 1 if differaispf
function values (e.g. '01’ or '10’) occur.

The vectorial derivative operation of the Boolean Differential Calcallsvys
to verify whether a given function is linear, too. From both Definition 1 amdi-D
nition 7 follows that any linear functiom(x) = f(xo,X1) must satisfy either

0 f(Xo,X1)
T 1
%0 0 (10)
or
0 f(Xo,X1)
iz 11
%0 (11)

for each not empty set of variablgg because:

1. variablesq with g = 0 in (1) do not appear in the expression (9),

2. remaining variableg; assigned tx; appear twice in the expression (9) and
can be combined to the constant value 0,

3. remaining variableg assigned txg appear as pairs in both non-negated and
negated form in the expression (9); each of these pair can be combitied to
constant value I @ % = 1),

4. the expression evaluates to the constant value 0 (10) for an everenomb

remaining values 1, and it evaluates to the constant value 1 (11) in case of a
odd number of 1 values.

The simple derivatives in (7) and (8) are special cases of the vedterightives in
(10) and (11).
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Definition 8. Let f(x) = f(xo,X1) be a Boolean function of n variables, and let
Xo = (X1,X2,...,Xm), @andxs = (Xm+1,..-,%n). Then
oMf(xo,x1) 0 ( (i(df(xo,xl)
0%10%2...0%m  OXm' ' O0X' 0Xq
is the m-fold derivative with regard ta.

))--)

In contrast to the vectorial derivative where pairs of function valussd#®
about the result, the results are now determined by"aflRction values of a sub-
spacex; = const Due to the Definitions 6 and 8, the result of thdold derivative
operation with regard teg does not depend on the variablexgf The variables of
the vectorxp can be used in any order. The result of amjold derivative operation
will always be the same, since the respective operations are commutative.

Them-fold derivative of a functiorf (xo, x1) with regard toxg is equal to 1 for
such subspaceg = constthat include an odd number of function values 1.

One of the theorems of the BDC allows to express a 2-fold derivative using
simple and vectorial derivatives only. In the following subsections Tdradt will
be used to simplify Boolean differential equations which express certanadaf
bent functions. The proof of Theorem 1 is straightforward based @definitions
of involved derivatives and the Shannon decomposition.

Theorem 1. Let f(x) = f(xp,x1) be a Boolean function of n variables, and let
Xo = (X1,X2). Then it holds that

0%f (xo,x1) _ 9f(x) o af(x) o df(Xo,X1)
0X1(9X2 N Xm dXz 0X0 '

(12)

4.2 Boolean differential equations

A Boolean Differential Equatio(BDE) is an equation in which Boolean variables,
Boolean functions, and derivatives of Boolean functions are cdeddxy Boolean
operations in expressions on both sides. It is a result of [13] that

1. the solution of a Boolean differential equation is a set of Boolean fumgtio
and

2. each set of Boolean functions can be expressed by a Booleareuiféd
equation.

There is a special type of Boolean differential equations in which Boolagan
ables do not appear explicitly.

The solution of such Boolean differential equation are classes of Boblea-
tions as specified in (5). Because each bent function is a member of slassa
we restrict ourselves here to this special type of Boolean differentisdtems.
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In [13] two approaches for the solution of Boolean differential equatin
classes are given.

The first allows the iterative generation of the function classes. Thandaso
called Separation of Function Classesid creates all solution classes at the same
time. This approach is explained in [9] and [15] too. The calculation stepsye s
a Boolean differential equation are very simple and fast. All Booleanrdiffial
equations for bent functions given in the next subsections were swoitieith frac-
tions of a second.

4.3 Bent functions of two variables

It is the main issue to find a Boolean differential equation for a known set of
Boolean functions.

Sometimes such equations are rather complicated.

For example, the class of bent functions

{X]_/\X2,)_(1/\X2,X1/\)_(2,)_(1/\)_(2} (13)

is the solution of the Boolean differential equation (14):

of(x) af(x) Jf(x) —— df(x) af(x) af(x)
F00- 0%q ‘ 0% 'd(xl,xz)\/f X): 0%Xq ' 0% ‘o"'(xl,xz)
— 0f(x) df(x) df(x) —— df(x) af(x) JIf(x)
F00- 0Xq ‘ O%o '0(x1,xz)\/f X): X1 ' 0%o ‘0(x1,xz)

=1. (14)

There are only Z — 16 functions in the Boolean spaBé. The substitution of
all of them into (14) proves that this equation holds exactly for the functibiize
set (13).

The complemented set of bent functions

{X1 V X2,X1 VX2, X1 V X2,%X1 VX2 } (15)

is the solution of the Boolean differential equation (16):

W'df(x)'é'f(x)_ af(x) v f(x 0f(x) df(x) df(x)

Xm 0X2 d(Xl,Xz) Xm (9X2 (9(X1,X2>
of(x) af(x) af(x) of(x) df(x) af(x)
f(X)- 0X1 . 0% . d(Xl,Xz) Vi X). 0X1 ' 0Xo . d(Xl,Xz) =1 (16)

This Boolean differential equation can be confirmed in the same way.
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A Boolean differential equation that describes both classes of beaotidas
together must combine the left-hand sides of (14) and (16) using an @Rtam.
Obviously, the termgf (x) v f(x)) can be separated in the combined left-hand side
using the distributive law. These terms can be replaced by a constantfihalhd

removed. The remaining expression can be further simplified:

af(x) @af(x) & o f(x)

(9X1 dXz 0(X1,X2) =1 (17)

Using (12) we get from (17) the simple Boolean differential equation:

02 (X1, %2)

0X10%2 =1 (18)

which describes all bent functions of two variables. This Boolean éiffial equa-
tion can be found directly. It is known that the 2-fold derivative is edaal for

all functionsf (x;,%2) which have an odd number of functions values 1. Boall

functions with an odd number of functions values 1 are bent functions.

4.4 Solving a Boolean differential equation using XBOOLE

A BDE like (18) can be solved easily using XBOOLE [16], [17]. The nesd
theory is described in [9]. Using this theory, a simpled®REM PROGRAM (PRP)
for the XBOOLE-Monitor allows to solve the BDE (18) in split second. Hints fo
download and using the XBOOLE-Monitor for free are given in [9], too.

The main steps to solve the BDE (18) are:

1. convert the BDE (18) into the BDE (17),

_ 0f(x) _ 0f(x) df(x)
1= X1 U2 = oXp !’ 0(X1,%2) !

3. solve the associated Boolean equatipm u, © uz = 1 of (17) (executed by
the operatiorsbe),

2. substituteu andus =

4. transform from the space of changemto the space of valuesusingvp =
Ug, V1 = Ug P Uz, Vo = Up P Uy, V3 = Ug P U3z (executed by the operatiosbe,
i sc, and_maxk),

5. restrict local solutions to allowed global one in two iterations by exchahge
columns first(vp, v2) < (v1,v3) and secondvo, Vi) < (V2,V3) (executed by
the operatiortco) and calculation of required intersections (executed by the
operation sc).
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space 32 1 vtin 1 10

avar 1 v0 v2

u0 ul u2 u3 vtin 1 11

vO vl v2 v3. vl v3.

she 11 cco 4 10 11 12

ul#u2#u3=1. isc 4 12 13 == = =
sbe 1 2 vtin 1 20 P 0 0 o
VOZUO, vO v1. 3 10 1 1
v1=uO#ul, vtin 1 21 4:- 0 1 0 0
v2=uO#u2, v2 v3. 5= 0 00 1
v3=uO0#u3. cco 13 20 21 22 6:1 110
isc 123 isc 13 22 23 110
_maxk 3 <u0 ul u2 u3> 4 sts bent?2 600 10

a) b)

Fig. 1. Solving the BDE for bent functions of two variables using the XB@&onitor: a) PRP b)
solution TVL.

In order to solve the BDE (18), the PRP of Figure 1 a) must be executed in
the XBOOLE-Monitor. The solution TVL 23 is shown in Figure 1 b). Each row
represent a solution function defined by

f(X]_,Xz) =VogAX1XoVVI AX1Xo VVo AX1 X0 VV3 A X1 X0 .

Figure 1 b) describes the 8 functions of the function sets (13) and (15).

4.5 Bent functions of four variables

The knowledge of the Boolean differential equations for bent functidrsvari-
ables helps to find the appropriate Boolean differential equations foflrestions

of 4 variables. As seen fdB?, simpler Boolean differential equations exist for
pairs of classes which include functions complementary to the functions of the
other class.

Definition 9. A pair of complementary classeRCG of Boolean functions covers
the given class Gand the class of their complementary functions.CC

As enumerated in the subsection 3.2, there are@§ of 4 four variables. For
eachPCG,i =1,...,28 a Boolean differential equation can be given. In order to
save space, we focus on the minimal and maximal bent functions of 4 variable

Definition 10. A bent function is
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e minimal when its fixed polarity ESOP includes the smallest possible number
of conjunctions consisting of two variables each, or

e maximal when its fixed polarity ESOP includes the largest possible number
of conjunctions consisting of two variables each.

The detailed analysis of bent functions of 4 variables in Subsection 3.8-iden
fied the minimalPCG for i=1, 2 and 3. There is only the single maxinRLCg.

There are six pairs of variablesBf. The 2-fold derivatives of given functions
with regard to these pairs of variables determine whether a given functobest
function.

The Boolean differential equations for pairs of classes of minimal berd-fu
tions inB* are:

for PCG

92f(x) 02f(x) 92f(x) 02f(x) 92f(x) o'?zf(x)_1 (19)
0X10%> 0X10%3 O0X10Xa 0%20%3 0%20Xs 0X30%Xq
for PCG

02f(x) 0%f(x) 02f(x) 092f(x) 9%f(x) 92f(x)

0X10%> 0X10%3 O0X10Xa 0%X20%3 0X20Xs 0X30%Xa
for PCG

02f(x) 9%f(x) 9%f(x) 9*f(x) 9%f(x) 92f(x) _

0X10X> 0%X10%3 O0X10Xa 0X20%X3 O0%20X4 0X30Xa

The Boolean differential equation for the pair of cladB€&55 of maximal bent
functions inB* is:

0%f(x) 02f(x) 92f(x) 9%f(x) 9%f(x) 92f(x)
0X10%2 0X10%3 O0X10Xa 0%X20X3 O0%20X4 0X30Xa

The Boolean differential equations for the other dedicated pairs ofedasfs
bent functions have a similar structure. The correctness of all Boolfaredtial
equations for classes of bent functions has been verified by solvirdjfteeential
equation using the XBOOLE monitor [17] and checking the solution set.

Theorem 2. The solution of the Boolean differential equati@®)

0%f(x) 9%f(x) 9%*f(x) 9*f(x) 9%f(x) 9*f(x) _
0X10%2 0X30X4 =~ 0X10X3 0%20Xa =~ 0X10Xa O0Xo0X3

(20)

is a set four variable functions. This set includes exactly 896 functionsf tiém
are bent functions of four variables. There exist no further bent funcfdour
variables.
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Proof. There are exactly 65536 Boolean functions of the four variakles,, X3,
andxy. All of them can be substituted into the Boolean differential equation (20).
All such functions, which satisfy (20), are elements of the$gt 4. The set
Syde_bf4 includes exactly 896 Boolean functions of four variables. Applying Defi-
nition 4 to all Boolean functions of four variables finds the Sgt_4 of all bent
functions. A comparison shows that these finite sets include exactly the same f

tions so thaGge bfs = Syet-bta- O

It should be mentioned that it is not necessary to check each Boolean fun
tion of four variables whether it is a solution of the Boolean differentialatign
(20). An algorithm that allows to solve a Boolean differential equation isrgin
[9]. The execution of this algorithm creates the set of exactly all Booleactions
which solve the given Boolean differential equation. The execution ofagis-
rithm for the Boolean differential equation (20) creates exactly the sall 806
bent functions of four variables.

4.6 Bent functions of more than four variables

In the following, the relative weight of Boolean function will be used fomso
conditions.

Definition 11. Therelative weightp(f(x)) of Boolean function ¥) of n variables
is the number of 1's in the truth table okj(divided by all2" entries.

Using Definition 4 of a bent function af variables, it is necessary to compare
the given function with 21 linear functions in order to decide whether it is a bent
function or not. Due to (10) and (11), all'2 1 vectorial derivatives of a linear
function with regard to each set of variableds one of the constant functioris=0
or f = 1. Hence, for a maximal distance to each linear funcfigx) = f(xo,Xx1)
the relative weight of all vectorial derivatives of a bent function witljerel to each
set of variable<g must be equal t0.6:

p<af(x)> —05 . 1)

0x0

Using (21) for all 2 — 1 not empty set of variablesy reduces the check for a
bent function from 21 to 2" — 1 comparisons. The condition (21) is known from
Theorem 5.12 in [18].

The Boolean differential equations in the previous section use 2-folebdiges
in order to identify the bent property. Each variable appears in a 2-faldative
of the Boolean differential equation of a certain class of bent functiohis. raises
the question about the relationship between a 2-fold derivative and tiditiom
(21).
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Theorem 3. For each Boolean function of 2 variable$xf, x) the Boolean differ-
ential equation(18) is necessary and sufficient to satisfy the condi{@i).

Proof. Atall, there are ¥ = 16 Boolean functions in the Boolean sp&% All of
them are enumerated in Table 4 together with the relative weights of-all2= 3
vectorial derivatives and the calculated result of the 2-fold derieatiith regard

to both variablesx; andx,. This complete evaluation shows both in all case of
relative weights of (b for all vectorial derivatives the 2-fold derivative is equal to
the constant value 1 and in all cases with a constant value 1 for the 2eol@tive
the relative weights of all vectorial derivatives are equal. . Hence, we have a
complete proof of Theorem 3. O

Tab. 4. Evaluation of all Boolean Functiofi§, x) of 2 Variables

dfx dfx dfx 92fx

fx) | p (g—xf) P (ﬂ—xz)) P (a(xl,)zz)) axlmzz
0 ] 0 0 0 ] 0
X1 A X2 0.5 0.5 0.5 1
X1 A X2 0.5 0.5 0.5 1
X1 AXo 0.5 0.5 0.5 1
X1 A Xo 0.5 0.5 0.5 1
X1 1 0 1 0
X1 1 0 1 0
Xo 0 1 1 0
Xo 0 1 1 0
X1 D X2 1 1 0 0
X1 D Xo 1 1 0 0
X1V X2 0.5 0.5 0.5 1
X1V Xo 0.5 0.5 0.5 1
X1V Xo 0.5 0.5 0.5 1
X1V Xo 0.5 0.5 0.5 1
1 ] 0 0 0 ] 0

Theorem 4. For Boolean functions of more than two variable = f (X1, X2, X1)

the Boolean differential equation
aZf (Xla XZ,X]_)
1 22
0X10%2 (22)

is sufficient but not necessary to satisfy the condif@h). In f(x) each pair of
variables can be assigned to the used variableand ».
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Proof. For bent functions of more than two variables the sgincludesk > 2
variables. The result of the 2-fold derivative (22) can be split ifftsubfunctions
for the Boolean subspaces defineddyy= c.

The equation (22) is equivalent t§ quations (18) created for th& Boolean
subspaces defined by = c. Due to Theorem 3, it follows form (22) that

of
o ( ax)?> 0.5,
P (%f)(x)) 0.5, and

P (%) =05
for each subspace and consequently for the whole Boolean spacaudgeeach
pair of variables can be assigned to the specified varia@laadx, and vectorial
derivatives with regard to a larger number of variables can be compysexttorial
derivatives with regard fitting subsets of variables, it is shown thati€)fficient
for the condition (21).

In order to show that (22) is not necessary to satisfy the condition {24),
assume that (22) holds iff 2 4 subspaces. To the remaining 4 subspaces we assign
each of the function$; (X1, x2) =0, f2(X1,X2) = X1, f3(X1,X2) = X2, andfa(xq,X2) =
X1 ® X exactly once. The 2-fold derivatives with regarddcandx, are equal to O
for these four subspaces. Hence, the equation (22) does not hokdevidr, from

Table 4 follows that all three relative welgms(afx ) P (‘”X)) andp( fXZXX2)>
are equal to 1 in two of these subspaces and are equal to 0 in the othdrthese
subspaces. Hence, all three relative weights in the four subspacequal to 0.5.
Together with the relative weights of 0.5 in the remaining subspaces caatsed v
1 of the 2-fold derivative, all three relative weights are equal to 0.%s &kample
proves that the Boolean differential equation (22) is not necessamgtisfysthe

condition (21); in this way we have a complete proof of Theorem 4. O

As example for Theorem 4 we can take the representative bent fundtion o
2
class 1:fpr1 = X1 X2 P X3Xe. As shown in (19) we have for this functi Lg;g =1,

i) _n 92H(X) A 0% _ n 93X _ 92 (x)
0X10%3 ~ ! 0X10%4 0’ 0X20%3 O, 0%X20x%4 0 anddxﬁx‘; 1. .
Based on Theorem 4, we can construct recursively a Booleanadtiffal equa-

tion that describes a subset of all bent functions for any Boolearesyfean even
numbem of variables.
We enumerate the variables byx = (xq,...,Xn).

1. If n= 2, the Boolean differential equation is (18).

2. If n> 2, createn — 1 segmentations of into two subsetx = (Xo,X1). Xo
includes the first variable of and for each segmentation one of the remain-
ing variables ok. x; includes the variables not selected %gr Build 2-fold
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derivatives with regard to the variablesxgf and connect each of them re-
cursively by the left-hand side of a Boolean differential equation ctefate
the associated set of variables Use the conjunction between the 2-fold
derivatives and the recursively build sub-expression and cotimest terms

by EXOR to the left-hand side of the Boolean differential equation which is
equal to 1.

The Boolean differential equation for all bent function of 4 variabld3) (2
an example of the application of this recursive construction. Due to Thre@re
the Boolean differential equation (20) is a necessary and sufficiexlitoan for all
bent function of 4 variables.

A corollary of Theorem 4 is the fact that Boolean differential equatidn-o
fold derivatives allow to describe subsets of bent functions for angivenber of
variables. This shows, similarly to the distribution of the bent functions toreifiie
function classes which are characterized by tB&f, that the bent functions of a
fixed number of variables can be classified furthermore.

A sufficient Boolean differential equation (23) for bent functions eg@ables
consists of 15 conjunctions of three 2-fold derivatives each. Thesestare con-
nected by EXOR-operations and put into a Boolean differential equatichvis
equal to 1. All six variables appear in the 2-fold derivatives of eaah.ter

0%f(x) <dzf(x) 0%f(x) 9%f(x) 9%f(x) d*f(x) 02f(x)) o
0X10X%2 \ OX30X4 OX50Xe OX30Xs 0X40Xg O0X30Xg 0X40Xs
9%f(x) <0zf(x) 0%f(x) 9%f(x) 9%f(x) 9*f(x) ﬁzf(x)> o
0X10X3 \ O%0Xs OXs0Xs O0X%0Xs 0X40Xg 0X20Xg 0X40Xs
9%f(x) ((92f(x) 9%f(x) o 9%f(x) 9%f(x) o 9%f(x) 62f(x)> o
0X10Xs \ O0%0X3 O0Xs0Xe O0X%0Xs 0X30Xg 0X20Xs 0X30Xs
0%f(x) (dzf(x) 0%f(x) 9%f(x) 9%f(x) *f(x) dzf(x)> o
0X10X5 \ OX%0X3 O0Xa0Xe O%20X4 0X30Xg OX20Xg 0X30X%a
9%f(x) <02f(x) 0%f(x) 9%f(x) 9%f(x) d*f(x) (?Zf(x)) _
0X10Xs \ OX%0X3 0Xa0Xs OX%X0X4 0X30X5 0X20X5 0X30X%4 '

(23)

It will be a future task to find Boolean differential equations for eachl8aio
space of an even number of variables which describe all bent fundéti@aseces-
sary and sufficient manner.
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5 Conclusion

We explored in this paper bent functions in the context of the specific hdonma
(SNF) and the Boolean differential calculus (BDC). In detail we classtfie bent
functions of two and four variables.

We found that for these Boolean spaces each bent function canreseaped
by a fixed polarity ESOP with conjunctions of two variables and of an optional
complement (additionally a constant 1). For cases where the bent furgten
class can be expressed by an ESOP with fewer conjunctions we listedrtimésil
ESOPs for the representative ESOP of such classes. Commonly, thernofmbe
cubes in the SNF and the weight of a bent function indicate the number e$ cub
its fixed-polarity ESOP.

The BDC is a convenient theory to describe both linear functions andunssit
tions. Boolean differential equations (BDE) allow both the specificationasfses
or pairs of complemented classes and the set of all bent functions. StieiRPE
of a certain set of bent functions generates directly this function setwtig®earch-
ing over the huge set of alP2Boolean functions of variables. The simpleness
of the algorithm to solve a BDE for a bent function was shown by a PRP &or th
XBOOLE-Monitor. Necessary and sufficient BDEs are given fortlfenctions of
B? andB*. A given algorithm allows to create recursively BDEs which describe
certain subsets of bent functions for each Boolean space of an exdyen of vari-
ables.
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6 Appendix: Representative Bent Functions of 4 Variables

Representative bent function of class 1Cubes in SNF = 30

X3 X4 f The positive polarity ESOP is the minimal ESOP:
0 0[0 010
0 1[0/0[1[0 for1 = X1 X2 B X3 X4
11(1/10|1
1 0[0[0/1]0
0110x
0011 X1



Classes of Bent Functions Identified by Specific Normal Forms... 379

Representative bent function of class 2Cubes in SNF =30

X3 X4 f The positive polarity ESOP is the minimal ESOP:
000 00d
0 1/0[1[1]0 fhro = X1 X3 D X2 Xg
110/1]0(1
10[0[01]1
0110x%
0011 X1
Representative bent function of class 3Cubes in SNF = 30
X3 X4 f The positive polarity ESOP is the minimal ESOP:
000 00d
0 1[0[0[1[1 fors = X1 Xa D X2 X3
110/1]0{1
10[0[1/1]0
0110x
0011x
Representative bent function of class 4Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
0 0[O0 01]0
01(0/0/1]0 fora = X1 X2 @ X3 X4 O X1 X3
11/1/110
10[0[001
0110x
0011 X1
Representative bent function of class 5Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[001]0
0 1[0[0[01 fbrs = X1 X2 D X3 X4 D X1 X4
111110
1 0[0[0[1]0
0110x
0011 X1
Representative bent function of class 6Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[001]0
0 1[0[0[1]0 fore = X1 X2 B X3 Xa D X2 X3
1110/1]1
1 0[0[1]0[0
0110X%
0011xq
Representative bent function of class 7Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
0 0[001]0
0 1[0[1]0[0 fbr7 = X1 X2 D X3 X4 B X2 Xa
11/1/0/1]1
1 0(0[0[1]0
0110x
0011 X1
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Representative bent function of class 8Cubes in SNF = 34

X3 X4 f The positive polarity ESOP is the minimal ESOP:
0 0[001]0
0 1[0/1[0[0 fhrs = X1 X3 © X2 X4 D X1 X2
110/1(1]1
100001
0110x
0011 X1
Representative bent function of class 9Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[000d
0 1[0[1]0[1 foro = X1 X3 D X2 X4 B X1 X4
11[0/1]1(0
10[(0[01/1
0110x
0011x
Representative bent function of class 10Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[000d
0 1[0[1[1[0 fori0 = X1 X3 D X2 X4 © X2 X3
110/0[1]1
10[0[1]0[1
0110Xx
0011 X1
Representative bent function of class 11Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[000(d
0 1[0[1[1]0 for11 = X1 X3 B X2 Xa X3 X4
11/10/1]0
10[0[0]1]1
0110x
0011 X1
Representative bent function of class 12Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
0 0[001]0
0 1[0[0[01 foriz = X1 X4 B X2 X3 © X1 X2
11/0[1]1]1
1 0[0[1]0[0
0110x
0011xq
Representative bent function of class 13Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[000d
01/0/0/1/1 fbriz = X1 X4 D X2 X3 D X1 X3
110/1]1(0
10(0[1/0]1
0110x
0011 X1
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Representative bent function of class 14Cubes in SNF = 34

X3 X4 f The positive polarity ESOP is the minimal ESOP:
00[000d
0 1[0[1[0[1 fbria = X1 X © X2 X3 D X2 X4
110/0[1]1
10[0[1[1]0
0110X%
0011 X1
Representative bent function of class 15Cubes in SNF = 34
X3 X4 f The positive polarity ESOP is the minimal ESOP:
000 00d
0 1[0[0[1[1 fbris = X1 X4 © X2 X3 B X3 X4
11/1/0{1]0
10[0[1/1]0
0110x
0011x
Representative bent function of class 16Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
oo 0L0 Fior16 = X1 X & X X4 & X1 X3 & X1 X4
11/1/10(1 - .
10[0[0[ 01 Minimal ESOP in terms of products:
D190 ot = X1 ® X1 XaXs B X1 Xas
Representative bent function of class 17€Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
000010 Fior17 = X1 X & X Xa B X X3 B X X4
11110[1 n _
1 0[0/1]0]0 Minimal ESOP in terms of products:
8 0 % (1) ii For1 7, = X1 X2 B X2 X3 Xa D X2 X3 X4
Representative bent function of class 18Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
000010 fior18 = X1 X2 ® X3 Xq X1 X3 B X
0 1/olol1l0 brl8 1X2 D X3 X4 1X3 2 X3
11/10/0[0 . .
1 0[0/1]1]1 Minimal ESOP in terms of products:
8 ]d i‘ g ii forigy, = XaXa B X1 X2 X3 & X1 Xo X3
Representative bent function of class 19Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
8 ](?gfjl_?_ fhrio = X1 X2 D X3 X4 © X1 X4 D X2 X4
11/10/0[0 . _
1 0[0[0[1]0 Minimal ESOP in terms of products:
8 % 1L (.’)L ))g forig,, = XaXa B X1 X2 Xg B X1 X2 X4
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Representative bent function of class 20Cubes in SNF = 38
X3 Xq f Positive polarity ESOP:

i hE For20 = X1 Xa @ X X4 & X1 Xo & X1 X4
1 1/0{1/0]/0 . _
10(0[001 Minimal ESOP in terms of products:
8 :(L) :1L g ii fhr2omn = X1 X3 @ X1 X2 X4 D X1 X2 X4
Representative bent function of class 21Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
8 ?_81(_)](_]& fhra1 = X1 X3 D X2 Xa © X2 X3 D X3 X4
1 1[1[1/0[0 o _
1 0[0[1]0[1 Minimal ESOP in terms of products:
8 0 % ({ ii for21mn = X1 X3 B X2 X3 X4 B X2 X3 X4
Representative bent function of class 22Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
092010 forz2 = X1.Xa & X X4 & X1 Xp © X X3
1 1/0[0[0[1 o _
10[0/1]1]1 Minimal ESOP in terms of products:
05195 forzon, = XK@ XaXeXa® XaXoXa
Representative bent function of class 23Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
gggfgf foraz = X1 X3 ® X2 Xa © X1 X4 © X3 X4
11/10/0/1 . .
10[0[01/1 Minimal ESOP in terms of products:
8 % 1L g 2 fhraz,,, = X2 Xa B X1 X3 Xg B Xq X3 Xg
Representative bent function of class 24Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
ooe gLl fhr2a = X1 Xa B X2 X X1 Xp B X1 X
1 1/0[1]0]|0 . _
10[0[1/11 Minimal ESOP in terms of products:
8 Jd i‘ (1) ii foraa,,, = X1Xa ® X1 X2 X3 B X1 X2 X3
Representative bent function of class 25Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
8 ?_8](_)(()]]? fhras = X1 X4 D X2 X3 © X2 Xg4 D X3 X4
1 1[1[1]0[0 o ,
1 0[0[1]1]0 Minimal ESOP in terms of products:
8 01 (Z)L ii foros,, = X1 X4 ® X2 X3 X4 D X2 X3 X4



Classes of Bent Functions Identified by Specific Normal Forms...

Representative bent function of class 26Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:

goo0Lo fiorze = X1 X4 & X X3 B X1 X2 & X X4
1 1(0/0[01 o _
1 0[0[1]0][0O Minimal ESOP in terms of products:
8 O i‘ (_,JL ;i for 26, = X2 Xa B X1 X2 Xa B X1 X2 X4
Representative bent function of class 27Cubes in SNF = 38
X3 X4 f Positive polarity ESOP:
8 5)8810{2 fhra7 = X1 X4 D X2 X3 D X1 X3 D X3 X4
1110/0]1 n _
1 0[0[1]0[1 Minimal ESOP in terms of products:
8 ]6 % g ii forozm = X2 X3 B X1 X3 X4 B X1 X3 X4
Representative bent function of class 28Cubes in SNF = 46
X3 X4 f Positive polarity ESOP:
8 g)jLégj(_) fbrag = X1 X2 © X1 X3 X1 X4 B X2 X3B
1 10[0[1]0 X2 X4 DX3Xq D1
10 (1) 2 (1) 8)(2 Minimal ESOP in terms of products:
0011x1 forzgn, =XeXaXa DX X X3 DXy X XaD

X1 X2 X3 X4 D X1 X2 X3 X4
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