FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 341-356

BDD Based Construction of Resilient Functions
Stanislav Stankovt and Jaakko Astola

Abstract: The construction of modern cryptographic systems relietherso-called
resilient Boolean functions, a special class of Boolearttions that possesses a bal-
ance between a high level of nonlinearity and correlatiomimity.

In this paper, we discuss the problem of the compact repratsem and efficient
construction of resilient functions. Binary Decision Diams (BDDs) were exten-
sively used as a method of compact representation of vatiasses of Boolean func-
tions. Furthermore, BDDs offer an opportunity for the effiti implementation of
different construction methods for resilient functions.this paper, we make use of
BDDs with attributed edges to provide an implementationaaf tonstruction meth-
ods proposed by Maitra and Sakar. In addition, we demoedtnat the size of BDDs
of resilient functions obtained in this way grows linearlitwthe number of variables.

Keywords: Decision diagrams; BDD; resilient; Boolean; cryptographgnt func-
tions.

1 Introduction

Modern cryptographic systems rely on a class of Boolean functions rkiasne-
silientfunctions [6], [7], [14]. These functions posses several impogenperties,
which make them suitable for use in stream cyphers. The two most important
properties are correlation immunity and high nonlinearity. Resilient functieare w
first studied by Siegenthaler in [21]. This class of functions is closelyeelto
bentfunctions, another class of Boolean functions with applications in cryatogr
phy [9], [18]. Bent functions exhibit the highest nonlinearity and carubed as a
starting point to generate resilient functions [6].
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Binary decision diagrams (BDDs) are a canonic representation of Bofiee-
tions [3]. They are considered to be compact and efficient in terms oéspal pro-
cessing time requirements. Properties of BDDs represebtngfunctions were
explored in [20]. The recursive nature of decision diagrams coorespwell to
the recursive nature of some well-known methods for the constructiossdient
functions, opening ways for more efficient implementations. These metlards ¢
be divided into two broad groups: primary methods in which new resiliert-fun
tions are created directly, usually using Boolean functions from othesedass a
starting point, and secondary methods where resilient functions of sedesie
are generated from already known resilient functions of the smaller size.

In [14], Maitra and Sekar discuss the various methods of creation itiergs
functions. Functions constructed using these methods constitute a stdtaper
set of all resilient functions. In this paper, we present a BDD based mggi&ation
of one primary and one secondary method for the construction of regiiections
as proposed in [14]. We make use of BDDs with attributed edges. Furthermo
we demonstrate that the size of BDDs with attributed edges of resilient fusction
obtained in this way grows linearly with the number of variables.

We begin our discussion by providing definitions of resilient functionsrand
lated terms in Section 2. A brief introduction to BDDs is given in Section 3. We
discuss the relationship between BDDs and resilient functions in SectioB®D.DA
based implementation of the primary construction method is presented in Section
5. In this method, a new resilient function is created by modifying a bent func
tion of suitable properties. In Section 6, we present a BDD based implementatio
secondary method for the construction of resilient functions. Resiligrdtitans
of an arbitrary size are generated iteratively starting from already krregilient
functions of a smaller size. Finally, concluding remarks are given in Se¢tion

2 Resilient Functions

The stream cipher method is one of the most common approaches for ioeop
digital information. A given message, represented as a stream of bits;rigoésd
by the application of a bitwise EXOR operation with another sequence of ligs ca
the key stream. This key stream can be represented by a Boolean funbtion
order to qualify for this task, a Boolean function needs to satisfy sewaprtant
criteria. An improperly chosen Boolean function will render the systenndpe
various kinds of attacks. Boolean functions that satisfy these criterienargn as
resilient functions. In what follows, we give the definitions of relevamidtional
properties and related mathematical terms.

Definition 1. The Hamming weight of a binary string S is defined as the sum of its
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elements wiS) = S, S(i).

Definition 2. Let § and $ be two binary strings of length. By #(S; = ) we
denote the number of places whegeaBd $ have equal value, and BYS;, # S)
the number of places where they differ. The Hamming distance betwesd &
isdefinedas [5,,S) =#(S1 # ).

Definition 3. Let \,, be the vector space of n-tuples of elements of BF A
Boolean function f is a mapping fromy Yo GF(2). By Q, we denote the set of
all possible mappings, i.e. the set of all Boolean functions defined.on V

The truth-vector F of a Boolean functionefQp, is a binary vector of lengtR"
obtained by explicitly stating the output of the function f for each membey. of V

Definition 4. A Boolean function f is balanced if its output is equally distributed,
i.e., the number 00 elements in its truth-vector F is equal to the numberlof
elements.

The second important property of resilient functions, high algebraicegeg
is linked to polynomial function representation. Each Boolean functi@an be
uniquely represented by a polynomial.

Definition 5. Let f be a Boolean function. The Algebraic Normal Form of f is the
polynomial representation of f:

f(xe,...x) = B f(ag,....an)xq X (1)

(a1,--,8n)EVh

In the exponents, the elements 0 and 1 of BFare interpreted as integers 0 and
1.

The algebraic degreef a function f is defined as the maximum number of
variables in terms %...x& in its Algebraic Normal Form.

The algebraic degree is an important measure of the linear complexity ofdédoole
functions.

Definition 6. A Boolean function is linear if and only if it has the following form
f(X1,..., Xn) = &1X1 B aX2 D ... B anXn Where a € GF(2).

Furthermore, a Boolean function is known as the Affine function if it has the
form f(Xq,...,Xn) = @@ ayX1 B aXe @ ... B anXy Where a € GF(2). The set of all
affine functions in Yis denoted as A

The algebraic degree of affine and linear functiong.is
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Another measure of the nonlinearity of a function is its minimal Hamming
distance from the set of affine functioAg [17]. The class of Boolean functions
with the highest possible Hamming distance from the set of affine funcfipase
bentfunctions [18].

Finally, a functionf is said to be correlation-immune of the ordérthe output
of the function is statistically independent of the combination oftamiyits inputs
[6]. In [12], Xiao and Massey provide the definition of tkeorder correlation
immune Boolean function by using properties of its Walsh spectrum.

Definition 7. A Boolean function (xy, ...,X,) is a k-ordered correlation immune
where, k< n, if and only if for any choice of £ k variables Xj), 1< j <t, the
function

t

9(Xa, - Xn) = F (X1, ..., %n) & P %)
=1

is balanced [8].

These properties can be observed in many classes of Boolean fundtiaeis
presence determines the applicability of Boolean functions in cryptograghic
tems. Each of these properties is directly related to a certain type of attack to
which a system might be exposed. The absence of a certain propertylaagat
the cryptographic system vulnerable. However, these properties inspogadic-
tory constraints. Therefore, to be applicable in a cryptographic syst@oolzan
function needs to balance a trade off between certain criteria.

High algebraic degree provides immunity against the Berlekamp-Massey shif
register synthesis attack algorithm [15]. A large distance from the seffiné a
functions ensures protection from affine approximation attack [10]. é¥ew bent
functions, Boolean functions with the highest nonlinearity, are knownaiog bal-
anced [18], which leaves them susceptible to other forms of attacks.effutine,
the maximal algebraic degree of mtvariable bent function is/2 [18].

Correlation immunity of Boolean functions was first explored, in this context,
by Siegenthaler in [21]. This property is linked with the so-called dividg-an
conquer attacks [5]. However, correlation immunity is not a sufficientitmm
for a function to be applicable as a stream key generator. For examydeiable
linear functions can have a high order of correlation immunityefl. Further-
more, constant functions have an order of correlation immunity of

The contradictory requirements of nonlinearity, especially high algebeic d
gree, balancedness, and correlation immunity were first formulated byrSieg
thaler [21] in the form of an inequality relating the number of logic varialvles
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the order of correlation immunitgn, and the algebraic degréeof a function, as
m+k < n— 1. This fundamental inequality and above mentioned properties have
great implications on the structure and construction of resilient functions.

Definition 8. A Boolean function which is at the same time balanced and k-ordered
correlation immune is a k-ordera@silientfunction [6].

Resilient functions were first proposed by Siegenthaler in [21]. Thesifla
cation of resilient functions according to the properties of their Walshtepeas
introduced in [12] by Zhen and Massey and further examined by Braekal.,
in [2] and [7].

Several methods were proposed for the construction of various fanfifies®
tions which optimize the Siegenthaler inequality, for example see [4], [6], [16]
and [19]. These methods provide a way for constructing differergetsiof a larger
set of all resilient functions.

Two distinct strategies were applied.

The first approach involves the direct construction of new resilienttfons,
usually by the modification of a function from some other class, such asuresit
tion, in order to change its properties to satisfy the Siegenthaler inequalitir- Me
ods that employ this strategy are known as primary constructions. We sliacus
BDD implementation of a primary construction proposed by Maitra and Sekar in
Section 5.

Another strategy involves the construction of resilient functions of a egsir
size from already known resilient functions of a smaller size. These meted
known as secondary constructions. In Section 6 we present in detBiDibdased
implementation of a secondary construction proposed in [14].

These two methods can be combined in such a way that a function created by
a primary construction serves as a building block for larger functionrgésd by
secondary constructions.

3 BDDs

Decision diagrams are a method of compact representation of discretefhsc
They have found application in various fields, especially in logic desigr. afh
plication of decision diagrams for this sort of problems was first establighi&]
by Bryant, by showing that BDDs are canonic representations of Bofle&tions.

BDDs are a class of decision diagrams for the representation of Boalaan f
tions based on the Shannon decomposition.
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Definition 9. Let f(xq, ..., Xn) be an n-variable Boolean function. The Shannon de-
composition with respect to the variableis defined as £ x fo® x f1,i =1,...,n,
where § = f(x, =0),and f = f(x =1).

Definition 10. A BDD of the function xy,...,xn) is a directed acyclic graph G
consisting of a set of nodes B and a set of edges E. Nodes in decisgrardia
can be either non-terminalke B, or terminal i € B;, where B and B are sets of
all non-terminal and terminal nodes of the diagram respectively, ardBB U B;.
Each edge & E is an ordered pair of e= (bp,bc), where b € By is a parent node
and k., € B is a child node.

Each non-terminal node inge B represents a Shannon decomposition of the
function f(x, ..., Xn) with respecttoxi=0,...,n. Every non-terminal nodegle B,
has exactly two edge elements e; associated with it, wheregecorresponds to
fo=f(x=0)andgto fi = f(x =1).

Terminal nodes correspond to constant values of the truth-vectoreagjitien
function f.

The function is determined from its BDD by traversing all the paths starting at
the root node and ending in terminal nodes. The inverse Shannomgesdion is
applied at each non-terminal node.

Definition 11. If the order of variables is identical for each path in the BDD, then
such a diagram is an ordered BDD.

Definition 12. A BDD is considerededucedif it contains no isomorphic sub-
diagrams.

Areduced ordered BDD is a canonic representation of the Booleatidarj8].

In this paper we focus on BDDs with attributed edges, an extension of the
concept of reduced ordered BDDs. We introduce two new edge |abaltsd E
which indicate changes in the reading rule of reduced ordered BDDs.

Definition 13. The labelT associated with an incoming edge of the sub-diagram
indicates that the values of the terminal nodes of the sub-diagram sheuwdr-
plemented.

In the recursive traversal of the BDD, this is accomplished by inverting the
output from the previous step of the recursion. The existence of the Tahdds
one morel F- THEN- ELSE evaluation to the algorithm complexity per each step
of the recursion.

Example 1. Consider a sub-diagram for vector £ [0001". The change of the
reading rule indicated by th@ label associated with an incoming edge to this
sub-diagram results in the vectofF=[1110T.
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Definition 14. The labelE associated with and incoming edge of the sub-diagram
indicates that all the edge values in the sub-diagram should be permuted.

In the recursive traversal of the BDD, this corresponds to the diftexeecur-
sion flow, from the left branch first to right branch first, at each reiom step. The
labelE adds one moreF- THEN- EL SE evaluation to the algorithm complexity at
each step.

Example 2. Consider again the sub-diagram for vector=F[0001". The change
of the reading rule indicated by thHe label associated with an incoming edge to
this sub-diagram results in the vectof E [100Q".

The inclusion ofT andE edge labels requires additional two bits for each at-
tributed edge in the BDD.

The number of non-terminal nodes is an important parameter of the complexity
of BDDs. By Siz€ f) we denote the number of non-terminal nodes in the BDD for
the functionf. The size of a BDD is determined by the properties of the underlying
function. If no reductions are possible, a BDD is equivalent to a complietar3
Decision Tree and consist of' 2 1 non-terminal nodes. Thus, in general cases,
the size of a BDD grows exponentially with the number of function variablag T
rapid increase in the size of BDD represents a significant problem faphlca-
tions of a BDDs in many cases. However, it can be shown that, for cettsaas
of Boolean functions, the corresponding BDDs grow linearly with the nurobe
variablesn. In Section 6 we demonstrate that resilient functions obtained by the
constructions by Maitra and Sakar [13] are one such class.

For further details on decision diagrams in general, please refer, éfon@e,
to [1] or [22].

4 Resilient Functions and BDDs

Special properties of resilient functions have a direct influence ontthetgre of
their BDDs. We exploit this in order to make efficient BDD based implementations
of construction methods for resilient functions.

The following operations over the truth-vector are of special interasthi®
construction of resilient functions.

By F! andF' we denote the upper and lower part of the truth-vector of the
function f, wheref! = f(x; = 0), fl = f(xg=1). If f € Qnthenf!, fl e Qn1.
Notice that this is equivalent to the Shannon decomposition of the funttioith
respect to the variabbg. In the BDD of f, f' and f' correspond to sub-diagrams
at level 1, associated with 0 and 1 edge of the root node respectively.
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Consider two Boolean functionk g € Q,. A function h whose truth-vector
H is obtained by the concatenation of truth-vectord~odnd G, and denoted as
H = FG, is a Boolean function if,, 1.

Let f,g € Qn_1 be two resilient functions with correlation immunity at least
The two following constructions of resilient functio@sR € Q,, were proposed in
literature [13], [14], [21]:

1. Q(f,g) =F'F'G"G,
2. R(f,g) = GYGYG'G'.

We point out that, in this framework, BDDs of the functiohgndg are sub-
diagrams of the BDDs of functior@ andR, as shown in Figure 1.

f g
O;EI 0;;\1
el g

s e

Fig. 1. BDD forQ(f,g) = FUFE!gUG! andR(f,g) = FUGUE'G.

1
g

The total number of non-terminal nodes in BDI3$&z€Q) andSiz€R) is in the
worst caseSizé f) + Sizég) + 1. This constitutes the upper bound 8izéQ) and
SizéR). However, if the BDDs of functions andg share any isomorphic sub-
diagrams Siz€Q) andSiz€R) are smaller, since only one copy of each sub-tree
is retained in a BDD. In the case whefe= g, i.e. the functions have identical
BDDs, Siz€Q) = Siz€R) = Sizé f) + 1, which is the lower bound 08iz€Q) and
SizéR). Depending on the choice dfandg, Sizéf) + 1 < Siz€Q), Siz€R) <
Sizé )+ Sizég) + 1.
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Furthermore, these constructions can be used in conjunction with two other
important observations regarding resilient functions.

Definition 15. Consider a n-variable function f with a truth vector F. Function
f' with a truth vector F is obtained from f by reversing the truth-vector by the
following operation F(Xy,...,X,) = F(1& Xy, ...,18X,).

Statement 1. Functions f and f have BDDs identical up to the labels on the
edges.

Example 3. Consider the two-variable Boolean function=fx;x, and its truth-
vector F= [0001". The truth-vector for fis R = [100QT. As evident from
Figure 2, BDDs for f and f have an identical distribution of non-terminal nodes
and edges. They are identical up to the edge labels.

The operation of reversing the function truth-vector results in permutinigthe
and right edge of every non-terminal node in the BDD. Functibasd f" can be
represented by a single BDD. Only the reading rule needs to be altereddagbe
of f'. The information about the change in the reading rule needs to be explicitly
stored along with the BDD. This observation holds for any funcfichQ.

Definition 16. Let f be an n-variable Boolean function with truth vector F. Func-
tion fc with a truth vector F is obtained from f as a bitwise complement of its
truth-vector FF(Xg,...,Xn) = 1 F(Xq, ..., Xn).

Statement 2. Functions f and f have BDDs identical up to the value of terminal
nodes.

Example 4. Consider again the function=£ x;x, and its truth-vector F= [0001 .
By bitwise complementing the truth-vector of f, we obtair-F111qQ". Figure 2
shows the BDD for §. These diagrams are identical up to values of terminal nodes.

The operation of bitwise complementing of the truth-vector is equivalent to
the complementing values of constants associated with terminal nodes in a BDD.
Functionsf and f¢ can be represented by a single BDD. Once again, the reading
rule needs to be altered in the casefbf This information needs to be specified
explicitly.

Furthermore, iff is a resilient function, then both’ and f¢ are also resilient
functions [14].

These observations represent the foundation of the method for thieiaziios
of resilient functions for an arbitrany.
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Fig. 2. BDDs forF = [000]", F" = [1000"T and F¢ =
11207

Definition 17. Given a resilient function £ Q,_1, we can construct’fe Q, as:
f'=W(f, f7), 2
whereW € {Q,R} andTt € {c,r,rc}.

Due to the properties ofQ,R} and{c,r,rc}, if f is resilient, thenf’ is also
resilient. For a detailed discussion of the properties of resilient functibtared
in this way, please refer to [14].

We have demonstrated that the functibrand f*, 7 € {c,r,rc}, can be rep-
resented by a single BDD. ThuSjzé f') = Sizéf) + 1. In addition, we need to
explicitly represent the information about the reading rules associated ittt th
sub-diagram. This can be done by associating additional edge labels waith-inc
ing edges of thé ™ sub-diagram. Since there are three possible reading rule choices
associated witHc,r,rc}, we need the total of two bits per each incoming edge to
represent this.

5 BDD Implementation of the Primary Construction of Resilient
Functions

In Section 2, we have indicated that a resilient function optimizes the Siedgntha
inequality [21], the trade-off between the degree of correlation immunityakhe
gebraic degree of a function, and its distance from a set of affindifunsc By
definition, bent functions have the highest possible Hamming distance feoseth

of affine functions. However, they have a limited maximal algebraic dedrke.
idea is to modify an existing bent function, sacrifice something in the way of its
distance from the set of affine functions in order to increase its algetiegiee.
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In [14], Maitra and Sekar propose the following construction method fer th
construction of am-variablem-order correlation immune functiohwith an alge-
braic degreds, wherek =n—m— 1.

Statement 3. Let f € Q,, where n=m+k-+1and m> 1. The truth vector F of f
is obtained by a series of constructions representetH$, ..., Sn1), where for
i>0,§=(d,1), P € {QR}. Forevenir € {c,r}, and for odd i,7; € {c,rc}.

Fori =0, H is a truth vector of ke Qy, is a k-variable Boolean function. For
even k, h is obtained from a bent functior @y by adding the termx,...xc. For
odd k, h is obtained by concatenating functios §_1 with itself and the term
X1X2... Xk, @S D gD X1 X2... X.

In [14], Maitra and Sekar provide proof of the optimality of resilient fun§o
constructed in this way. The resilient function thus constructed can lkinse
conjunction with the secondary construction method presented in Section 6, i.e
new larger resilient functions are constructed by a subsequent iteegtplication
of constructiond Q,R} x {c,r,rc}.

Furthermore, as demonstrated in [20] and [23], bent functions caffitiertly
represented using decision diagrams.

Example 5. Let k=4, m= 3. Consider a four variable quadratic disjoint bent
function g= x1%» @ X3X4. Figure 3 is a BDD of this function. We obtain h by
appending the termx>XsX4 to g, i.e. h= g® X1 XoX3Xg = X1 X2 B X3Xq @ X1X2X3X4. It

is evident from Figure 3 that in this case Siap< Siz€g). Function h can be used
further to construct resilient functions. As demonstrated in the previam®sethe
size of the BDD in each next iteration will increase by 1.

g X, XXX, h

X,

(s) s)

X3 [\ Xy X,/ X; X3\ X,
@ Xy X @ )_C4 @ @ Xy

X, o - L "34 / "x4 Xy o
0 0] 0|

Fig. 3. BDDs of the functiong = X3 X2 ® X3X4 andh = g® X1 XoX3X4.
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6 BDD Implementation of the Secondary Construction of Resignt
Functions

Exploiting the properties presented in Section 4, we can generate resiletiohs
of an arbitrary size.

By the recursive application §RQ, R} x {c,r,rc}, we obtain the sequenge, f1, ..., fm},
wherea is the starting resilient function anfj € {Q,R} x {c,r,rc}. The truth-
vectorF; of fj consists of 2 sub-vectors from the set of 8 possible vectors defined
from A of a.

These vectors ard¥, Al, AUC AlC AU All purc alic

However, as demonstrated earlier, BDDsd$anda are sub-diagrams in BDD
of a. BDDs ofa"c,a"", a!"® are equivalent up to the reading rule to the BDDabf
Likewise, BDDs ofal®, ", a" are equivalent up to the reading rule to the BDD of
a. Thus,a¥,a,a'¢ a¢,a"",a",a"",a are represented by the BDD far

This observation has important consequences for the recursive ajpliof
the constructio{ Q,R} x {c,r,rc}.

Example 6. Consider the functionif= R(a,a®), and % = R(fy, f{). The vector
F1 = AYA'AUAlC and consequently,F= F'F{F"F/". Figure 4 shows BDDs for
fy and %.

It is evident from Figure 4 that a BDD consists of two sub-diagrams €orre
sponding toa anda®. As shown earlier, these diagrams are identical up to the
values of the terminal nodes. Thus, only one copy can be retained. Bé&lella
associated with the right edge of the diagram foiindicates the change in the
reading rule.

Likewise, the BDD forf;, consists of two sub-diagrams correspondingstand
fi. Again, these two diagrams are identical up to the value of edge labelsl Labe
E associated with the right edge of the root node indicates the necessaiyecin
the reading rule.

As shown in Example 6, each application of @ R} x {c,r,rc} construction
results in addition of one new node in the existing BDD. Sub-diagrahanda
are the basic building blocks used in every step of the recursion.

Theorem 1. The complexity of the BDD with attributed edges of the function f
constructed from a resilient function a using th®,R} x {c,r,rc} construction
method, grows linearly with the number of variables.

Proof. Consider am-variable resilient functiom. Its BDD consists of two sub-
diagrams fora" anda', whereSizda) < Sizda") + Sizéa'), from the definition
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Fig. 4. BDDs for functionsf; and f, in Example 6

of reduced ordered BDDs. From the Statement 1 and Statement 2, it fdHeivs
BDDs fora!,a"c,a"",a""® are identical up to the values of terminal nodes. The same
applies to BDDs fod,a¢,a",a'".

Consider arin+ 1)-variable functionf; constructed frona by using the{Q, R} x
{c,r,rc} construction method. From the properties of the Shannon decomposi-
tion, it follows that BDD of f has one new node at the topmost level. BDDf of
consists of two sub-diagrams féF and f'. The sub-diagram fof" in turn con-
sists of two sub-diagrams fd" and f¥, and f' consists of sub-diagrams fét
andf!", wherefu ful_flu fll ¢ fau guc gur aurc gl alc a" a1, Due to the BDD
reduction rules, and since sub-diagrams dbra'c a'",a"" are isomorphic, and
sub-diagrams!, al°, a",a" are also isomorphic when using BDDs with attributed
edges, only single copies of the sub-diagramsafaand fora are retained. There-
fore, Sizé f1) = Sizéa) + 1.

For anyn+k variable functionf, constructed fronfy_1, Siz€ fy) = Sizé f,_1) +
1, recursivelySiz€ fy) = Sizéa) + k. O
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This property of BDDs can be exploited for efficient software or hanewm-
plementation of the proposed construction method. From the application oint o
view, a library of basic building blocks could be designed, each bloalespond-
ing to some simple resilient function represented by its BDD. Since the strufture
the BDD remains the same, one single block could represent the origicéibiai,
fr, fc andf.c. The desired output could be selected as needed by an external signal.
These building blocks could be then interconnected to generate differesiions
of the desired size. Furthermore, it is possible to combine this method with the
primary method presented in Section 5. The starting fundtioan be obtained by
modifying a suitable bent function using the primary construction method.

The construction procedure for anvariable resilient function starting from an
n-variable resilient function could be formulated as follows:

1. From the library of functions, select arvariable functionf, wheren < m.

2. Generate a BDD foff, with the possibility of choosing the reading rule.
BDDs for fY, f' are sub-diagrams of the BDD fdr Diagrams forf U, fur_ fucr
and f'° f!'_f°r are covered by diagrams fdt, f' respectively, up to the
choice of the reading rule.

3. Choose one of the constructions frg@, R} x {c,r,rc}.

4. Add a new node to the BDD and create appropriate edges to generate the
diagram forf’ with n+ 1 variables.

5. If n+1 < m, repeat the procedure with as a starting function, using the
diagram created in the previous step.

7 Conclusion

In this paper, we offered a reinterpretation of a method for two constnsfior
resilient functions of an arbitrary size, based on BDDs with attributed . ganteof
the proposed construction method is related to bent functions, a claslaaBo
functions which can also be generated and represented BDDs in agrgffimnner.
The size of BDDs with attributed edges of the functions obtained in this waysgro
linearly with the size of the function, an important observation from the pdint o
view of the efficient representation of large functions.

Furthermore, functions generated using the two constructions propoged
Maitra and Sekar are a subset of a larger set of resilient functiondDsBiith
attributed edges of these functions have a regular structure. One apstiog
arising from this conclusion is could this regularity in structure be exploitedhin a
attack on a system based on these functions. If so, this would imply that this pa
ticular subset of resilient functions is unsuitable for cryptographic agipdias.
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