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Forms and Generated Using Boolean Differential
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Abstract: This paper aims at the identification of classes of bent functions in order
to allow their construction without searching or sieving.

In order to reach this aim, we studied first the relationship between bent functions
and complexity classes defined by theSpecific Normal Formsof all Boolean functions.
As result of this exploration we found classes of bent functions which are embedded
in different complexity classes defined by theSpecific Normal Form.

In the second step to reach our global aim, we utilized the found classes of bent
functions in order to express bent functions in terms of derivative operations of the
Boolean Differential Calculus.

In detail, we studied bent functions of two and four variables. This exploration
leads finally toBoolean differential equationsthat will allow the direct calculation of
all bent functions of two and four variables. A given generalization allows to calculate
subsets of bent functions for each even number of Boolean variables.

Keywords: Bent function; classification; specific normal form; Boolean differential
calculus; Boolean differential equation; XBOOLE.

1 Introduction

Bent functionsf (x1, . . . ,xn) are special Boolean functions having valuable proper-
ties for applications in cryptography.
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A summary of the knowledge about bent functions in the context of Boolean
Algebras was published recently by Butler and Sasao [1]. Our paper follows their
approach, including the fact that only even values forn are considered. This follows
from the original definition of [2].

Naturally, the representation of a function does not have an influence onthe
function itself. It is, however, very common to use for bent functions the represen-
tation in the form of Exclusive-Sum-Of-Products (ESOPs).

The research over the last 10 years in the field of minimal ESOPs has lead to the
discovery of a new normal form [3] calledSpecific Normal Form(SNF) [4]1. The
SNF is a unique ESOP out of all possible ESOPs of a Boolean function. Dueto the
property that the number of cubes in the SNF is a very simple possibility to classify
Boolean functions with regard to their complexity [5] [6], SNFs will be used for the
analysis of bent functions in section 3. Using the SNF, the most complex Boolean
functions [7], [8] can be detected and generated. We analyze in this paper how
the bent functions are distributed over the classes of SNFs. Especially, we want to
check whether the bent functions belong to these most complex Boolean functions.

Boolean Differential Calculus [9], [10], [11], allows to study the change of the
behavior of Boolean functions. Changes of function values can transform a linear
function into a bent function or vice versa. Hence, we study in this paper how the
Boolean Differential Calculus (BDC) can help to classify the bent functions.

The bent functions are a small set of Boolean functions. In concluding remarks
of [1], bent functions are characterized as very rare, they area vanishingly small
fraction of the total number of functionswhen the number of variables increases.
In the same book chapter, it is stated thatthere is no formal method of constructing
all bent functions. These two properties make the bent functions very valuable for
cryptography [12]. We will weaken the second of these statements.

It has been shown in the PhD thesis [13] that the solution of a Boolean differen-
tial equation is a set of Boolean functions. In this PhD thesis several approaches to
solve Boolean differential equations are given. When a Boolean differential equa-
tion for the set of bent functions in a selected Boolean space of an even number
of variables has been found, a formal method for constructing all bent functions is
available. Section 4 explores these issues.

2 Basic Concepts

Bent functions f (x) = f (x1, . . . ,xn) are Boolean functions that have the largest
Hamming distance to any linear functionfL(x).

1Previous publications used ”special” or ”specialized”.
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Definition 1. The function f(x) is a linear function if it can be written as

f (x) = a0⊕a1x1⊕a2x2⊕ . . .⊕anxn (1)

with a0,a1, . . . ,an ∈ B given constants.

Since there aren+1 independent constants, 2n+1 linear functions can be found.
Furthermore, there are 22n

Boolean functions altogether. Hence, 22n
−2n+1 func-

tions do not show the property of linearity.2

Definition 2. The Hamming distance hd( f ,g) between two functions f(x) and
g(x), is the number of positions (argument vectors) with different values.

Example. The number of positions where the functionsf andg differ from
each other is equal to the number of values 1 of the functionf ⊕ g and can be
evaluated using Karnaugh maps:

x3 x4 f
0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

0 1 1 0 x2
0 0 1 1 x1

f = x1x2⊕x3x4

x3 x4 g
0 0 0 0 0 0
0 1 0 1 1 0
1 1 0 1 0 1
1 0 0 0 1 1

0 1 1 0 x2
0 0 1 1 x1

g = x1x3⊕x2x4

x3 x4 g
0 0 0 0 1 0
0 1 0 1 0 0
1 1 1 0 0 0
1 0 0 0 0 1

0 1 1 0 x2
0 0 1 1 x1

f ⊕g = (x1⊕x4)(x2⊕x3)

or function tables:

x1 0000 0000 1111 1111
x2 0000 1111 0000 1111
x3 0011 0011 0011 0011
x4 0101 0101 0101 0101
f 0001 0001 0001 1110
g 0000 0101 0011 0110
f ⊕g 0001 0100 0010 1000

As result, we gethd( f ,g) = 4.

Definition 3. Thenonlinearity NL( f ) of a nonlinear Boolean function f(x) is the
minimum of all Hamming distances between this function and all linear functions.

We also can say that this is equal to the minimum number of truth table entries
that must change in order to convertf (x) into a linear function.

This definition implies somealgorithmicconsiderations:

2Some authors make a difference betweena0 = 0 anda0 = 1. Only the functions of the first set
are linear functions, the functions of the second set are calledaffinefunctions.
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• We must calculate the Hamming distance of the given function to all linear
functions.

• The minimum of the found values is the nonlinearity of the given function.

In order to find the nonlinearity of each nonlinear function, 22n
−2n+1 nonlin-

ear functions must be tested against 2n+1 linear functions, i.e.(22n
−2n+1) ·2n+1

Hamming distances have to be calculated, basically. This huge amount of compar-
isons can be restricted to one half, i.e.(22n

−2n+1) ·2n, where only linear functions
f l
i (x) (1) with a0 = 0 are used for comparisons. Due to the complement caused for

a0 = 1, the Hamming distances for the remaining linear functionsf l
i (x) can be cal-

culated using a simple differencehd( f (x), f l
i (x)) = 2n−hd( f (x), f l

i (x)). However,
the reduction by a constant factor of 2 does not change the exponentialcomplexity
to calculate the nonlinearity of each nonlinear function.

The termbent functionwas introduced in 1976 by Rothaus [2]. However, his
considerations have been based on the algebraic structure ofGalois fields. The
set B = {0,1} together with∧ as multiplication and⊕ as addition satisfies the
axioms of a Galois fieldGF(B) as well asBn with the same operations (indicated
by GF(Bn)). Functions fromGF(Bn) into GF(B) allow the definition of aFourier-
transformation, and for bent functions all Fourier-coefficients had to be equal to
±1. It could be shown that such functions exist only ifn is even. In this case
the set of bent functions is equal to the set of functions with maximal nonlinearity.
Therefore it is common to define bent functions only whenn is even. However,
the concept of maximal nonlinearity can also be applied whenn is odd. This needs
further investigations.

Definition 4. Let f(x) be a Boolean function of n variables, where n is even. f(x)
is abent function if its nonlinearity is as large as possible.

This means that after the calculation of the nonlinearity of each nonlinear func-
tion the maximum of all these values has to be found, and all nonlinear functions
with this maximum nonlinearity are the bent functionsfb(x1, . . . ,xn).

The simplest bent functions exist forn = 2.
Here we have eight linear functions

f (x1,x2) = a0⊕a1x1⊕a2x2,

according to the three constantsa0,a1,a2 ∈ B.

a0a1a2 000 001 010 011 100 101 110 111

f 0 x2 x1 x1⊕x2 1 1⊕x2 1⊕x1 1⊕x1⊕x2
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There is only one nonlinear termx1x2, all nonlinear functions can be built by
adding one linear function to this nonlinear term, and we get

x1x2⊕0, x1x2⊕x2, x1x2⊕x1, x1x2⊕x1⊕x2,

x1x2⊕1, x1x2⊕x2⊕1, x1x2⊕x1⊕1, x1x2⊕x1⊕x2⊕1.

For all the nonlinear functions the nonlinearity is equal to 1, therefore all of
them are bent functions because this is the maximum value.

In order to evaluate the bent functions in the context of theSpecific Normal
Form (SNF), we introduce the basic concepts of the SNF, too. An algebraic prop-
erty of the exclusive-or operation and the Boolean variablex can be seen in the
following formulas:

x = x⊕1 , (2)

x = 1⊕x , (3)

1 = x⊕x . (4)

These three formulas show that each element of the set{x,x,1} can be expressed
by the two other elements. The application of these formulas from the left to the
right doubles the number of cubes and is called expansion. For each variable of a
given ESOP the applicable formula (2), (3), or (4) is executed from the left to the
right in the algorithmExp( f ) which was defined in [4].

A second important property of the exclusive-or operation for a Boolean func-
tion f and a cubeC is shown by the following formulas:

f = f ⊕0 ,

0 = C⊕C ,

f = f ⊕C⊕C .

¿From these formulas follows that two identical cubes can be added to or removed
from any ESOP without changing the represented function. Utilizing these for-
mulas, all pairs of identical cubes are removed from a given ESOP off by the
algorithmR( f ) which was defined in [4], too.

Using the algorithms Exp(f ) and R(f ), it is possible to create a specific ESOP
with a number of remarkable properties which are specified and proven in [4].
Please notice that we have changed the term ”specialized”, used in [4], into the
better understandable term ”specific” for the definition of the SNF.

Definition 5. Take any ESOP of a Boolean function f . The ESOP resulting from

SNF( f ) = R(Exp( f ))

is called theSpecific Normal Form (SNF)of the function f .
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3 Basic Results

3.1 Distribution of Bent functions into SNF classes

The number of cubes ofSNF( f ) is a simple measure of the complexity of a Boolean
function f (x). In the first experiment we study the distribution of bent functions
overSNF( f )-classes.

Tab. 1. Distribution of 8 Bent Functions overSNF( f )-Classes for all 16 Boolean
Functions of 2 Variables.

Cubes in the Number of

SNF Minimal ESOP all Functions Bent Functions

0 0 1 0
4 1 9 4
6 2 6 4

Table 1 shows first that there are bent functions of different complexities. Addi-
tionally it can be seen that the SNF - classes consist of bent functions together with
functions that are not bent functions. There are 4 bent functions of two variables
which belong to the class of the most complex Boolean functions inB2.

Table 2 shows again that bent function of four variables are distributed over
several SNF - classes. Consequently, the bent functions in the BooleanspaceB4

have again different complexities. Contrary to the Boolean spaceB2 no bent func-
tion of four variables belongs to the class of the most complex Boolean functions
overB4. An interesting observation of this first experiment is that for all bent func-
tions fb of four variables, the number of cubes in theSNF( fb) modulo 4 is equal
to 2. A more detailed analysis is necessary to detect further properties of bent
functions.

3.2 Identification of classes of Bent functions

Meier and Staffelbach have found in [14] that the weight of bent functions of n
variables is equal to

2n−1±2
n
2−1

.

Therefore we study the SNF of such functions more in detail. Especially, we
distinguish for bent functions of four variables between the allowed weights of
23−21 = 6 and 23 + 21 = 10. Table 3 reveals that for each bent function of the
weight 6 exists an associated bent function of the weight 10. These pairsof bent
functions are complements of each other. The complement of a bent functionof the
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Tab. 2. Distribution of 896 Bent Functions into Classes ofSNF( f ) for all 65536
Boolean Functions of 4 Variables.

Cubes in the Number of

SNF Minimal ESOP all Functions Bent Functions

0 0 1 0
16 1 81 0
24 2 324 0
28 2 1296 0
30 2 648 48
32 3 648 0
34 3 3888 240
36 3 6624 0
36 4 108 0
38 3 7776 384
40 3 2592 0
40 4 6642 0
42 3 216 0
42 4 14256 192
44 4 12636 0
46 4 3888 0
46 5 1296 16
48 5 1944 0
50 5 648 16
54 6 24 0

weight 6 requires an EXOR-operation with a constant 1 which leads to fouraddi-
tional cubes in the SNF of the bent function of weight 10. It should be mentioned
that in some cases the minimal ESOPs of a bent functionfb and their complement
f b contain the same number of cubes.

Within the set of bent functions of each SNF - class and each weight we iden-
tified classes of 24 = 16 bent functions characterized by the following property. If
f (x1,x2,x3,x4) is a bent function then

f (x1⊕c1,x2⊕c2,x3⊕c3,x4⊕c4) (5)

is a bent function too, whereci ∈ {0,1}.
Please notice, in general such a class is not a known affine class which iscreated

by an EXOR of a selected Boolean function and all linear functions of the Boolean
space.

For a later evaluation we enumerate the classes of bent functions of four vari-
ables having a weight of six. As representative bent functions, we select from
each class that function which can be expressed by an ESOP of positiveliterals.
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Tab. 3. Distribution of 896 Bent Functions overSNF( f )-Classes forB4 distinguished
between the Weights 6 and 10.

Cubes in the Number of Bent Functions
SNF Minimal ESOP of Weight 6 of Weight 10

30 2 48 0
34 3 192 48
38 3 192 192
42 4 0 192
46 5 16 0
50 5 0 16

Additionally we give a minimal ESOP and the Karnaugh-map of the selected rep-
resentative bent functions.

This detailed analysis is summarized in the appendix of this paper and shows
that each bent function of four variables can be expressed by an ESOP that consists
of conjunctions of two variables. This verifies the general proposition ofRothaus
[2] about the degree of Reed-Muller forms of bent functions for the Boolean space
B4.

For each bent functionfb of classCi , i = 1, . . . ,28, exists a complementary bent
function f b. In the Karnaugh-maps of the representative bent function of the com-
plementary classesCCi , i = 1, . . . ,28, the values zero and one are exchanged in
comparison to the 28 classesCi . The representative bent functionf bri of the com-
plementary classesCCi can be built by an EXOR - operation with the constant 1:

f bri = fbri ⊕1 i = 1, . . . ,27 ,

and

f br28 =x1x2⊕x1x3⊕x1x4⊕x2x3⊕x2x4⊕x3x4 .

There is no ESOP expression of representative bent functionsf bri , i = 1, . . . ,3
for B4 having less products than the positive polarity expression given in the ap-
pendix. To complete this analysis, we give the minimal ESOPs of representative
bent functionsf brimin

, i = 4, . . . ,28 for B4 which need fewer cubes than the expres-
sion where the complement is realized by an EXOR operation with the constant
1.

f br4min
= x1x2⊕x3x4⊕x1x3 f br5min

= x1x2⊕x3x4⊕x1x4

f br6min
= x1x2⊕x3x4⊕x2x3 f br7min

= x1x2⊕x3x4⊕x2x4
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f br8min
= x1x3⊕x2x4⊕x1x2 f br9min

= x1x3⊕x2x4⊕x1x4

f br10min
= x1x3⊕x2x4⊕x2x3 f br11min

= x1x3⊕x2x4⊕x3x4

f br12min
= x1x4⊕x2x3⊕x1x2 f br13min

= x1x4⊕x2x3⊕x1x3

f br14min
= x1x4⊕x2x3⊕x2x4 f br15min

= x1x4⊕x2x3⊕x3x4

f br16min
= x1x3⊕x1x4⊕x1x2⊕x3x4

f br17min
= x2x3⊕x2x4⊕x1x2⊕x3x4

f br18min
= x1x2⊕x1x3⊕x3x4⊕x2x3

f br19min
= x1x2⊕x1x4⊕x3x4⊕x2x4

f br20min
= x1x2⊕x1x4⊕x1x3⊕x2x4

f br21min
= x2x3⊕x2x4⊕x1x3⊕x3x4

f br22min
= x1x2⊕x1x3⊕x2x4⊕x2x3

f br23min
= x1x3⊕x1x4⊕x2x4⊕x3x4

f br24min
= x1x2⊕x1x3⊕x1x4⊕x2x3

f br25min
= x2x3⊕x2x4⊕x1x4⊕x3x4

f br26min
= x1x2⊕x1x4⊕x2x3⊕x2x4

f br27min
= x1x3⊕x1x4⊕x2x3⊕x3x4

f br28min
= x1x2x4⊕x1x2x4⊕x1x3⊕x2x3⊕x3x4

This detailed analysis shows that for each bent function of four variables there
exists an ESOP consisting of pairs of variables. All representative bentfunctions
of four variables include non-negated variables only. From this property and (5)
follows that for each bent function of four variables exists an ESOP of pairs of
variables where each variable appears in a single polarity. The number ofsuch
pairs k, the weightw of the bent function and the number of variablesn in the

Boolean spaceBn determine directly the number of cubes
∣

∣

∣
CSNF

fb
(n,k,w)

∣

∣

∣
of a bent

function in their SNF:

∣

∣CSNF
fb (n = 4,k,w)

∣

∣ = 2n +2n−2∗k+w .
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4 Boolean Differential Equations of Bent Functions

4.1 Boolean differential calculus

The Boolean Differential Calculus (BDC) is a comprehensive and powerful theory.
Some introduction into the BDC including selected applications are given in [9] and
[10]. A comprehensive description of the BDC in connection with a large number
of applications has been published in [11]. Here we repeat a small set ofdefinitions
which are required to express the bent functions.

Definition 6. Let f(x) = f (xi ,x1) be a Boolean function of n variables withx1 =
(x1, . . .xi−1,xi+1, . . . ,xn). Then

∂ f (x)

∂xi
= f (xi = 0,x1)⊕ f (xi = 1,x1) (6)

is the (simple) derivative with regard to xi .

The result of a simple derivative operation is a new Boolean functiong which
does not depend on the variablexi anymore (xi has been set to 0 and to 1). The
derivativeis equal to 1 iff the change of the variablexi changes the function value
for constant values of the remaining variablesx1 (since 0⊕1 = 1⊕0 = 1); other-
wise it is equal to 0.

The simple derivative operation of the Boolean Differential Calculus allowsto
verify whether a given function is linear. From both Definition 1 and Definition 6
follows directly that

∂ f (x)

∂xi
= ai .

Hence, any linear functionf (x) must satisfy either

∂ f (x)

∂xi
= 0 (7)

or
∂ f (x)

∂xi
= 1 (8)

for each variablexi .
Due to (7) the constant functionsf = 0 and f = 1 are linear functions. All the

other linear functions can be built by extending these constant linear functions by
variablesxi (which are added by⊕).
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Definition 7. Let f(x) = f (x0,x1) be a Boolean function of n variables, where
x0 = (x1, . . . ,xk), x1 = (xk+1, . . . ,xn), andx1 = (xk+1, . . . ,xn). Then

∂ f (x0,x1)

∂x0
= f (x0,x1)⊕ f (x0,x1) (9)

is the vectorial derivative with regard tox0.

The vectorial derivative results in a Boolean function that depends in general on
both the variables ofx0 (which have been included in the derivative operation) and
the remaining variables ofx1. There are certain functionsf (x0,x1) where the result
of a vectorial derivative operation does not depend on some of these variables.

The vectorial derivative is equal to 1 if the simultaneous change of the variables
of x0 changes the function value for fixed values of the remaining variables ofx1.
This is caused by the EXOR-operation in (9) that is equal to 1 if different pairs of
function values (e.g. ’01’ or ’10’) occur.

The vectorial derivative operation of the Boolean Differential Calculusallows
to verify whether a given function is linear, too. From both Definition 1 and Defi-
nition 7 follows that any linear functionf (x) = f (x0,x1) must satisfy either

∂ f (x0,x1)

∂x0
= 0 (10)

or
∂ f (x0,x1)

∂x0
= 1 (11)

for each not empty set of variablesx0 because:

1. variablesxi with ai = 0 in (1) do not appear in the expression (9),

2. remaining variablesxi assigned tox1 appear twice in the expression (9) and
can be combined to the constant value 0,

3. remaining variablesxi assigned tox0 appear as pairs in both non-negated and
negated form in the expression (9); each of these pair can be combined tothe
constant value 1 (xi ⊕xi = 1),

4. the expression evaluates to the constant value 0 (10) for an even number of
remaining values 1, and it evaluates to the constant value 1 (11) in case of an
odd number of 1 values.

The simple derivatives in (7) and (8) are special cases of the vectorialderivatives in
(10) and (11).
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Definition 8. Let f(x) = f (x0,x1) be a Boolean function of n variables, and let
x0 = (x1,x2, . . . ,xm), andx1 = (xm+1, . . . ,xn). Then

∂ m f (x0,x1)

∂x1∂x2 . . .∂xm
=

∂
∂xm

(. . .(
∂

∂x2
(
∂ f (x0,x1)

∂x1
)) . . .)

is the m-fold derivative with regard tox0.

In contrast to the vectorial derivative where pairs of function values decide
about the result, the results are now determined by all 2m function values of a sub-
spacex1 = const. Due to the Definitions 6 and 8, the result of them-fold derivative
operation with regard tox0 does not depend on the variables ofx0. The variables of
the vectorx0 can be used in any order. The result of anym-fold derivative operation
will always be the same, since the respective operations are commutative.

Them-fold derivative of a functionf (x0,x1) with regard tox0 is equal to 1 for
such subspacesx1 = constthat include an odd number of function values 1.

One of the theorems of the BDC allows to express a 2-fold derivative using
simple and vectorial derivatives only. In the following subsections Theorem 1 will
be used to simplify Boolean differential equations which express certain classes of
bent functions. The proof of Theorem 1 is straightforward based on the definitions
of involved derivatives and the Shannon decomposition.

Theorem 1. Let f(x) = f (x0,x1) be a Boolean function of n variables, and let
x0 = (x1,x2). Then it holds that

∂ 2 f (x0,x1)

∂x1∂x2
=

∂ f (x)

∂x1
⊕

∂ f (x)

∂x2
⊕

∂ f (x0,x1)

∂x0
. (12)

4.2 Boolean differential equations

A Boolean Differential Equation(BDE) is an equation in which Boolean variables,
Boolean functions, and derivatives of Boolean functions are connected by Boolean
operations in expressions on both sides. It is a result of [13] that

1. the solution of a Boolean differential equation is a set of Boolean functions,
and

2. each set of Boolean functions can be expressed by a Boolean differential
equation.

There is a special type of Boolean differential equations in which Booleanvari-
ables do not appear explicitly.

The solution of such Boolean differential equation are classes of Boolean func-
tions as specified in (5). Because each bent function is a member of such aclass,
we restrict ourselves here to this special type of Boolean differential equations.
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In [13] two approaches for the solution of Boolean differential equations for
classes are given.

The first allows the iterative generation of the function classes. The second is
calledSeparation of Function Classesand creates all solution classes at the same
time. This approach is explained in [9] and [15] too. The calculation steps to solve
a Boolean differential equation are very simple and fast. All Boolean differential
equations for bent functions given in the next subsections were solvedwithin frac-
tions of a second.

4.3 Bent functions of two variables

It is the main issue to find a Boolean differential equation for a known set of
Boolean functions.

Sometimes such equations are rather complicated.
For example, the class of bent functions

{x1∧x2,x1∧x2,x1∧x2,x1∧x2} (13)

is the solution of the Boolean differential equation (14):

f (x) ·
∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨ f (x) ·

∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨

f (x) ·
∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨ f (x) ·

∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
= 1 . (14)

There are only 22
2
= 16 functions in the Boolean spaceB2. The substitution of

all of them into (14) proves that this equation holds exactly for the functionsof the
set (13).

The complemented set of bent functions

{x1∨x2,x1∨x2,x1∨x2,x1∨x2} (15)

is the solution of the Boolean differential equation (16):

f (x) ·
∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨ f (x) ·

∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨

f (x) ·
∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
∨ f (x) ·

∂ f (x)

∂x1
·

∂ f (x)

∂x2
·

∂ f (x)

∂ (x1,x2)
= 1 . (16)

This Boolean differential equation can be confirmed in the same way.
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A Boolean differential equation that describes both classes of bent functions
together must combine the left-hand sides of (14) and (16) using an OR-operation.
Obviously, the terms( f (x)∨ f (x)) can be separated in the combined left-hand side
using the distributive law. These terms can be replaced by a constant 1 andfinally
removed. The remaining expression can be further simplified:

∂ f (x)

∂x1
⊕

∂ f (x)

∂x2
⊕

∂ f (x)

∂ (x1,x2)
= 1 . (17)

Using (12) we get from (17) the simple Boolean differential equation:

∂ 2 f (x1,x2)

∂x1∂x2
= 1 (18)

which describes all bent functions of two variables. This Boolean differential equa-
tion can be found directly. It is known that the 2-fold derivative is equalto 1 for
all functions f (x1,x2) which have an odd number of functions values 1. ForB2 all
functions with an odd number of functions values 1 are bent functions.

4.4 Solving a Boolean differential equation using XBOOLE

A BDE like (18) can be solved easily using XBOOLE [16], [17]. The needed
theory is described in [9]. Using this theory, a simple PROBLEM PROGRAM (PRP)
for the XBOOLE-Monitor allows to solve the BDE (18) in split second. Hints for
download and using the XBOOLE-Monitor for free are given in [9], too.

The main steps to solve the BDE (18) are:

1. convert the BDE (18) into the BDE (17),

2. substituteu1 = ∂ f (x)
∂x1

, u2 = ∂ f (x)
∂x2

, andu3 = ∂ f (x)
∂ (x1,x2)

,

3. solve the associated Boolean equationu1⊕u2⊕u3 = 1 of (17) (executed by
the operationsbe),

4. transform from the space of changesu into the space of valuesv usingv0 =
u0, v1 = u0⊕u1, v2 = u0⊕u2, v3 = u0⊕u3 (executed by the operationssbe,
isc, and maxk),

5. restrict local solutions to allowed global one in two iterations by exchangeof
columns first(v0,v2) ↔ (v1,v3) and second(v0,v1) ↔ (v2,v3) (executed by
the operationcco) and calculation of required intersections (executed by the
operationisc).
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space 32 1
avar 1
u0 u1 u2 u3
v0 v1 v2 v3.
sbe 1 1
u1#u2#u3=1.
sbe 1 2
v0=u0,
v1=u0#u1,
v2=u0#u2,
v3=u0#u3.
isc 1 2 3
maxk 3 <u0 u1 u2 u3> 4

a)

vtin 1 10
v0 v2.
vtin 1 11
v1 v3.
cco 4 10 11 12
isc 4 12 13
vtin 1 20
v0 v1.
vtin 1 21
v2 v3.
cco 13 20 21 22
isc 13 22 23
sts bent2

b)

Fig. 1. Solving the BDE for bent functions of two variables using the XBOOLE-Monitor: a) PRP b)
solution TVL.

In order to solve the BDE (18), the PRP of Figure 1 a) must be executed in
the XBOOLE-Monitor. The solution TVL 23 is shown in Figure 1 b). Each row
represent a solution function defined by

f (x1,x2) = v0∧x1x2∨v1∧x1x2∨v2∧x1x2∨v3∧x1x2 .

Figure 1 b) describes the 8 functions of the function sets (13) and (15).

4.5 Bent functions of four variables

The knowledge of the Boolean differential equations for bent functionsof 2 vari-
ables helps to find the appropriate Boolean differential equations for bent functions
of 4 variables. As seen forB2, simpler Boolean differential equations exist for
pairs of classes which include functions complementary to the functions of the
other class.

Definition 9. A pair of complementary classesPCCi of Boolean functions covers
the given class Ci and the class of their complementary functions CCi .

As enumerated in the subsection 3.2, there are 28PCCi of 4 four variables. For
eachPCCi , i = 1, . . . ,28 a Boolean differential equation can be given. In order to
save space, we focus on the minimal and maximal bent functions of 4 variables.

Definition 10. A bent function is
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• minimal when its fixed polarity ESOP includes the smallest possible number
of conjunctions consisting of two variables each, or

• maximal when its fixed polarity ESOP includes the largest possible number
of conjunctions consisting of two variables each.

The detailed analysis of bent functions of 4 variables in Subsection 3.2 identi-
fied the minimalPCCi for i=1, 2 and 3. There is only the single maximalPCC28.

There are six pairs of variables inB4. The 2-fold derivatives of given functions
with regard to these pairs of variables determine whether a given function isa bent
function.

The Boolean differential equations for pairs of classes of minimal bent func-
tions inB4 are:

for PCC1

∂ 2 f (x)

∂x1∂x2
·

∂ 2 f (x)

∂x1∂x3
·

∂ 2 f (x)

∂x1∂x4
·

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x4
= 1 , (19)

for PCC2

∂ 2 f (x)

∂x1∂x2
·

∂ 2 f (x)

∂x1∂x3
·

∂ 2 f (x)

∂x1∂x4
·

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x4
= 1 ,

for PCC3

∂ 2 f (x)

∂x1∂x2
·

∂ 2 f (x)

∂x1∂x3
·

∂ 2 f (x)

∂x1∂x4
·

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x4
= 1 .

The Boolean differential equation for the pair of classesPCC28 of maximal bent
functions inB4 is:

∂ 2 f (x)

∂x1∂x2
·

∂ 2 f (x)

∂x1∂x3
·

∂ 2 f (x)

∂x1∂x4
·

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x4
= 1 .

The Boolean differential equations for the other dedicated pairs of classes of
bent functions have a similar structure. The correctness of all Boolean differential
equations for classes of bent functions has been verified by solving thedifferential
equation using the XBOOLE monitor [17] and checking the solution set.

Theorem 2. The solution of the Boolean differential equation(20)

∂ 2 f (x)

∂x1∂x2
·

∂ 2 f (x)

∂x3∂x4
⊕

∂ 2 f (x)

∂x1∂x3
·

∂ 2 f (x)

∂x2∂x4
⊕

∂ 2 f (x)

∂x1∂x4
·

∂ 2 f (x)

∂x2∂x3
= 1 . (20)

is a set four variable functions. This set includes exactly 896 functions. All of them
are bent functions of four variables. There exist no further bent functionof four
variables.
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Proof. There are exactly 65536 Boolean functions of the four variablesx1, x2, x3,
andx4. All of them can be substituted into the Boolean differential equation (20).
All such functions, which satisfy (20), are elements of the setSbde−b f4. The set
Sbde−b f4 includes exactly 896 Boolean functions of four variables. Applying Defi-
nition 4 to all Boolean functions of four variables finds the setSde f−b f4 of all bent
functions. A comparison shows that these finite sets include exactly the same func-
tions so thatSbde−b f4 = Sde f−b f4.

It should be mentioned that it is not necessary to check each Boolean func-
tion of four variables whether it is a solution of the Boolean differential equation
(20). An algorithm that allows to solve a Boolean differential equation is given in
[9]. The execution of this algorithm creates the set of exactly all Boolean functions
which solve the given Boolean differential equation. The execution of thisalgo-
rithm for the Boolean differential equation (20) creates exactly the set ofall 896
bent functions of four variables.

4.6 Bent functions of more than four variables

In the following, the relative weight of Boolean function will be used for some
conditions.

Definition 11. Therelative weightρ( f (x)) of Boolean function f(x) of n variables
is the number of 1’s in the truth table of f(x) divided by all2n entries.

Using Definition 4 of a bent function ofn variables, it is necessary to compare
the given function with 2n+1 linear functions in order to decide whether it is a bent
function or not. Due to (10) and (11), all 2n− 1 vectorial derivatives of a linear
function with regard to each set of variablesx0 is one of the constant functionsf = 0
or f = 1. Hence, for a maximal distance to each linear functionf (x) = f (x0,x1)
the relative weight of all vectorial derivatives of a bent function with regard to each
set of variablex0 must be equal to 0.5:

ρ
(

∂ f (x)

∂x0

)

= 0.5 . (21)

Using (21) for all 2n − 1 not empty set of variablesx0 reduces the check for a
bent function from 2n+1 to 2n−1 comparisons. The condition (21) is known from
Theorem 5.12 in [18].

The Boolean differential equations in the previous section use 2-fold derivatives
in order to identify the bent property. Each variable appears in a 2-fold derivative
of the Boolean differential equation of a certain class of bent functions.This raises
the question about the relationship between a 2-fold derivative and the condition
(21).
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Theorem 3. For each Boolean function of 2 variables f(x1,x2) the Boolean differ-
ential equation(18) is necessary and sufficient to satisfy the condition(21).

Proof. At all, there are 22
2
= 16 Boolean functions in the Boolean spaceB2. All of

them are enumerated in Table 4 together with the relative weights of all 22−1 = 3
vectorial derivatives and the calculated result of the 2-fold derivative with regard
to both variablesx1 andx2. This complete evaluation shows both in all case of
relative weights of 0.5 for all vectorial derivatives the 2-fold derivative is equal to
the constant value 1 and in all cases with a constant value 1 for the 2-fold derivative
the relative weights of all vectorial derivatives are equal to 0.5. Hence, we have a
complete proof of Theorem 3.

Tab. 4. Evaluation of all Boolean Functionsf (x1,x2) of 2 Variables

f (x) ρ
(

∂ f x)
∂x1

)

ρ
(

∂ f x)
∂x2

)

ρ
(

∂ f x)
∂ (x1,x2)

)

∂ 2 f x)
∂x1 ∂x2

0 0 0 0 0

x1∧x2 0.5 0.5 0.5 1
x1∧x2 0.5 0.5 0.5 1
x1∧x2 0.5 0.5 0.5 1
x1∧x2 0.5 0.5 0.5 1

x1 1 0 1 0
x1 1 0 1 0
x2 0 1 1 0
x2 0 1 1 0

x1⊕x2 1 1 0 0
x1⊕x2 1 1 0 0

x1∨x2 0.5 0.5 0.5 1
x1∨x2 0.5 0.5 0.5 1
x1∨x2 0.5 0.5 0.5 1
x1∨x2 0.5 0.5 0.5 1

1 0 0 0 0

Theorem 4. For Boolean functions of more than two variables f(x) = f (x1,x2,x1)
the Boolean differential equation

∂ 2 f (x1,x2,x1)

∂x1∂x2
= 1 (22)

is sufficient but not necessary to satisfy the condition(21). In f (x) each pair of
variables can be assigned to the used variables x1 and x2.
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Proof. For bent functions of more than two variables the setx1 includesk ≥ 2
variables. The result of the 2-fold derivative (22) can be split into 2k subfunctions
for the Boolean subspaces defined byx1 = c.

The equation (22) is equivalent to 2k equations (18) created for the 2k Boolean
subspaces defined byx1 = c. Due to Theorem 3, it follows form (22) that

ρ
(

∂ f x)
∂x1

)

= 0.5,

ρ
(

∂ f x)
∂x2

)

= 0.5, and

ρ
(

∂ f x)
∂ (x1,x2)

)

= 0.5

for each subspace and consequently for the whole Boolean space. Because each
pair of variables can be assigned to the specified variablesx1 andx2 and vectorial
derivatives with regard to a larger number of variables can be composedby vectorial
derivatives with regard fitting subsets of variables, it is shown that (22)is sufficient
for the condition (21).

In order to show that (22) is not necessary to satisfy the condition (21),we
assume that (22) holds in 2k−4 subspaces. To the remaining 4 subspaces we assign
each of the functionsf1(x1,x2) = 0, f2(x1,x2) = x1, f3(x1,x2) = x2, and f4(x1,x2) =
x1⊕x2 exactly once. The 2-fold derivatives with regard tox1 andx2 are equal to 0
for these four subspaces. Hence, the equation (22) does not hold. However, from

Table 4 follows that all three relative weightsρ
(

∂ f x)
∂x1

)

, ρ
(

∂ f x)
∂x2

)

, andρ
(

∂ f x)
∂ (x1,x2)

)

are equal to 1 in two of these subspaces and are equal to 0 in the other two of these
subspaces. Hence, all three relative weights in the four subspaces are equal to 0.5.
Together with the relative weights of 0.5 in the remaining subspaces caused value
1 of the 2-fold derivative, all three relative weights are equal to 0.5. This example
proves that the Boolean differential equation (22) is not necessary to satisfy the
condition (21); in this way we have a complete proof of Theorem 4.

As example for Theorem 4 we can take the representative bent function of

class 1:fbr1 = x1x2⊕x3x4. As shown in (19) we have for this function∂
2 f (x)

∂x1∂x2
= 1,

∂ 2 f (x)
∂x1∂x3

= 0, ∂ 2 f (x)
∂x1∂x4

= 0, ∂ 2 f (x)
∂x2∂x3

= 0, ∂ 2 f (x)
∂x2∂x4

= 0, and∂ 2 f (x)
∂x3∂x4

= 1.
Based on Theorem 4, we can construct recursively a Boolean differential equa-

tion that describes a subset of all bent functions for any Boolean space of an even
numbern of variables.

We enumerate then variables byx = (x1, . . . ,xn).

1. If n = 2, the Boolean differential equation is (18).

2. If n > 2, createn−1 segmentations ofx into two subsetsx = (x0,x1). x0

includes the first variable ofx and for each segmentation one of the remain-
ing variables ofx. x1 includes the variables not selected forx0. Build 2-fold
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derivatives with regard to the variables ofx0 and connect each of them re-
cursively by the left-hand side of a Boolean differential equation created for
the associated set of variablesx1. Use the conjunction between the 2-fold
derivatives and the recursively build sub-expression and connectthese terms
by EXOR to the left-hand side of the Boolean differential equation which is
equal to 1.

The Boolean differential equation for all bent function of 4 variables (20) is
an example of the application of this recursive construction. Due to Theorem 2
the Boolean differential equation (20) is a necessary and sufficient condition for all
bent function of 4 variables.

A corollary of Theorem 4 is the fact that Boolean differential equations of 2-
fold derivatives allow to describe subsets of bent functions for a given number of
variables. This shows, similarly to the distribution of the bent functions to different
function classes which are characterized by theirSNF, that the bent functions of a
fixed number of variables can be classified furthermore.

A sufficient Boolean differential equation (23) for bent functions of 6variables
consists of 15 conjunctions of three 2-fold derivatives each. These terms are con-
nected by EXOR-operations and put into a Boolean differential equation which is
equal to 1. All six variables appear in the 2-fold derivatives of each term.

∂ 2 f (x)

∂x1∂x2
·

(

∂ 2 f (x)

∂x3∂x4
·

∂ 2 f (x)

∂x5∂x6
⊕

∂ 2 f (x)

∂x3∂x5
·

∂ 2 f (x)

∂x4∂x6
⊕

∂ 2 f (x)

∂x3∂x6
·

∂ 2 f (x)

∂x4∂x5

)

⊕

∂ 2 f (x)

∂x1∂x3
·

(

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x5∂x6
⊕

∂ 2 f (x)

∂x2∂x5
·

∂ 2 f (x)

∂x4∂x6
⊕

∂ 2 f (x)

∂x2∂x6
·

∂ 2 f (x)

∂x4∂x5

)

⊕

∂ 2 f (x)

∂x1∂x4
·

(

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x5∂x6
⊕

∂ 2 f (x)

∂x2∂x5
·

∂ 2 f (x)

∂x3∂x6
⊕

∂ 2 f (x)

∂x2∂x6
·

∂ 2 f (x)

∂x3∂x5

)

⊕

∂ 2 f (x)

∂x1∂x5
·

(

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x4∂x6
⊕

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x6
⊕

∂ 2 f (x)

∂x2∂x6
·

∂ 2 f (x)

∂x3∂x4

)

⊕

∂ 2 f (x)

∂x1∂x6
·

(

∂ 2 f (x)

∂x2∂x3
·

∂ 2 f (x)

∂x4∂x5
⊕

∂ 2 f (x)

∂x2∂x4
·

∂ 2 f (x)

∂x3∂x5
⊕

∂ 2 f (x)

∂x2∂x5
·

∂ 2 f (x)

∂x3∂x4

)

= 1.

(23)

It will be a future task to find Boolean differential equations for each Boolean
space of an even number of variables which describe all bent functionsin a neces-
sary and sufficient manner.
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5 Conclusion

We explored in this paper bent functions in the context of the specific normal form
(SNF) and the Boolean differential calculus (BDC). In detail we classified the bent
functions of two and four variables.

We found that for these Boolean spaces each bent function can be represented
by a fixed polarity ESOP with conjunctions of two variables and of an optional
complement (additionally a constant 1). For cases where the bent functionof a
class can be expressed by an ESOP with fewer conjunctions we listed theseminimal
ESOPs for the representative ESOP of such classes. Commonly, the number of
cubes in the SNF and the weight of a bent function indicate the number of cubes in
its fixed-polarity ESOP.

The BDC is a convenient theory to describe both linear functions and bentfunc-
tions. Boolean differential equations (BDE) allow both the specification of classes
or pairs of complemented classes and the set of all bent functions. Solvingthe BDE
of a certain set of bent functions generates directly this function set without search-
ing over the huge set of all 22n

Boolean functions ofn variables. The simpleness
of the algorithm to solve a BDE for a bent function was shown by a PRP for the
XBOOLE-Monitor. Necessary and sufficient BDEs are given for bent functions of
B2 andB4. A given algorithm allows to create recursively BDEs which describe
certain subsets of bent functions for each Boolean space of an even number of vari-
ables.
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6 Appendix: Representative Bent Functions of 4 Variables

Representative bent function of class 1:Cubes in SNF = 30
x3 x4 f
0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 1 0 1
1 0 0 0 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr1 = x1x2⊕x3x4
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Representative bent function of class 2:Cubes in SNF = 30
x3 x4 f
0 0 0 0 0 0
0 1 0 1 1 0
1 1 0 1 0 1
1 0 0 0 1 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr2 = x1x3⊕x2x4

Representative bent function of class 3:Cubes in SNF = 30
x3 x4 f
0 0 0 0 0 0
0 1 0 0 1 1
1 1 0 1 0 1
1 0 0 1 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr3 = x1x4⊕x2x3

Representative bent function of class 4:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 1 10
1 0 0 0 0 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr4 = x1x2⊕x3x4⊕x1x3

Representative bent function of class 5:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 0 0 1
1 1 1 1 10
1 0 0 0 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr5 = x1x2⊕x3x4⊕x1x4

Representative bent function of class 6:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 0 1 1
1 0 0 1 0 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr6 = x1x2⊕x3x4⊕x2x3

Representative bent function of class 7:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 1 0 0
1 1 1 0 1 1
1 0 0 0 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr7 = x1x2⊕x3x4⊕x2x4
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Representative bent function of class 8:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 1 0 0
1 1 0 1 1 1
1 0 0 0 0 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr8 = x1x3⊕x2x4⊕x1x2

Representative bent function of class 9:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 1 0 1
1 1 0 1 1 0
1 0 0 0 1 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr9 = x1x3⊕x2x4⊕x1x4

Representative bent function of class 10:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 1 1 0
1 1 0 0 1 1
1 0 0 1 0 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr10 = x1x3⊕x2x4⊕x2x3

Representative bent function of class 11:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 1 1 0
1 1 1 0 1 0
1 0 0 0 1 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr11 = x1x3⊕x2x4⊕x3x4

Representative bent function of class 12:Cubes in SNF = 34
x3 x4 f
0 0 0 0 1 0
0 1 0 0 0 1
1 1 0 1 1 1
1 0 0 1 0 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr12 = x1x4⊕x2x3⊕x1x2

Representative bent function of class 13:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 0 1 1
1 1 0 1 1 0
1 0 0 1 0 1

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr13 = x1x4⊕x2x3⊕x1x3



Classes of Bent Functions Identified by Specific Normal Forms... 381

Representative bent function of class 14:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 1 0 1
1 1 0 0 1 1
1 0 0 1 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr14 = x1x4⊕x2x3⊕x2x4

Representative bent function of class 15:Cubes in SNF = 34
x3 x4 f
0 0 0 0 0 0
0 1 0 0 1 1
1 1 1 0 1 0
1 0 0 1 1 0

0 1 1 0 x2
0 0 1 1 x1

The positive polarity ESOP is the minimal ESOP:

fbr15 = x1x4⊕x2x3⊕x3x4

Representative bent function of class 16:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 0 0 1
1 1 1 1 0 1
1 0 0 0 0 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr16 = x1x2⊕x3x4⊕x1x3⊕x1x4

Minimal ESOP in terms of products:
fbr16min = x1x2⊕x1x3x4⊕x1x3x4

Representative bent function of class 17:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 1 0 0
1 1 1 1 0 1
1 0 0 1 0 0

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr17 = x1x2⊕x3x4⊕x2x3⊕x2x4

Minimal ESOP in terms of products:
fbr17min = x1x2⊕x2x3x4⊕x2x3x4

Representative bent function of class 18:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 0 1 0
1 1 1 0 0 0
1 0 0 1 1 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr18 = x1x2⊕x3x4⊕x1x3⊕x2x3

Minimal ESOP in terms of products:
fbr18min = x3x4⊕x1x2x3⊕x1x2x3

Representative bent function of class 19:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 1 1 1
1 1 1 0 0 0
1 0 0 0 1 0

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr19 = x1x2⊕x3x4⊕x1x4⊕x2x4

Minimal ESOP in terms of products:
fbr19min = x3x4⊕x1x2x4⊕x1x2x4
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Representative bent function of class 20:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 1 1 1
1 1 0 1 0 0
1 0 0 0 0 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr20 = x1x3⊕x2x4⊕x1x2⊕x1x4

Minimal ESOP in terms of products:
fbr20min = x1x3⊕x1x2x4⊕x1x2x4

Representative bent function of class 21:Cubes in SNF = 38
x3 x4 f
0 0 0 0 0 0
0 1 0 1 1 0
1 1 1 1 0 0
1 0 0 1 0 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr21 = x1x3⊕x2x4⊕x2x3⊕x3x4

Minimal ESOP in terms of products:
fbr21min = x1x3⊕x2x3x4⊕x2x3x4

Representative bent function of class 22:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 1 0 0
1 1 0 0 0 1
1 0 0 1 1 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr22 = x1x3⊕x2x4⊕x1x2⊕x2x3

Minimal ESOP in terms of products:
fbr22min = x2x4⊕x1x2x3⊕x1x2x3

Representative bent function of class 23:Cubes in SNF = 38
x3 x4 f
0 0 0 0 0 0
0 1 0 1 0 1
1 1 1 0 0 1
1 0 0 0 1 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr23 = x1x3⊕x2x4⊕x1x4⊕x3x4

Minimal ESOP in terms of products:
fbr23min = x2x4⊕x1x3x4⊕x1x3x4

Representative bent function of class 24:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 0 0 1
1 1 0 1 0 0
1 0 0 1 1 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr24 = x1x4⊕x2x3⊕x1x2⊕x1x3

Minimal ESOP in terms of products:
fbr24min = x1x4⊕x1x2x3⊕x1x2x3

Representative bent function of class 25:Cubes in SNF = 38
x3 x4 f
0 0 0 0 0 0
0 1 0 1 0 1
1 1 1 1 0 0
1 0 0 1 1 0

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr25 = x1x4⊕x2x3⊕x2x4⊕x3x4

Minimal ESOP in terms of products:
fbr25min = x1x4⊕x2x3x4⊕x2x3x4
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Representative bent function of class 26:Cubes in SNF = 38
x3 x4 f
0 0 0 0 1 0
0 1 0 1 1 1
1 1 0 0 0 1
1 0 0 1 0 0

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr26 = x1x4⊕x2x3⊕x1x2⊕x2x4

Minimal ESOP in terms of products:
fbr26min = x2x3⊕x1x2x4⊕x1x2x4

Representative bent function of class 27:Cubes in SNF = 38
x3 x4 f
0 0 0 0 0 0
0 1 0 0 1 1
1 1 1 0 0 1
1 0 0 1 0 1

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr27 = x1x4⊕x2x3⊕x1x3⊕x3x4

Minimal ESOP in terms of products:
fbr27min = x2x3⊕x1x3x4⊕x1x3x4

Representative bent function of class 28:Cubes in SNF = 46
x3 x4 f
0 0 1 1 0 1
0 1 1 0 0 0
1 1 0 0 1 0
1 0 1 0 0 0

0 1 1 0 x2
0 0 1 1 x1

Positive polarity ESOP:
fbr28 = x1x2⊕x1x3⊕x1x4⊕x2x3⊕

x2x4⊕x3x4⊕1

Minimal ESOP in terms of products:
fbr28min = x2x3x4⊕x1x2x3⊕x1x2x4⊕

x1x2x3x4⊕x1x2x3x4


