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BDD Based Construction of Resilient Functions

Stanislav Stankovíc and Jaakko Astola

Abstract: The construction of modern cryptographic systems relies onthe so-called
resilient Boolean functions, a special class of Boolean functions that possesses a bal-
ance between a high level of nonlinearity and correlation immunity.

In this paper, we discuss the problem of the compact representation and efficient
construction of resilient functions. Binary Decision Diagrams (BDDs) were exten-
sively used as a method of compact representation of variousclasses of Boolean func-
tions. Furthermore, BDDs offer an opportunity for the efficient implementation of
different construction methods for resilient functions. In this paper, we make use of
BDDs with attributed edges to provide an implementation of two construction meth-
ods proposed by Maitra and Sakar. In addition, we demonstrate that the size of BDDs
of resilient functions obtained in this way grows linearly with the number of variables.

Keywords: Decision diagrams; BDD; resilient; Boolean; cryptography; bent func-
tions.

1 Introduction

Modern cryptographic systems rely on a class of Boolean functions known asre-
silient functions [6], [7], [14]. These functions posses several importantproperties,
which make them suitable for use in stream cyphers. The two most important
properties are correlation immunity and high nonlinearity. Resilient functions were
first studied by Siegenthaler in [21]. This class of functions is closely related to
bentfunctions, another class of Boolean functions with applications in cryptogra-
phy [9], [18]. Bent functions exhibit the highest nonlinearity and can be used as a
starting point to generate resilient functions [6].
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Binary decision diagrams (BDDs) are a canonic representation of Boolean func-
tions [3]. They are considered to be compact and efficient in terms of space and pro-
cessing time requirements. Properties of BDDs representingbent functions were
explored in [20]. The recursive nature of decision diagrams corresponds well to
the recursive nature of some well-known methods for the construction of resilient
functions, opening ways for more efficient implementations. These methods can
be divided into two broad groups: primary methods in which new resilient func-
tions are created directly, usually using Boolean functions from other classes as a
starting point, and secondary methods where resilient functions of a desired size
are generated from already known resilient functions of the smaller size.

In [14], Maitra and Sekar discuss the various methods of creation of resilient
functions. Functions constructed using these methods constitute a subset of a larger
set of all resilient functions. In this paper, we present a BDD based implementation
of one primary and one secondary method for the construction of resilientfunctions
as proposed in [14]. We make use of BDDs with attributed edges. Furthermore,
we demonstrate that the size of BDDs with attributed edges of resilient functions
obtained in this way grows linearly with the number of variables.

We begin our discussion by providing definitions of resilient functions andre-
lated terms in Section 2. A brief introduction to BDDs is given in Section 3. We
discuss the relationship between BDDs and resilient functions in Section 4. ABDD
based implementation of the primary construction method is presented in Section
5. In this method, a new resilient function is created by modifying a bent func-
tion of suitable properties. In Section 6, we present a BDD based implementation
secondary method for the construction of resilient functions. Resilient functions
of an arbitrary size are generated iteratively starting from already known resilient
functions of a smaller size. Finally, concluding remarks are given in Section7.

2 Resilient Functions

The stream cipher method is one of the most common approaches for encryption of
digital information. A given message, represented as a stream of bits, is encrypted
by the application of a bitwise EXOR operation with another sequence of bits called
the key stream. This key stream can be represented by a Boolean function. In
order to qualify for this task, a Boolean function needs to satisfy severalimportant
criteria. An improperly chosen Boolean function will render the system open to
various kinds of attacks. Boolean functions that satisfy these criteria areknown as
resilient functions. In what follows, we give the definitions of relevant functional
properties and related mathematical terms.

Definition 1. The Hamming weight of a binary string S is defined as the sum of its
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elements wt(S) = ∑λ
i=1S(i).

Definition 2. Let S1 and S2 be two binary strings of lengthλ . By #(S1 = S2) we
denote the number of places where S1 and S2 have equal value, and by#(S1 6= S2)
the number of places where they differ. The Hamming distance between S1 and S2

is defined as D(S1,S2) = #(S1 6= S2).

Definition 3. Let Vn be the vector space of n-tuples of elements of GF(2). A
Boolean function f is a mapping from Vn to GF(2). By Ωn we denote the set of
all possible mappings, i.e. the set of all Boolean functions defined on Vn.

The truth-vector F of a Boolean function f∈ Ωn is a binary vector of length2n

obtained by explicitly stating the output of the function f for each member of Vn.

Definition 4. A Boolean function f is balanced if its output is equally distributed,
i.e., the number of0 elements in its truth-vector F is equal to the number of1
elements.

The second important property of resilient functions, high algebraic degree,
is linked to polynomial function representation. Each Boolean functionf can be
uniquely represented by a polynomial.

Definition 5. Let f be a Boolean function. The Algebraic Normal Form of f is the
polynomial representation of f :

f (x1, ...,xn) =
⊕

(a1,...,an)∈Vn

f (a1, ...,an)x
a1
1 ...xan

n . (1)

In the exponents, the elements 0 and 1 of GF(2) are interpreted as integers 0 and
1.

The algebraic degreeof a function f is defined as the maximum number of
variables in terms xa1

1 ...xan
n in its Algebraic Normal Form.

The algebraic degree is an important measure of the linear complexity of Boolean
functions.

Definition 6. A Boolean function is linear if and only if it has the following form
f (x1, ...,xn) = a1x1⊕a2x2⊕ ...⊕anxn where ai ∈ GF(2).

Furthermore, a Boolean function is known as the Affine function if it has the
form f(x1, ...,xn) = a0⊕a1x1⊕a2x2⊕ ...⊕anxn where ai ∈ GF(2). The set of all
affine functions in Vn is denoted as An.

The algebraic degree of affine and linear functions is1.
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Another measure of the nonlinearity of a function is its minimal Hamming
distance from the set of affine functionsAn [17]. The class of Boolean functions
with the highest possible Hamming distance from the set of affine functionsAn are
bentfunctions [18].

Finally, a functionf is said to be correlation-immune of the ordert if the output
of the function is statistically independent of the combination of anyt of its inputs
[6]. In [12], Xiao and Massey provide the definition of thek-order correlation
immune Boolean function by using properties of its Walsh spectrum.

Definition 7. A Boolean function f(x1, ...,xn) is a k-ordered correlation immune
where, k< n, if and only if for any choice of t≤ k variables xi( j), 1 ≤ j ≤ t, the
function

g(x1, ...,xn) = f (x1, ...,xn)⊕
t⊕

j=1

xi( j)

is balanced [8].

These properties can be observed in many classes of Boolean functions. Their
presence determines the applicability of Boolean functions in cryptographicsys-
tems. Each of these properties is directly related to a certain type of attack to
which a system might be exposed. The absence of a certain property mightleave
the cryptographic system vulnerable. However, these properties imposecontradic-
tory constraints. Therefore, to be applicable in a cryptographic system, aBoolean
function needs to balance a trade off between certain criteria.

High algebraic degree provides immunity against the Berlekamp-Massey shift
register synthesis attack algorithm [15]. A large distance from the set of affine
functions ensures protection from affine approximation attack [10]. However, bent
functions, Boolean functions with the highest nonlinearity, are known notto be bal-
anced [18], which leaves them susceptible to other forms of attacks. Furthermore,
the maximal algebraic degree of ann-variable bent function isn/2 [18].

Correlation immunity of Boolean functions was first explored, in this context,
by Siegenthaler in [21]. This property is linked with the so-called divide-and-
conquer attacks [5]. However, correlation immunity is not a sufficient condition
for a function to be applicable as a stream key generator. For example,n variable
linear functions can have a high order of correlation immunity ofn−1. Further-
more, constant functions have an order of correlation immunity ofn.

The contradictory requirements of nonlinearity, especially high algebraic de-
gree, balancedness, and correlation immunity were first formulated by Siegen-
thaler [21] in the form of an inequality relating the number of logic variablesn,
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the order of correlation immunitym, and the algebraic degreek of a function, as
m+ k ≤ n−1. This fundamental inequality and above mentioned properties have
great implications on the structure and construction of resilient functions.

Definition 8. A Boolean function which is at the same time balanced and k-ordered
correlation immune is a k-orderedresilientfunction [6].

Resilient functions were first proposed by Siegenthaler in [21]. The classifi-
cation of resilient functions according to the properties of their Walsh spectra was
introduced in [12] by Zhen and Massey and further examined by Braeken et al.,
in [2] and [7].

Several methods were proposed for the construction of various families of func-
tions which optimize the Siegenthaler inequality, for example see [4], [6], [11], [16]
and [19]. These methods provide a way for constructing different subsets of a larger
set of all resilient functions.

Two distinct strategies were applied.

The first approach involves the direct construction of new resilient functions,
usually by the modification of a function from some other class, such as bentfunc-
tion, in order to change its properties to satisfy the Siegenthaler inequality. Meth-
ods that employ this strategy are known as primary constructions. We discuss a
BDD implementation of a primary construction proposed by Maitra and Sekar in
Section 5.

Another strategy involves the construction of resilient functions of a desired
size from already known resilient functions of a smaller size. These methods are
known as secondary constructions. In Section 6 we present in detail theBDD based
implementation of a secondary construction proposed in [14].

These two methods can be combined in such a way that a function created by
a primary construction serves as a building block for larger function generated by
secondary constructions.

3 BDDs

Decision diagrams are a method of compact representation of discrete functions.
They have found application in various fields, especially in logic design. The ap-
plication of decision diagrams for this sort of problems was first establishedin [3]
by Bryant, by showing that BDDs are canonic representations of Boolean functions.

BDDs are a class of decision diagrams for the representation of Boolean func-
tions based on the Shannon decomposition.
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Definition 9. Let f(x1, ...,xn) be an n-variable Boolean function. The Shannon de-
composition with respect to the variable xi is defined as f= x̄i f0⊕xi f1, i = 1, ...,n,
where f0 = f (xi = 0), and f1 = f (xi = 1).

Definition 10. A BDD of the function f(x1, ...,xn) is a directed acyclic graph G
consisting of a set of nodes B and a set of edges E. Nodes in decision diagrams
can be either non-terminal bn ∈ Bn or terminal bt ∈ Bt , where Bn and Bt are sets of
all non-terminal and terminal nodes of the diagram respectively, and B= Bn∪Bt .
Each edge e∈ E is an ordered pair of e= (bp,bc), where bp ∈ Bn is a parent node
and bc ∈ B is a child node.

Each non-terminal node in bk ∈ B represents a Shannon decomposition of the
function f(x1, ...,xn) with respect to xi , i = 0, ...,n. Every non-terminal node bk ∈Bn

has exactly two edge elements e0, e1 associated with it, where e0 corresponds to
f0 = f (xi = 0) and e1 to f1 = f (xi = 1).

Terminal nodes correspond to constant values of the truth-vector of the given
function f .

The function is determined from its BDD by traversing all the paths starting at
the root node and ending in terminal nodes. The inverse Shannon decomposition is
applied at each non-terminal node.

Definition 11. If the order of variables is identical for each path in the BDD, then
such a diagram is an ordered BDD.

Definition 12. A BDD is consideredreducedif it contains no isomorphic sub-
diagrams.

A reduced ordered BDD is a canonic representation of the Boolean function [3].

In this paper we focus on BDDs with attributed edges, an extension of the
concept of reduced ordered BDDs. We introduce two new edge labelsT̄ and Ē
which indicate changes in the reading rule of reduced ordered BDDs.

Definition 13. The labelT̄ associated with an incoming edge of the sub-diagram
indicates that the values of the terminal nodes of the sub-diagram should be com-
plemented.

In the recursive traversal of the BDD, this is accomplished by inverting the
output from the previous step of the recursion. The existence of the label T̄ adds
one moreIF-THEN-ELSE evaluation to the algorithm complexity per each step
of the recursion.

Example 1. Consider a sub-diagram for vector F= [0001]T . The change of the
reading rule indicated by thēT label associated with an incoming edge to this
sub-diagram results in the vector Fc = [1110]T .
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Definition 14. The labelĒ associated with and incoming edge of the sub-diagram
indicates that all the edge values in the sub-diagram should be permuted.

In the recursive traversal of the BDD, this corresponds to the difference recur-
sion flow, from the left branch first to right branch first, at each recursion step. The
labelĒ adds one moreIF-THEN-ELSE evaluation to the algorithm complexity at
each step.

Example 2. Consider again the sub-diagram for vector F= [0001]T . The change
of the reading rule indicated by thēE label associated with an incoming edge to
this sub-diagram results in the vector Fr = [1000]T .

The inclusion ofT̄ andĒ edge labels requires additional two bits for each at-
tributed edge in the BDD.

The number of non-terminal nodes is an important parameter of the complexity
of BDDs. BySize( f ) we denote the number of non-terminal nodes in the BDD for
the functionf . The size of a BDD is determined by the properties of the underlying
function. If no reductions are possible, a BDD is equivalent to a complete Binary
Decision Tree and consist of 2n − 1 non-terminal nodes. Thus, in general cases,
the size of a BDD grows exponentially with the number of function variables. This
rapid increase in the size of BDD represents a significant problem for theapplica-
tions of a BDDs in many cases. However, it can be shown that, for certain classes
of Boolean functions, the corresponding BDDs grow linearly with the number of
variablesn. In Section 6 we demonstrate that resilient functions obtained by the
constructions by Maitra and Sakar [13] are one such class.

For further details on decision diagrams in general, please refer, for example,
to [1] or [22].

4 Resilient Functions and BDDs

Special properties of resilient functions have a direct influence on the structure of
their BDDs. We exploit this in order to make efficient BDD based implementations
of construction methods for resilient functions.

The following operations over the truth-vector are of special interest for the
construction of resilient functions.

By Fu andF l we denote the upper and lower part of the truth-vector of the
function f , where f u = f (x1 = 0), f l = f (x1 = 1). If f ∈ Ωn then f u, f l ∈ Ωn−1.
Notice that this is equivalent to the Shannon decomposition of the functionf with
respect to the variablex1. In the BDD of f , f u and f l correspond to sub-diagrams
at level 1, associated with 0 and 1 edge of the root node respectively.
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Consider two Boolean functionsf ,g ∈ Ωn. A function h whose truth-vector
H is obtained by the concatenation of truth-vectors ofF andG, and denoted as
H = FG, is a Boolean function inΩn+1.

Let f ,g∈ Ωn−1 be two resilient functions with correlation immunity at leastm.
The two following constructions of resilient functionsQ,R∈ Ωn were proposed in
literature [13], [14], [21]:

1. Q( f ,g) = FuF l GuGl ,

2. R( f ,g) = GuGuGl Gl .

We point out that, in this framework, BDDs of the functionsf andg are sub-
diagrams of the BDDs of functionsQ andR, as shown in Figure 1.
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Fig. 1. BDD forQ( f ,g) = FuF l GuGl andR( f ,g) = FuGuF l Gl .

The total number of non-terminal nodes in BDDs,Size(Q) andSize(R) is in the
worst caseSize( f )+Size(g)+1. This constitutes the upper bound onSize(Q) and
Size(R). However, if the BDDs of functionsf andg share any isomorphic sub-
diagrams,Size(Q) andSize(R) are smaller, since only one copy of each sub-tree
is retained in a BDD. In the case wheref = g, i.e. the functions have identical
BDDs,Size(Q) = Size(R) = Size( f )+1, which is the lower bound onSize(Q) and
Size(R). Depending on the choice off andg, Size( f ) + 1 ≤ Size(Q), Size(R) ≤
Size( f )+Size(g)+1.
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Furthermore, these constructions can be used in conjunction with two other
important observations regarding resilient functions.

Definition 15. Consider a n-variable function f with a truth vector F. Function
f r with a truth vector Fr is obtained from f by reversing the truth-vector by the
following operation Fr(X1, ...,Xn) = F(1⊕X1, ...,1⊕Xn).

Statement 1. Functions f and fr have BDDs identical up to the labels on the
edges.

Example 3. Consider the two-variable Boolean function f= x1x2 and its truth-
vector F = [0001]T . The truth-vector for fr is Fr = [1000]T . As evident from
Figure 2, BDDs for f and fr have an identical distribution of non-terminal nodes
and edges. They are identical up to the edge labels.

The operation of reversing the function truth-vector results in permuting theleft
and right edge of every non-terminal node in the BDD. Functionsf and f r can be
represented by a single BDD. Only the reading rule needs to be altered in thecase
of f r . The information about the change in the reading rule needs to be explicitly
stored along with the BDD. This observation holds for any functionf ∈ Ωn.

Definition 16. Let f be an n-variable Boolean function with truth vector F. Func-
tion fc with a truth vector Fc is obtained from f as a bitwise complement of its
truth-vector Fc(X1, ...,Xn) = 1⊕F(X1, ...,Xn).

Statement 2. Functions f and fc have BDDs identical up to the value of terminal
nodes.

Example 4. Consider again the function f= x1x2 and its truth-vector F= [0001]T .
By bitwise complementing the truth-vector of f , we obtain Fc = [1110]T . Figure 2
shows the BDD for fc. These diagrams are identical up to values of terminal nodes.

The operation of bitwise complementing of the truth-vector is equivalent to
the complementing values of constants associated with terminal nodes in a BDD.
Functionsf and f c can be represented by a single BDD. Once again, the reading
rule needs to be altered in the case off c. This information needs to be specified
explicitly.

Furthermore, iff is a resilient function, then bothf r and f c are also resilient
functions [14].

These observations represent the foundation of the method for the construction
of resilient functions for an arbitraryn.
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Fig. 2. BDDs forF = [0001]T , F r = [1000]T and Fc =
[1110]T

Definition 17. Given a resilient function f∈ Ωn−1, we can construct f′ ∈ Ωn as:

f ′ = Ψ( f , f τ), (2)

whereΨ ∈ {Q,R} andτ ∈ {c, r, rc}.

Due to the properties of{Q,R} and{c, r, rc}, if f is resilient, thenf ′ is also
resilient. For a detailed discussion of the properties of resilient functions obtained
in this way, please refer to [14].

We have demonstrated that the functionf and f τ , τ ∈ {c, r, rc}, can be rep-
resented by a single BDD. Thus,Size( f ′) = Size( f )+ 1. In addition, we need to
explicitly represent the information about the reading rules associated with the f τ

sub-diagram. This can be done by associating additional edge labels with incom-
ing edges of thef τ sub-diagram. Since there are three possible reading rule choices
associated with{c, r, rc}, we need the total of two bits per each incoming edge to
represent this.

5 BDD Implementation of the Primary Construction of Resilient
Functions

In Section 2, we have indicated that a resilient function optimizes the Siegenthaler
inequality [21], the trade-off between the degree of correlation immunity, theal-
gebraic degree of a function, and its distance from a set of affine functions. By
definition, bent functions have the highest possible Hamming distance from the set
of affine functions. However, they have a limited maximal algebraic degree.The
idea is to modify an existing bent function, sacrifice something in the way of its
distance from the set of affine functions in order to increase its algebraicdegree.
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In [14], Maitra and Sekar propose the following construction method for the
construction of ann-variablem-order correlation immune functionf with an alge-
braic degreek, wherek = n−m−1.

Statement 3. Let f ∈ Ωn, where n= m+k+1 and m≥ 1. The truth vector F of f
is obtained by a series of constructions represented as(H,S1, ...,Sm+1), where for
i > 0, Si = (Φi ,τi), Φi ∈ {Q,R}. For even i,τi ∈ {c, r}, and for odd i,τi ∈ {c, rc}.

For i = 0, H is a truth vector of h∈ Ωk, is a k-variable Boolean function. For
even k, h is obtained from a bent function g∈ Ωk by adding the term x1x2...xk. For
odd k, h is obtained by concatenating function g∈ Ωk−1 with itself and the term
x1x2...xk, as g⊕g⊕x1x2...xk.

In [14], Maitra and Sekar provide proof of the optimality of resilient functions
constructed in this way. The resilient function thus constructed can be used in
conjunction with the secondary construction method presented in Section 6, i.e.
new larger resilient functions are constructed by a subsequent iterative application
of constructions{Q,R}×{c, r, rc}.

Furthermore, as demonstrated in [20] and [23], bent functions can be efficiently
represented using decision diagrams.

Example 5. Let k= 4, m= 3. Consider a four variable quadratic disjoint bent
function g= x1x2 ⊕ x3x4. Figure 3 is a BDD of this function. We obtain h by
appending the term x1x2x3x4 to g, i.e. h= g⊕x1x2x3x4 = x1x2⊕x3x4⊗x1x2x3x4. It
is evident from Figure 3 that in this case Size(h) < Size(g). Function h can be used
further to construct resilient functions. As demonstrated in the previous section, the
size of the BDD in each next iteration will increase by 1.
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6 BDD Implementation of the Secondary Construction of Resilient
Functions

Exploiting the properties presented in Section 4, we can generate resilient functions
of an arbitrary size.

By the recursive application of{Q,R}×{c, r, rc}, we obtain the sequence{a, f1, ..., fm},
wherea is the starting resilient function andf j ∈ {Q,R}× {c, r, rc}. The truth-
vectorFj of f j consists of 2j sub-vectors from the set of 8 possible vectors defined
from A of a.

These vectors areAu,Al ,Auc,Alc,Aur,Alr ,Aurc,Alrc .

However, as demonstrated earlier, BDDs forau andal are sub-diagrams in BDD
of a. BDDs ofauc,aur,aurc are equivalent up to the reading rule to the BDD ofau.
Likewise, BDDs ofalc,alr ,alrc are equivalent up to the reading rule to the BDD of
al . Thus,au,al ,auc,alc,aur,alr ,aurc,alrc are represented by the BDD fora.

This observation has important consequences for the recursive application of
the construction{Q,R}×{c, r, rc}.

Example 6. Consider the function f1 = R(a,ac), and f2 = R( f1, f r
1). The vector

F1 = AuAl AucAlc, and consequently F2 = Fu
1 F l

1Fur
1 F lr

1 . Figure 4 shows BDDs for
f1 and f2.

It is evident from Figure 4 that a BDD consists of two sub-diagrams corre-
sponding toa and ac. As shown earlier, these diagrams are identical up to the
values of the terminal nodes. Thus, only one copy can be retained. The label T̄
associated with the right edge of the diagram forf1 indicates the change in the
reading rule.

Likewise, the BDD forf2 consists of two sub-diagrams corresponding tof1 and
f r
1. Again, these two diagrams are identical up to the value of edge labels. Label

Ē associated with the right edge of the root node indicates the necessary change in
the reading rule.

As shown in Example 6, each application of the{Q,R}×{c, r, rc} construction
results in addition of one new node in the existing BDD. Sub-diagramsau andal

are the basic building blocks used in every step of the recursion.

Theorem 1. The complexity of the BDD with attributed edges of the function f
constructed from a resilient function a using the{Q,R}× {c, r, rc} construction
method, grows linearly with the number of variables.

Proof. Consider ann-variable resilient functiona. Its BDD consists of two sub-
diagrams forau andal , whereSize(a) ≤ Size(au) + Size(al ), from the definition



BDD Based Implementation of Maitra and Sekar Method 353

a
u

a
u a

u

a
u

a

f1

f1 f1f1

c

f2

f1

f2
f2

a a

a

a
c

a
c

a
uc

a
uca

l

a
l a

l

a
l

a
lc

a
lc

S

S

S S

S

S S

S
S

S

S S

0

0

0 0

0

0

0

0

0 0

0 01

1

1 1

1

1

1

1

1 1

1 1

T
_

T
_

T
_

E
_

Fig. 4. BDDs for functionsf1 and f2 in Example 6

of reduced ordered BDDs. From the Statement 1 and Statement 2, it followsthat
BDDs forau,auc,aur,aurc are identical up to the values of terminal nodes. The same
applies to BDDs foral ,alc,alr ,alrc .

Consider an(n+1)-variable functionf1 constructed fromaby using the{Q,R}×
{c, r, rc} construction method. From the properties of the Shannon decomposi-
tion, it follows that BDD of f has one new node at the topmost level. BDD off
consists of two sub-diagrams forf u and f l . The sub-diagram forf u in turn con-
sists of two sub-diagrams forf uu and f ul, and f l consists of sub-diagrams forf lu

and f ll , wheref uu, f ul, f lu, f ll ∈ {au,auc,aur,aurc,al ,alc,alr ,alrc}. Due to the BDD
reduction rules, and since sub-diagrams forau,auc,aur,aurc are isomorphic, and
sub-diagramsal ,alc,alr ,alrc are also isomorphic when using BDDs with attributed
edges, only single copies of the sub-diagrams forau and foral are retained. There-
fore,Size( f1) = Size(a)+1.

For anyn+k variable functionfk constructed fromfk−1, Size( fk)= Size( fk−1)+
1, recursivelySize( fk) = Size(a)+k.
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This property of BDDs can be exploited for efficient software or hardware im-
plementation of the proposed construction method. From the application point of
view, a library of basic building blocks could be designed, each block correspond-
ing to some simple resilient function represented by its BDD. Since the structureof
the BDD remains the same, one single block could represent the original function f ,
fr , fc and frc. The desired output could be selected as needed by an external signal.
These building blocks could be then interconnected to generate differentfunctions
of the desired size. Furthermore, it is possible to combine this method with the
primary method presented in Section 5. The starting functionf can be obtained by
modifying a suitable bent function using the primary construction method.

The construction procedure for anm-variable resilient function starting from an
n-variable resilient function could be formulated as follows:

1. From the library of functions, select ann-variable functionf , wheren < m.

2. Generate a BDD forf , with the possibility of choosing the reading rule.
BDDs for f u, f l are sub-diagrams of the BDD forf . Diagrams forf uc, f ur, f ucr

and f lc, f lr , f lcr are covered by diagrams forf u, f l respectively, up to the
choice of the reading rule.

3. Choose one of the constructions from{Q,R}×{c, r, rc}.

4. Add a new node to the BDD and create appropriate edges to generate the
diagram forf ′ with n+1 variables.

5. If n+ 1 < m, repeat the procedure withf ′ as a starting function, using the
diagram created in the previous step.

7 Conclusion

In this paper, we offered a reinterpretation of a method for two constructions for
resilient functions of an arbitrary size, based on BDDs with attributed . Onepart of
the proposed construction method is related to bent functions, a class of Boolean
functions which can also be generated and represented BDDs in an efficient manner.
The size of BDDs with attributed edges of the functions obtained in this way grows
linearly with the size of the function, an important observation from the point of
view of the efficient representation of large functions.

Furthermore, functions generated using the two constructions proposedmy
Maitra and Sekar are a subset of a larger set of resilient functions. BDDs with
attributed edges of these functions have a regular structure. One open question
arising from this conclusion is could this regularity in structure be exploited in an
attack on a system based on these functions. If so, this would imply that this par-
ticular subset of resilient functions is unsuitable for cryptographic applications.
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