
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 303-324

Overview about Low-Level and High-Level Decision
Diagrams for Diagnostic Modeling of Digital Systems

Invited paper

Raimund Ubar

Abstract: BDDs have become the state-of-the-art data structure in VLSI CAD. In
this paper, a special class of BDDs is presented called Structurally Synthesized BDDs
(SSBDD). The idea of SSBDDs is to establish one-to-one mapping between the nodes
of SSBDDs and signal paths in the related digital circuit. Such a mapping allowed
to investigate and solve with SSBDDs a lot of test and diagnosis related problems of
digital circuits, which are associated explicitly with thestructure. Such problems are,
for example, direct representation of faults, fault collapsing and fault masking, delay
testing, hazard detection, etc. The main concept of using SSBDDs is laying on the
topological view on the graphs, where each path on a SSBDD canbe mapped directly
to a subcircuit of the related circuit. Such a topological view allowed to generalize
the knowledge and methods of test synthesis and fault analysis from the Boolean level
to higher register-transfer and behavior levels of digitalsystems by introducing High-
Level DDs (HLDD). The paper gives a short historical overview of the development
of SSBDDs and HLDDs.

Keywords: Binary Decision Diagrams; logic level and high level BDDs; structurally
synthesized BDDs.

1 Introduction

Within the last two decades BDDs have become the state-of-the-art data structure
in VLSI CAD for representation and manipulation of Boolean functions. BDDs
were first introduced for logic simulation in [1], and for test generation in [2,3]. In

Manuscript received July 20, 2011. An earlier version of this paper was presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Conference Centre, Tuusula, Finland.

The author is with Computer Engineering Department Tallinn University of Technology Tallinn,
Estonia (e-mail:raiub@pld.ttu.ee).

Digital Object Identifier: 10.2298/FUEE1103303U

303

304 R. Ubar:

1986, Bryant proposed a new data structure called reduced orderedBDDs (ROB-
DDs) [4]. He showed the simplicity of the graph manipulation and proved the
model canonicity that made BDDs one of the most popular representations of
Boolean functions [5–7]. Different types of BDDs have been proposed and inves-
tigated during decades such as shared or multi-rooted BDDs [8], ternarydecision
diagrams (TDD), or in more general, multi-valued decision diagrams (MDD) [9],
edge-valued binary decision diagrams (EVBDD) [8], functional decision diagrams
(FDD) [10], zero-suppressed BDDS (ZBDD) [11], algebraic decision diagrams
(ADD) [12], Kronecker FDDs [13,14], binary moment diagrams (BMD)[15], free
BDDs [16], multiterminal BDDs (MTBDD) and hybrid BDDs [17], Fibonaccide-
cision diagrams [18] etc. Overviews about different types of BDDs canbe found
for example in [6,7,19].

Traditional use of BDDs has been functional, i.e the target has been to represent
and manipulate the Boolean functions by BDDs as efficiently as possible. Less
attention has been devoted to represent with BDDs the structural properties of the
circuits in the form of mapping between the BDD nodes and the gates, subcircuits
or signal paths of the related circuit implementations. The structural aspectof logic
circuits was first introduced into BDDs in [2, 20]. The idea was to establish one-
to-one mapping between the nodes of BDDs and signal paths in the related digital
circuit. Such a mapping allowed to investigate a lot of problems of design and
test, which essentially are caused by the structural properties of the given circuit,
directly and exclusively with BDDs. These BDDs were called initially alternative
graphs [2], and later structurally synthesized BDDs (SSBDD) [21] to stress the way
how the BDDs were synthesized directly from the gate-level network structure of
logic circuits.

The difficulties in developing of analytical multi-level and hierarchical ap-
proaches of digital test generation and fault simulation are related to the need of
different languages and models to handle different levels of abstractions. Most
frequent examples are logic expressions for combinational circuits, statetransi-
tion diagrams for finite state machines (FSM), abstract execution graphs, system
graphs, instruction set architecture (ISA) descriptions, flow-charts,hardware de-
scription languages (HDL, VHDL, Verilog, System C etc.), Petri nets for complex
digital systems. Most of them are not well suited for cause-effect reasoning in di-
agnostic modeling of systems. They also need specialized and dedicated forthe
given language processing and reasoning algorithms, which makes it difficult to
develop uniform approaches to test synthesis, fault analysis and diagnosis. HDL
based modeling methods which are efficient for simulation purposes lack the capa-
bility of analytical reasoning and analysis that is needed in test generation and fault
diagnosis.

Excellent opportunities for multi-level and hierarchical diagnostic modeling of

Overview about Low-Level and High-Level Decision Diagrams... 305

digital systems are provided by high-level decision diagrams (HLDD). They allow
uniform representation of different levels of abstraction, uniform graph-based fault
analysis, and uniform effect-cause or cause-effect proceduresfor diagnostic reason-
ing of digital systems. The main goal of introducing of HLDDs was to generalize
the diagnostic algorithms based on Boolean differential calculus and transformed
to the graph language of BDDs for using them at higher levels of system abstrac-
tion [22]. Whereas the traditional use of BDDs is based on graph manipulation
techniques, the generalization of SSBDD-based diagnosis algorithms for high-level
DDs lays mainly on the topological view on the graphs.

The rest of the paper is organized as follows. In Section 2, a short historical
overview of the SSBDD development is given, followed by presenting the defi-
nition and basic properties of SSBDDs together with describing the test related
operations with SSBDDs. Section 3 is devoted to high-level DDs. A short histor-
ical overview is given, followed by an example of using HLDDs for representing
high-level systems. Thereafter it is explained how the test related operations devel-
oped for SSBDDs were generalized to high-level graphs. Section 4 concludes the
paper.

2 Overview of Structurally Synthesized SSBDDS

2.1 Short history of SSBDD developments

The BDDs introduced by Lee [1] were not an attractive model for researchers for a
long time. The reason was the fast explosion of the complexity of BDDs for large
Boolean functions.

In Russia, the idea of using BDDs (named as Alternative Graphs) for represent-
ing Boolean functions was mentioned the first time in [23]. In the middle of 70-s
the research on BDDs was launched in the Institute of Control Problems, a leading
research institute of Russia in Moscow. Several papers were publishedin the most
prestigious Russian journal Avtomatika i Telemehanika (Avtomation and Remote
Mechanics) on using binary graphs for representing digital circuits [24], evalua-
tion of the complexity of binary programs [25], and on representing finite state
machines with binary programs [26]. However, the BDDs were found to have no
future in comparison with existing methods, and the research on this topic stopped.

In parallel, similar research was going on at the Tallinn University of Technol-
ogy, in Estonia, however, from another point of view. The main target was to create
a graph like model in a form of Binary Decision Diagrams to represent structural
aspects of combinational circuits, especially, to represent possible structural faults
in circuits, for test generation purposes. The graphs were synthesized directly from
the topology of the gate-level network, and they were called this time alternative

306 R. Ubar:

graphs. The first publications about the alternative graphs (SSBDDs)were in Rus-
sian [2], in German [27, 28] in 1976, and in English [29] in 1980. An overview of
SSBDDs was given also in the monographs [30,31].

The main motivation to introduce SSBDDs was to improve the efficiency of test
generation methods for combinational circuits by exploiting the possibility to re-
duce the complexity of the model compared to the traditional gate-level approaches.
Different properties of the SSBDD model were investigated in [31–35], which al-
lowed to develop efficient algorithms for test generation [29, 36]. A novel method
for synthesizing test pairs to make test sequences robust regarding self-masking of
multiple faults, was developed in [29, 37]. In [29], the first time, a generalfault
model, called later as conditional stuck-at-fault (SAF) model [38, 39] wasintro-
duced. Based on this idea, defect oriented fault simulation and test generation
methods were developed [40,41].

Based on the one-to-one mapping between the nodes in SSBDDs and the signal
paths in circuits, efficient methods of deductive [42] and critical path tracing [43]
fault simulation were developed. A very fast fault simulation approach based on
parallel reasoning of faults on SSBDDs simultaneously for many test patterns was
developed in [44], and later generalized for extended fault classes likeconditional
SAF [45] and X-fault model [46]. The first time, a novel algorithm for multivalued
simulation based on Boolean differential algebra was implemented with using SS-
BDDs [21,47]. Later, the SSBDDs were used for speeding-up timing simulation of
digital circuits [48] as well.

SSBDDs have been used for optimization of fault location processes in digital
circuits [49, 50], for design error diagnosis [51], for testability evaluation of cir-
cuits [52], and for optimization of SSBDDs for fast evaluation of the quality of
Built-in Self-Test of digital systems [53]. A new type of SSBDDs with multiple
inputs (SSMIBDD) was recently proposed to further optimize SSBDDs for fault
collapsing purposes [54], and speeding up logic simulation [55,56].

SSBDDs have been the basis of several software tools developed for test synthe-
sis and analysis, used in the industry. For example, the first automated test pattern
generator (ATPG) in the world based on BDDs was implemented in the beginning
of 80-s and used in the defence and computer industries in Soviet Union. In 1986
the authors of the ATPG were awarded by the Silver Medal from the Exhibition
of the National Economy in Moscow. Currently, the diagnostic software package
Turbo-Tester which includes tools for test generation and fault simulation isused
in many universities and institutions throughout the world [57].

Overview about Low-Level and High-Level Decision Diagrams... 307

2.2 SSBDDs as a structural-functional logic level model for digital circuits

Let us have a tree-like gate level combinational circuit with n inputs. For such a
circuit we can create by a superposition of elementary BDDs of the gates a SSBDD
with n nodes [20]. Between the paths in the tree and the nodes in the graph, there
exists a one-to-one mapping. Every combinational circuit can be regarded as a
network of modules, where each module represents a fan-out-free region (FFR) of
maximum size. The SSBDD model for a given circuit can be regarded as a set of
SSBDDs, where each of them represents such a FFR. This way of modeling the
circuit by BDDs allows to keep the complexity of the model (the total number of
nodes in all graphs) linear to the number of gates in the circuit.

Definition 1 SSBDD model for a given combinational circuit is a set of SSBDDs
covering all FFRs of maximum size and a set of 1-node SSBDDs covering all pri-
mary inputs which have fan-out branches.

As a side effect of the synthesis of the SSBDD model, we have got a strict
relationship between the nodes in the SSBDDs and the signal paths in the modules
(FFRs) of the circuit.

SSBDDs reflect two types of mapping between the graph model and the related
logic circuit: (1) the nodes in SSBDDs represent signal paths, and (2) certain groups
of the nodes in SSBDDs represent certain subcircuits of the whole circuit.

&

&

&

&

&

&

&

1

2

3

4

5

6

7

71

72

73

a

b

c

d

e

y

Module

6 73

1

2

5

72
71

y

0

1

()a ()b

Fig. 1. Combinational circuit and SSBDD.

Example 1 In Fig.1. we have a combinational circuit with a FFR-module and a
SSBDD which represents the Boolean function

y = (6∧73)∨ (1∨ (2∧71))(5∨72)

308 R. Ubar:

of the module, whereas the numbers 1,2,5,6 represent input variables, and the sub-
scripted numbers 71, 72 and 73 represent the branches of the fan-out stem 7 in the
circuit. The variables in the nodes of SSBDD, in general, may be inverted. The two
terminal nodes of the SSBDD are labeled by Boolean constants≡1 (truth) and≡0
(false). The SSBDD can be interpreted as a procedure of calculating thevalue of
the functional variable y at the given values of the node variables. The procedure
is carried out by tracing a path through nodes in the SSBDD. The value 1 ofthe
node variable means the direction to the right from the node, and the value 0 of the
node variable means the direction down. Calculation begins in the root node,and
the procedure will terminate in one of the terminal nodes ?1 or ?0. The value of y
will be determined by the constant in the terminal node where the procedure stops.
In this example, an input pattern 110000 (123456) is simulated, and the path

(6,1,2,7,5,≡ 1)

is traced (shown by bold lines in Fig. 1), producing the resulty = 1.

Later, for simplicity, we will omit the two terminal nodes in SSBDDs, and
agree that leaving the graph to the right means entering the node #1, and leaving
the graph down means entering the node #0.

To each of all 7 signal paths in the circuit, a node in the SSBDD corresponds.
For example, to the path from the input of the module 71 through internal nodes
a, d, ande in the module up to the outputy, the node 71 in the SSBDD corre-
sponds. On the other hand, for example, the group of nodes 6 and 73 in the SSBDD
represent a subcircuit of two gates c and y in the circuit.

Corollary 1 Since all the SAF faults on the inputs of a FFR form the collapsed
fault set of the FFR, and since all these faults are represented by the faults at the
nodes of the corresponding SSBDD, then it follows that the synthesis of aSSBDD
is equivalent to the fault collapsing procedure similar to fault folding [54].

Direct relation of nodes to signal paths and groups of nodes to subcircuits al-
lows to handle with SSBDDs easily such problems like fault modeling, fault col-
lapsing, fault masking, path delay or segment delay fault modeling, multi-valued
simulation, hazard analysis, fault diagnosis or faulty area diagnosis. Exploring sev-
eral specific properties of the SSBDDs allowed to increase the efficiencyof solving
different tasks of test generation, fault simulation and fault diagnosis.

2.3 Operations on SSBDDs

Consider a FFR-module of a circuit with a functiony = f (X) whereX is set of
input variables of the module. Let SSBDDGy with a set of nodesM represent the

Overview about Low-Level and High-Level Decision Diagrams... 309

module. Two nodes ofM , #0 and #1, are labeled with Boolean constants 0 and 1,
respectively. All remaining nodesm∈ M are labeled by variablesx(m) ∈ X, and
have exactly two output edges leading to the successor nodesm1 andm0 of m. The
variablex(m) may be inverted. The edge(m,me) in the SSBDD wheree∈ {0,1}
is called activated ifx(m) = e. A path (m,n) is called activated if all the edges
which form the path are activated. To activate a path(m,n) means to assign the
node variables along this path with proper values. Letm0 be the root node of a
SSBDDGy. And, letXt be an input vector applied at the momentt on the inputs of
the module represented by SSBDDGy. We call the vectorXt as a local test pattern
for the moduley = f (X).

2.3.1 Logic simulation

Logic simulation on the SSBDDGy means tracing the graph for the given test
patternXt which is applied to the moduley = f (X). As the result, the value of y
is calculated. The value ofy will be equal toe∈ {0,1} if there is activated a path
(m0, #e) from the root nodem0 to the terminal node #e in Gy. Logic simulation can
be carried out on SSBDDs in parallel for many test patterns [55].

Example 2 Consider the circuit and its SSBDD in Fig.1. Let for each nodem,
the right-hand edge is activated byx(m) = 1, and the lower-hand edge is acti-
vated byx(m) = 0. For simplicity, the terminal nodes with constants 0 and 1 are
omitted. The bold edges on the SSBDD show the activated path for a test vector
Xt = (1,2,5,6,7) = (11001) which calculates the valuey = 1.

2.3.2 Path activation

A reverse task to logic simulation is path activation which has the goal to find
a proper assignmentXt to produce the needed value fory. Test generation on
SSBDDs is based on path activation tasks.

2.3.3 Test generation

To generate a test pattern for testing the faultx(m)/e (x(m) stuck-ate) at the node
m, e∈ {0,1}, two paths are to be activated: (1) a path (m0,#e∗),wheree∗ ∈ {0,1},
ande∗ 6= e, which contains the nodem, and (2) a second path (me, #e). Both paths
should be activated consistently, i.e. by the same assignmentXt . If x(m) = e∗ (the
correct case) the output value will bey = e∗, otherwise, ifx(m) = e (the case when
the fault is present),y = e.

310 R. Ubar:

m m1

()a

m0

1

2 3

4

5

9

6 7 8

11

10

0

1

()b

No trial

needed

Fig. 2. Illustrations for the Properties 1 (a) and for the Property 2 (b) ofSSBDD.

Example 3 As an example, consider test generation on the SSBDD for the fault
71/0 (stuck-at-0 at the node 71) in Fig.1. When activating the path (m0, #1), 71 = 1,
through nodes 6,1,2,71,5 on the SSBDD to the terminal node #1, we construct the
test patternXt = (1,2,5,6,7) = (11001). The second path (me, #0) consists only of
the terminal node #0, and hence, is constantly activated. Note that the test pattern
generated for the node 71 of the SSBDD, detects the faults 71/0, a/1, d/0, e/1,
andy/0 in the related gate-level circuit.

Test generation can be accelerated by exploiting the following properties of
SSBDDs.

Property 1 In SSBDDs, for each node m, there exists either a path(m1,m0) or a
path(m0,m1), see Fig.2a. The proof of the Property 1 results from the method of
superposition of the SSBDD synthesis [22].

When generating a test pattern for a fault in a moduleCk which is a part of a
circuit C, then the whole test generation task consists of three subtasks: (1) test
generation for a fault inCk, (2) fault propagation from the outputy of Ck to the
primary outputs ofC, and (3) justification of the assigned values during the first
two subtasks by the values of the primary inputs ofC. Propagation of the fault
from the input of the module to its output is a test generation task for the module.
Justification of the value on the output of the module by the values on its inputs is a
path activation task. All the listed tasks should be solved consistently by generating
a single test vector for the primary inputs ofC. When an inconsistency is found, a
backtrack to the last assignment should be made to carry out another trial.

Overview about Low-Level and High-Level Decision Diagrams... 311

The following property of the SSBDDs allows to reduce dramatically the num-
ber of backtracks.

Property 2 If in SSBDD, no path (m, #e) with x(m) = e, can be activated, then no
path (m, #e) with x(m) = e∗, wheree 6= e∗, cannot be activated as well. The proof
of the Property 2 is based on the Property 1 [22].

Example 4 In Fig.2b, a path (1, #1) should be activated. Assume that a path (1,9)
shown by bold lines is activated. Assume as well that the values of the variables
9 and 10 have been already (during processing of other graphs) assigned to 0, and
therefore, no path exists from 9 to the terminal #1. We should backtrace now to the
nodes 4, and then to 3 and then to 2 to try other search possibilities.

Using Property 1, there is no need any more for these backtraces, because ac-
cording to Property 1, after failing in the node 9, we can immediately return the
message “No path (1, #1) can be activated”.

2.3.4 Fault simulation

The goal of fault simulation is to determine which faults are detected by the given
test pattern. On SSBDDs, first, the activated path (m0, #et), et ∈ {0,1}, will be
determined by logic simulation of the given patternXt . Let Mt ⊆ M is the subset of
nodes which belong to the activated path (m0, #et). All the nodes inMt should be
suspected as candidate locations of a fault when an error is observed on the output
y of the module. However, the set of suspected faulty nodes can be easilypruned by
further simulation on the SSBDDs. The fault at the nodem∈ Mt , which changes
the value ofx(m), is detected by the patternXt , if Xt activates as well a second
path(m∗,#et∗), wherem∗ is the successor of m, not belonging toMt , andet∗ 6= et .
The following property (so called “direction rule”) for SSBDDs allows to reduce
the number of suspected candidate nodes inMt without simulation, and hence, to
speed up the total fault simulation process.

Property 3 If a test vectorXt which activates in the SSBDD a path(m,#et), then
only these nodesm∈Mt , wherex(m) = et , may be the candidate fault locations and
should be checked for existing of the second activated path(m∗,#et∗). The proof is
based on Properties 1 and 2 [22].

Example 5 Consider in Fig.1 the path through nodes 6,1,2,71,5 on the SSBDD
activated to the terminal with constant 1. According to Property 3, only the nodes
2, 71 and5 may be the candidate fault locations, and should be checked if changing
the direction of the path from these nodes will lead to the terminal with constant
0. For the nodes 2 and 71, simulation is not needed. The faults in 6 and1 cannot
change the value on the output at this test pattern.

312 R. Ubar:

2.3.5 Fault diagnosis

SSBDDs can be efficiently used in fault diagnosis carried out accordingto the
effect-cause concept. Consider a circuit in Fig.3 where an error on theoutput is
detected at the given test pattern. The erroneous signals are backtraced through the
circuit in the following way. Assume that the output signal of the moduleC is er-
roneous. Traditional way would be now to test all the input signals of the module.
If all the input signals ofC will be correct then the fault is located in this module.
Otherwise, if an error is detected on an input then the backtracing procedure will be
continued from this input towards the primary inputs of the circuit. SSBDDs allow
to reduce the number of measurements during the backtracing of error signals.

Error

detected

Error signal traced

C...
Where

to continue
tracing?

1

2 3

4

5

6 8 1

7

0

()a ()b

Fig. 3. Fault diagnosis using SSBDDs.

Example 6 In Fig.3, the SSBDD of the moduleC under diagnosis is shown. The
module has 8 inputs and the SSBDD has 8 nodes. Consider the path activatedby
the failed test pattern (bold lines on the SSBDD). The correct value on the output
of the moduleC should be 0. Similarly, as during the fault simulation, according to
Property 3, only three nodes 1, 6, and 7 from all the eight nodes of the SSBDD may
be the fault location candidates and should be pinpointed in the case of the error on
the output ofC.

2.3.6 Multi-valued simulation

SSBDDs allow to carry out dynamic analysis of gate networks (delay fault simula-
tion, hazard detection etc.) by using multi-valued simulation [21]. Consider, asan
example, 5-valued simulation with the alphabetS= {0,1,ε,h,x}, where the value 0
(1) represents a type of waveform having a stable logic value 0 (1),ε(h) represents
a waveform having a step-up transition from 0 to 1 (step-down transition from 1
to 0), and x represents unknown waveform or dont care waveform. Handling the
valuesε, h, x on SSBDDs has a similarity with fault simulation where we consider
as well the instability of a signal in this case, correct value vs. erroneousvalue.

The idea of a uniform handling of the multi-valued simulation and fault simu-
lation is based on partial Boolean derivatives. Let the SSBDD with a set ofnodes

Overview about Low-Level and High-Level Decision Diagrams... 313

M represent a circuit with a functiony= f (X). The condition of detecting a fault at
the nodemcan be represented by the Boolean differential equation∂y/∂x(m) = 1.
To satisfy this equation, two paths have to be activated: (m0, #e) which contains m,
and (me∗ ,#e∗), wheree 6= e∗. Differently from the fault simulation where the values
of variables are binary, in multi-valued simulation, it is not the case.

To solve the problem of multi-valued simulation, in [21] the concept of maxi-
mum of Boolean derivatives was introduced, where the max{∂y/∂x(m)} was cal-
culated over all combinations of the dynamic values in the alphabet S. For SSBDDs,
it means that on the path (m0, #e), for all the nodesm with encountered valuesε,
h, x, these values are to be changed toe, and on the related paths (me∗ , #e∗), all
the encountered valuesε, h, x are to be changed toe∗. Assume,x(m) = {ε,h,x}.
The multi-valued simulation will have the following result: if max{∂y/∂x(m)}= 1,
theny= x(m), otherwise, if max{∂y/∂x(m)}= 0, then the value ofy will be e= e∗.
The value x on the output of the module means static hazard. For detecting dynamic
hazards, the number of signal values (waveform types) should be increased [21].

Presented above methods of using SSBDDs have been implemented as different
tools of test generation, fault simulation and fault analysis and are integrated in a
computer aided test tool Turbo-Tester [57].

2.4 Modeling digital systems with multiple input SSBDDs (SSMIBDD)

The idea of decomposition of digital circuits into the FFR modules of maximum
size was to keep the complexity of the SSBDD model measured in the number of
nodes linear to the number of gates in the circuit [21].

Synthesis of the SSBDD model by the graph superposition procedure [2,20]
starts from the initial set of BDDs, where each logic gate is represented bya BDD.
Each superposition step merges two graphs and removes a node from the whole
SSBDD model.

In the synthesis approach for SSBDDs, the superposition stopped in the fan-out
nodes of the SSBDD where each of them represents a path in the related FFR from
a fan-out branch to the output of the FFR. If continuing the superpositionbeyond
the fan-out stems of the circuit, we would have to substitute all the fanout nodes by
the BDD of the fan-out gate, which would mean that instead of reducing the model
its size in the number of nodes would explode.

By introducing the concept of SSBDDs with multiple inputs (SSMIBDD), we
can still further compress the SSBDD model by continuing the superposition pro-
cedure beyond the fan-out stems

In [54, 55], a method was proposed for partial superposition of BDDs beyond
the fan-out stems of the circuit. To avoid the explosion of the model, and to still
continue removing the nodes from the model by superposition, we allow for fanout

314 R. Ubar:

&

&

&

1

1

1

1

1

&

&

&

&

1

1

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

14 11

7

19

15 1217

3 4

14

11

0 0

17

16

20

18

2

5 1

15

12

10

13

0

18

9 8

21

6 10

16

13

0

1

()a ()b

Fig. 4. SSBDDs with multiple inputs (shared SSBDDs).

Table 1. Mapping between the nodes of SSMIBDDS and the paths in the circuit

SSMIBDD for 19

Node Path

14 140−19
11 110−19
7 7−19
15 150−170−19
12 120−141−170−19
3 3−111−141−170−19
4 4−111−141−170−19

SSMIBDD for 20

Node Path

17 171−20
16 160−180−20
13 130−151−180−20
5 5−121−151−180−20
1 1−100−121−151−180−20
2 2−100−121−151−180−20

SSMIBDD for 21

Node Path

18 181−21
9 9−21
8 8−161−21
6 6−131−161−21
10 101−131−161−21

stems xi with a set of branchesB(xi) = {xi,1,xi,2, . . . ,xi,k} the procedure of superpo-
sition for a single nodexi, j ∈ B(xi) only. At this superposition point, an additional
input to the SSBDD under construction is established. This would be anotheren-
tering point for the graph to calculate the value ofxi if a demand for that will appear
from the other nodes of the model labelled byx∗i, j ∈ B(xi)\xi, j . As the result, in the
SSMIBDD model of the circuit, the total number of nodes will be smaller than in
the SSBDD model, which means additional fault collapsing, whereas the mapping
between the nodes in SSMIBDDs and signal paths in the circuit will remain still
valid.

Overview about Low-Level and High-Level Decision Diagrams... 315

Example 7 Consider as an example a combinational circuit and a set of three SS-
MIBDDs in Fig.4. The BDDs represent disjoint parts of the circuit highlighted in
Fig.4. Table 1 describes the mapping between the signal paths in the circuit and the
nodes in the SSMIBDD model. We use the notation where the subscripts 0 and 1of
the node numbers in the circuit correspond to the higher and lower fanoutbranches,
respectively. The activated paths are highlighted on the graphs by bold arrows for
the input patternXt = (1,2,3,4,5,6,7,8,9) = (100100111). The output values of
the circuit calculated on the SSMIBDDs arey19 = 0, y20 = 0, y21 = 1.

3 Overview of High Level DDS

3.1 Short history of HLDD developments

High-level approaches to diagnostic analysis of digital systems lay on different
languages and models. Most frequent examples are state transition diagrams for fi-
nite state machines (FSM), abstract execution graphs, register transferlevel (RTL)
flowcharts, system graphs, instruction set architecture (ISA) descriptions, hardware
description languages (HDL, VHDL, Verilog, System C), Petri nets for system level
description. All these models need different dedicated algorithms, which makes it
difficult to create a uniform high-level approach to diagnostic analysis ofdigital
systems. Existing high-level modeling methods which are efficient for simulation
lack the capability of analytical reasoning that is needed for formalizing testgener-
ation and fault diagnosis problems. Promising opportunities for multi-level andhi-
erarchical diagnostic modeling of digital systems provide decision diagrams (DD)
because of their uniform cover of different levels of abstraction, andbecause of
their capability for uniform graph-based fault analysis and diagnostic reasoning
principles. The most important impact of the high-level DDs (HLDD) is the pos-
sibility of generalization and extending of the methods developed for logic circuits
using BDDs to higher abstraction levels of digital systems on the uniform graph
based formalism.

The first attempt in generalization of BDDs for representing RTL digital sys-
tems by introducing vector alternative graphs (VAG) was done in [58,59]. The data
path RTL circuits were represented as a set of functionally linked vector HLDDs
(called VAGs) where the nodes of graphs were labeled by logic control variables,
state variables of FSMs, and n-bit word register variables (instructions or microin-
structions). A method was presented for automated test microprogram synthesis
for data paths. In [60, 61], a method was proposed for automated synthesis of
test programs with HLDDs for microprocessors. A short overview of SSBDDs
and HLDDs was given in the All-Union Workshop “Technical Diagnostics”[62],
which was the most important event in this field in the former Soviet Union, and

316 R. Ubar:

an extended description of the joint theory of DDs was presented in the disserta-
tion [22] which included the implementation results of the SSBDDs and HLDDs in
the computer industry of SU.

During 1987 1995, after the collapse of SU and as the result of subsequent
economic instabilities in Estonia the scientific research was not the first priority
among the students and university staff. The first overview paper in English about
the joint presentation of DDs was published in 1996 [20].

During the last decade, the HLDDs have been used in different fields ofhigh-
level and hierarchical test. As the result, new promising algorithms, techniques
and prototype tools have been developed, which allowed to improve the efficiency
of RT level cycle based simulation [63, 64], hierarchical test program automated
synthesis [65,66], hierarchical fault simulation [67,68], and fault diagnosis [69].

3.2 HLDD as a structural-functional high-level model for digital systems

The goal for introducing of HLDDs was to generalize the logic level methodsand
algorithms of fault simulation, test generation and fault diagnosis from logic level
to higher RTL and functional levels. For this purpose, the class of variables was
extended from Boolean ones to the Boolean Vector, and integer variables, and the
class of Boolean functions was extended to the data manipulation operations typi-
cally used in high-level descriptions of digital systems.

y4

y3 y1 R 1 + R 2

IN + R 2

R 1* R 2

IN* R 2

y2

R 2
0

1

2 0

1

0

1

0

1

#0

R 2

IN

R 1

2

3

R1

R2

M1

M2

M3

IN

y1 y2 y3 y4

a
c

b

d

e
+

*

()a ()b

Fig. 5. Representing a register transfer level data path by a HLDD.

In Fig.5, an example of a RTL data-path and its HLDD is presented. The vari-
ablesR1 andR2 represent registers,IN denotes the input bus, the integer variables
y1, y2 , y3, y4 represent control signals,M1, M2, M3 are multiplexers, and the func-
tionsR1+R2 andR1∗R2 represent the adder and multiplier, correspondingly. Each
node in the DD represents a subcircuit of the system (e.g. the nodesy1, y2 , y3,

Overview about Low-Level and High-Level Decision Diagrams... 317

y4 represent multiplexers and decoders). The whole DD describes the behavior
of the input logic of the registerR2. To test a node in the DD means to test the
corresponding to the node component or subcircuit.

Depending on the class of the system (or its representation level), we may have
various HLDDs where the nodes have different interpretations and relationships to
the system structure. In the RTL descriptions, we usually partition the systeminto
control and data paths. In this case, the nonterminal nodes in the HLDDs corre-
spond to the control path, and they are labeled by state or output variablesof the
control part, interpreted as addresses or instruction words. On the other hand, the
terminal nodes in the HLDDs correspond to the data path, and they are labeled by
the data words or functions of data words, which correspond to buses,registers, or
data manipulation blocks. The state transfer and output functions of control circuits
are represented as well by HLDDs. When using HLDDs for describing complex
digital systems, we have to represent the system by a suitable set of interconnected
components (combinational or sequential subcircuits). Thereafter, we have to de-
scribe the components by their functions which can be represented by HLDDs.

Two methods for synthesis of HLDDs for representing digital systems were
described in [65, 70]. The first method is based on symbolic execution of proce-
dural descriptions, which corresponds to the functional representation of systems.
The method can be used in cases when the system is given functionally as a pro-
cedure in a hardware description language. The second method is basedon itera-
tive superposition of HLDDs, and the created model corresponds to the high-level
structural representation of the system. The method can be used in cases when the
system is given structurally as a network of components (subsystems), and for each
component its HLDD is already given. The second method can be regarded as a
generalization of the superposition procedure for BDDs [20].

3.3 Operations on HLDDs

The methods for test generation and fault simulation developed for SSBDDscan be
easily generalized for using at higher abstraction levels of systems. The possibility
of such a generalization results from the topological similarity of DDs at lowerand
higher levels (Fig.6). In case of SSBDDs, each node has two output edges, and the
graph has two terminal nodes with constants 0 and 1. HLDDs differ from SSBDDs
in having more edges from nodes and more terminal nodes, whereas the terminal
nodes in general case may be labeled by functions. Both graphs represent a map-
ping into the structure of the system they describe. In both cases, the faultsin the
system can be modeled similarly by errors in the nodes or in the interconnections
between the nodes. In both cases, for both types of graphs, test generation for a
given nodem is carried out by activating a path from the root node tom and from

318 R. Ubar:

all successor nodes ofm to different terminal nodes.
Consider a systemSas a network of components (or subsystems) where each

component is represented by a functiony = f (X) whereX is a set of variables
(Boolean, Boolean vectors or integers), andV(x) is a finite set of possible values of
x∈ X. Let HLDD Gy with a set of nodesM represent this component. The terminal
nodesmT,i ∈ MT may be labeled either by variablesx(mT,i) ∈ X, digital functions
x(mT,i) = f T,i

m (X), or constantsx(mT,i) ≡ ci . All the remaining nodesm∈ M\MT

are labeled by variablesx(m) ∈ X, and have|V(x(m))| output edges leading to the
successor nodesme wheree∈ V(x(m)). The edge(m,me) in the HLDD is called
activated ifx(m) = e. A path(m,n) is called activated if all the edges which form
the path are activated. To activate a path(m,n) means to assign the node variables
along this path with proper values. Letm0 be the root node of a HLDDGy. Let Xt

be an input vector applied at the momentt on the inputs of the module represented
by Gy. We call the vectorXt as a local test pattern for the componenty = f (X).

3.3.1 Logic simulation

It is easy to see that the SSBDD defined earlier can be regarded as a special case
of HLDDs. Similarly, as we defined the operations of logic simulation and path
activation in Section 2.3 for SSBDDs we can do it for HLDDs.

Example 8 In test pattern simulation, a path is traced in the graph, guided by the
values of input variables of X until a terminal node is reached, similarly as in the
case of SSBDDs. In Fig.5, the result of simulating the vector Xt = (y1, y2, y3, y4,
R1, R2, IN) = -,0,3,2,10,6,- is R2 = R1*R2 = 60 (here - means dont care, thebold
arrows mark the activated path, and the grey node R1*R2 is reached by simulation).
Instead of simulating by a traditional approach all the components in the circuit,in
the DD only 3 control variables are visited during simulation (y4, y3, y2,), and only
a single data manipulation R2 = R1*R2? MT is carried out.

3.3.2 Test generation

The differences in test generation result from the fact that the number of output
edges from nodes and the number of terminal nodes in HLDDs are in general case
larger than 2. The fault model in the case of HLDDs is also more complex than
in the case of SSBDDs, and will be not discussed here. Without going into details
regarding fault handling, consider the following simplified idea of test generation
for the nodes of HLDD.

To generate a test pattern for testing a nodem,(n+1) paths are to be activated:
first, a path(m0,m), and second,n pathsle = (me,mT,e) for all e∈ V(x(m)), and

Overview about Low-Level and High-Level Decision Diagrams... 319

SSBDD

m
lm

lm,1

m1

m0
mT,1

mT,0

lm,0

Root node
DD

m

lm
lm,1

mT,1
lm,2

m
mT,2

lm,n

mT,n

DD
lm

lm,1
m1

mT,1

Root node

lm,22

mT,2

lm,nmn

mT,n

()a ()b

Fig. 6. Path activation and test generation on the SSBDD and the HLDD.

n = |V(x(m))|, so that

x(mT,1) 6= x(mT,2) 6= · · · 6= x(mT,n) (1)

All paths should be activated consistently by the same assignmentXt . The test
vectorXt includes as well the data found by solving the inequality (1). The test
for the node m consists of n experiments wherex(m) will have all the values of
V(x(m)). Respectively, the observed function variabley should take the expected
values calculated by solving the inequality (1).

Example 9 As an example, consider test generation for testing the multiplexerM3

represented by the nodey3 in the HLDD in Fig.5. We activate, first, the path from
the root nodey4 to the nodey3 under test by assigningy4 = 2. Second, we activate 4
paths from the successors ofy3, for each valuee= 0,1,2,3 of y3. Two of the paths,
l1, l2, for valuese= 1 ande= 2, respectively, are activated “without action”, since
the successors ofy3 for these values are terminal nodes. Other two pathsl0 andl3
may be activated, for example, byy1 = 0 andy2 = 0, respectively (the number of
other possibilities is three). The test dataR1 = D1, R2 = D2, IN = D3 are found by
satisfying the inequalityR1 +R2 6= IN 6= R1 6= R1∗R2.

4 Conclusion

An overview was given about two types of Decision Diagrams Structurally Syn-
thesized BDDs and High-Level DDs for diagnostic modeling of digital systems.
The main focus of both models is on the topological view on the graphs and on rep-
resenting in DDs besides the functions the implementation details of the structure
of the system as well. A short insight was given to the history of the development
of these models.

320 R. Ubar:

SSBDDs are synthesized directly from the topology of the gate-level network
of a digital circuit by iterative superposition of partial SSBDDs. SSBDDs reflect
two types of mapping between the graph model and the related logic circuit: single
nodes in SSBDDs represent single signal paths, and groups of nodesin SSBDDs
represent certain subcircuits of the circuit. Such mappings allow to represent by SS-
BDDs the internal structural details of the circuit, which is precondition for solving
the structure related tasks like logic hazard detection, signal timing and signalpath
delay analysis, fault modeling, test generation and fault diagnosis. An overview
about the main properties of SSBDDs and about the diagnostic modeling related
algorithms was given.

To overcome the difficulties of high-level diagnostic reasoning of complex dig-
ital systems when using traditional hardware description languages, High-Level
DDs were introduced. HLDDs provide a basis for analytical cause-effect and
effect-cause reasoning that is needed in automated test program synthesis and fault
diagnosis in digital systems. Introducing of HLDDs allowed to generalize the diag-
nostic algorithms developed for SSBDDs for using them at higher levels of system
abstraction. While the traditional use of BDDs is based on graph manipulation
techniques, the generalization of diagnosis algorithms from logic level SSBDDs to
high-level DDs lays mainly on the topological properties of the graphs. SSBDDs
used for representing logic circuits can be regarded as a special caseof HLDDs for
representing digital systems on higher abstraction levels. In a similar way, wecan
regard the stuck-at-fault model defined for SSBDDs as a special caseof the node
fault model for HLDDs.

Acknowledgment

The authors are grateful to the Reviewers whose comments helped to improvethe
presentation

The work has been supported by Estonian SF grant 7483, FP7 IST project DI-
AMOND, and Research Centre CEBE funded by EU Structural Funds.

References

[1] C. Y. Lee, “Representation of switching circuits by binary decision programs,”The
Bell System Technical Journal, pp. 985–999, July 1959.

[2] R. Ubar, “Test generation for digital circuits with alternative graphs,”Proceedings of
Tallinn Technical University, no. 409, pp. 75–81, 1976, in Russian.

[3] S. B. Akers, “Functional testing with binary decision diagrams,”J. of Design Au-
tomation and Fault-Tolerant Computing, Oct. 1978.

[4] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,”IEEE
Trans. on Computers, vol. C-35, no. 8, pp. 667–690, 1986.

Overview about Low-Level and High-Level Decision Diagrams... 321

[5] S. Minato,BDDs and Applications for VLSI CAD. Kluwer Academic, 1996.
[6] T. Sasao,Representations of Discrete Functions, M. Fujita, Ed. Kluwer Academic,

1996.
[7] R. Drechsler and B. Becker,Binary Decision Diagrams. Kluwer Academic, 1998.
[8] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagrams with at-

tributed edges for efficient boolean function manipulation,” in Proc. 27th ACM/IEEE
Design Automation Conference, IEEE/ACM ICCAD90, Orlando, FL, USA, June 24–
28, 1990, pp. 52–57.

[9] A. Srinivasan, T. Ham, S. Malik, and R. K. Bryanton, “Algorithms for discrete func-
tion manipulation,” inProc. International Conference on Computer-Aided Design.
ICCAD-90. Digest of Technical papers, 11–15 1990, pp. 92–95.

[10] U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel logic synthesis based on
functional decision diagrams,” in3rd European Conference on Design Automation,
IEEE EDAC92, Mar. 16–19, 1992.

[11] S. Minato, “Zero-suppressed bdds for set manipulationin combinational problems,”
in Proc. 30th Conference on Design Automation ACM/IEEE DAC, June 14-18, 1993,
pp. 272–277.

[12] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi, “Algebraic decision diagrams and their applications,” in Int. Conf. on
Computer Aided Design. ICCAD-93. Digest of technical papers, Nov. 7–11, 1993,
pp. 188–191.

[13] A. Sarabi, P. F. Ho, K. Iravani, W. R. Daasch, and M. A. Perkowski, “Minimal multi-
level realization of switching functions based on kronecker functional decision di-
agrams,” inProc. of IEEE International Workshop on Logic Synthesis, IWLS ’93,
Tahoe City, CA, USA, May 1993, pp. P3a–1 – P3a–6.

[14] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski, “Efficient
representation and manipulation of switching functions based on ordered kronecker
functional decision diagrams,” in31st Conference on design Automation, DAC-1994,
June 6–10 , 1994, pp. 415–419.

[15] R. E. Bryant and Y.-A. Chen, “Verification of arithmeticfunctions with binary mo-
ment diagrams,” inProc. 32nd ACM/IEEE DAC, 1995.

[16] J. Bern, C. Meinel, and A. Slobodova, “Efficient obdd-based boolean manipulation
in cad beyond current limits,” in32nd Conference on Design Automation, DAC’95,
San Francisco, CA, USA, 1995, pp. 408–413.

[17] E. M. Clarke, M. Fujita, and X. Zhao,Representations of Discrete Functions, multi-
terminal binary decision diagrams and hybrid decision diagrams ed. Kluwer Aca-
demic, 1996, pp. 93–108.

[18] R. S. Stankovíc, J. Astola., M. Stanković, and K. Egiazarian, “Circuit synthesis from
fibonacci decision diagrams,”VLSI Design, Special Issue on Spectral Techniques and
Decision Diagrams, vol. 14, pp. 23–34, 2002.

[19] M. G. Karpovsky, R. S. Stanković, and J. T. Astola,Spectral Logic and Its Applica-
tions for the Design of Digital Devices. Wiley-Interscience, 2008.

[20] R. Ubar, “Test synthesis with alternative graphs,”IEEE Design and Test of Comput-
ers, pp. 48–57, 1996.

[21] ——, “Multi-valued simulation of digital circuits with structurally synthesized binary
decision diagrams,”Multiple Valued Logic, vol. 4, pp. 141–157, 1998.

[22] ——, “Diagnostics of complex digital systems,” Ph.D. dissertation, Latvian
Academy of Sciences, Riga, Latvia, 1986.

322 R. Ubar:

[23] B. N. Shneider, “O realizatsii bulevyx funktsii alternativnymi grafami,” in II Vs-
esojuznoje soveshtshanije po teorii releinyh ustroistv I konetshnyh avtomatov, Riga,
Latvia, 1971, p. 1.

[24] O. P. Kuznetsov, “Grafy logitsheskih avtomatov i ih preobrazovanija,”Avtomatika I
telemehanika, no. 9, pp. 149–158, 1975.

[25] V. A. Kuzmin, Otsenka slozhnosti realizatsii funktsii algebry logiki prosteishimi vi-
dami binarnyh programm, 1976, vol. 29, pp. 11–39, sb. Trudov I nstituta Matematiki
SO AN SSSR.

[26] O. P. Kuznetsov, “O programmnoi realizatsii logitsheskih funktsii i avtomatov. i.
analiz i sintez binarnyh programm,”Avtomatika I telemehanika, year=.

[27] R. Ubar, “Berechnung von tests für die fehlerdiagnose in digitalen systemen,” in
Proc. of 21. Int. Wiss. Koll. Ilmenau, Germany: Technical University of Ilmenau,
Oct. 1976, pp. 33–35.

[28] ——, “Beschreibung digitaler einrichtungen mit alternativen graphen f̈ur die fehler-
diagnose,”Nachrichtentechnik/Elektronik, no. 3, pp. 96–102, 1980.

[29] M. Plakk and R. Ubar, “Digital circuit test design usingthe alternative graph model,”
in Automation and Remote Control. Plenum Publishing Corporation, USA, Nov.
1980, vol. 41, no. 5, pp. 714–722.

[30] R. Ubar,Diagnosis of Digital Devices. Tallinn Technical University, 1980, vol. I
and II, in Russian.

[31] A. Seleznev, B. Dobriza, and R. Ubar,Design of Automatic Test Equipments.
Moscow, USSR: Mashinostrojenie, 1983, in Russian.

[32] R. Ubar, “Description of digital devices by alternative graphs,” inProc. of Tallinn
Technical University, no. 474, Tallinn, Estonia, 1979, pp. 11–33.

[33] A. Jutman, A. Peder, J. Raik, M. Tombak, and R. Ubar, “Structurally synthesized
binary decision diagrams,” in6th International Workshop on Boolean Problems,
Freiberg, Germany, Sept. 2004, pp. 271–278.

[34] A. Jutman, J. Raik, and R. Ubar, “On efficient logic-level simulation of digital circuits
represented by the ssbdd model,” in23rd Int. Conf. on Microelectronics, vol. 2, Nǐs,
Serbia, May 12–15, 2002, pp. 621–624.

[35] ——, “Ssbdds: Advantageous model and efficient algorithmsfor digital circuit mod-
eling, simulation and test,” in5th Int. Workshop on Boolean Problems, Freiberg,
Germany, Sept. 19–20, 2002, pp. 157–166.

[36] R. Ubar, “Combining functional and structural approaches in test generation for digi-
tal systems,”Journal of Microelectronics and Reliability, vol. 38, no. 3, pp. 317–329,
1998.

[37] M. Plakk and R. Ubar, “Synthesis of test pairs for combinational circuits,” inPro-
ceedings of Tallinn Technical University, no. 474, Tallinn, 1979, pp. 45–68, in Rus-
sian.

[38] K. B. Keller, “Hierarchical pattern faults for describing logic circuit failure mecha-
nisms,” Patent 5 546 408, Aug. 13, 1994.

[39] R. D. Blanton and J. P. Hayes, “On the properties of the input pattern fault model,”
ACM Trans. Des. Automat. Electron. Syst., vol. 8, no. 1, pp. 108–124, Jan. 2003.

[40] R. Ubar, W.Kuzmicz, W. Pleskacz, and J. Raik, “Defect-oriented fault simulation and
test generation in digital circuits,” in2nd Int. Symp. on Quality of Electronic Design,
San Jose, California, USA, Mar. 26–28, 2001, pp. 365–371.

[41] J. Raik, R. Ubar, J. Sudbrock, W. Kuzmicz, and W. Pleskacz, “Dot: New determinis-
tic defect-oriented atpg tool,.”

Overview about Low-Level and High-Level Decision Diagrams... 323

[42] R.Ubar, “Fault simulation in digital systems using alternative graphs,” in36. Int.
Wiss. Koll., Ilmenau, Germany, Oct. 21–24, 1991, pp. 737–742.

[43] J. Raik, R. Ubar, S. Devadze, and A. Jutman,Efficient Single-Pattern Fault Simula-
tion on Structurally Synthesized BDDs. Berlin, Heidelberg, New York: Springer
Verlag, 2005, vol. 3463, pp. 332–344.

[44] R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Fast fault simulation in digital circuits
with scan path,” in13th Asia and South Pacific Design Automation Conference ASP-
DAC, Seoul, Korea, Jan. 21–24, 2008, pp. 667–672.

[45] ——, “Fast fault simulation for extended class of faults inscan-path circuits,” in5th
IEEE Int. Symposium on Electronic Design, Test and Applications DELTA 2010, Ho
Chi Minh City, Vietnam, Jan. 13–15, 2010, pp. 14–19.

[46] ——, “Parallel x-fault simulation with critical path tracing technique,” inIEEE Conf.
Design, Automation and Test in Europe DATE-2010, Dresden, Germany, Mar. 8–12,
2010, pp. 1–6.

[47] V. Alango, T. Kont, and R. Ubar, “New test design techniques for fault detection in
digital objects,” inProc. of Tallinn Technical University, no. 708, Tallinn, Estonia,
1990, pp. 45–61.

[48] A. Jutman, R. Ubar, and Z. Peng, “Algorithms for speeding-up timing simulation of
digital circuits,” in IEEE Conf. Design, Automation and Test in Europe DATE-2001,
Munich, Germany, Mar. 13–16, 2001, pp. 460–465.

[49] A. Viilup, T. Lohuaru, and R. Ubar, “Fault localizationin digital circuits with au-
tomatic test equipments,” inProc. of Tallinn Technical University, no. 432, Tallinn,
Estonia, 1977, pp. 37–45.

[50] R. Ubar, “Fault diagnosis in digital devices,” inProceedings of the Estonian Academy
of Sciences, Engng., 1995, no. 1/1, pp. 51–67.

[51] ——, “Design error diagnosis with resynthesis in combinational circuits,”Journal of
Electronic Testing: Theory and Applications, vol. 19, pp. 73–82, 2003.

[52] R. Ubar, J. Heinlaid, J. Raik, and L. Raun, “Calculationof testability measures on
structurally synthesized binary decision diagrams,” inProc. of the 6th Baltic Elec-
tronics Conference, Tallinn, Estonia, Oct. 7–9, 1998, pp. 179–182.

[53] R. Ubar, T. Vassiljeva, J. Raik, A. Jutman, M. Tombak, and A. Peder, “Optimization
of structurally synthesized bdds,” inThe 4th IASTED International Conference on
Modelling, Simulation and Optimization, Kauai, Hawaii, USA, Aug. 17–19, 2004,
pp. 234–240.

[54] R. Ubar, D. Mironov, J. Raik, and A. Jutman, “Structuralfault collapsing by super-
position of bdds for test generation in digital circuits,” in IEEE 11th International
Symposium on Quality Electronic Design, San Jose, CA, USA, Mar. 22-24, 2010, pp.
250–257.

[55] D.Mironov, R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Structurally synthesized
multiple input bdds for speeding up logic-level simulationof digital circuits,” inEu-
romicro Conf. on Digital System Design DSD’2010, Lille, France, Sept. 1–3, 2010,
pp. 658–663.

[56] G. Jervan, A. Markus, P. Paomets, J. Raik, and R. Ubar, “Turbo tester: A cad sys-
tem for teaching digital test,” inMicroelectronics Education. Kluwer Academic
Publishers, 1998, pp. 287–290.

[57] [Online]. Available: http://www.pld.ttu.ee/tt/
[58] R. Ubar, “Description of computers by vector alternative graphs for diagnostic micro-

program synthesis,” inProc. of Tallinn Technical University, Tallinn, Estonia, 1980,
no. 497, pp. 11–20, in Russian.

324 R. Ubar:

[59] ——, “Vektorielle alternative graphen und fehlerdiagnose für digitale systeme,”
Nachrichtentechnik/Elektronik, vol. 31, no. 1, pp. 25–29, 1981.

[60] ——, “Test generation for digital systems on the vector alternative graph model,” in
Proc. of the 13th Annual Int. Symp. on Fault Tolerant Computing, Milan, Italy, year=.

[61] ——, “Test generation for microprocessors,” inProc. of the 6th Conf. on Fault-
Tolerant Systems and Diagnostics, Brno, Czechoslovakia, 1983, pp. 209–215.

[62] ——, “General approach to test synthesis for digital circuits and systems,” inProc. of
the 10th All-Union Workshop on Technical Diagnostics, Tallinn, Estonia, Oct. 1984,
pp. 75–81, in Russian.

[63] R. eveugle and R. Ubar, “Modeling vhdl clock-driven multi-processes by decision
diagrams,”J. of Electron Technology, vol. 32, no. 3, pp. 282–287, 1999.

[64] A. Morawiec, R. Ubar, and J. Raik, “Cycle-based simulation algorithms for digital
systems using high-level decision diagrams,” inIEEE Proc. of Design Automation
and Test in Europe DATE’2000, Paris, France, Mar. 27–30, 2000, p. 743.

[65] J. Raik and R. Ubar, “Fast test pattern generation for sequential circuits using decision
diagram representations,”Journal of Electronic Testing: Theory and Applications,
vol. 16, no. 3, pp. 213–226, 2000.

[66] G. Jervan, R. Ubar, Z. Peng, and P. Eles,Test Generation: A Hierarchical Approach.

[67] R. Ubar, J. Raik, E. Ivask, and M. Brik, “Multi-level fault simulation of digital sys-
tems on decision diagrams,” inIEEE Workshop on Electronic Design, Test and Ap-
plications DELTA’02, Christchurch, New Zealand, Jan. 29–31, 2002, pp. 86–91.

[68] R. Ubar, S. Devadze, M. Jenihhin, J. Raik, G. Jervan, andP. Ellervee, “Hierarchical
calculation of malicious faults for evaluating the fault-tolerance,” in4th IEEE In-
ternational Symposium on Electronic Design, Test and Applications DELTA 2008,
Hong Kong, Jan. 23–25, 2008, pp. 222–227.

[69] J. Raik, U. Repinski, R. Ubar, M. Jenihhin, and A. Chepurov, “High-level design
error diagnosis using backtrace on decision diagrams,” inThe 28th IEEE NORCHIP
Conference, Tampere, Finland, Nov. 5–16, 2010, pp. 1–4.

[70] R. Ubar, J. Raik, A. Karputkin, and M. Tombak, “Synthesis of high-level decision
diagrams for functional test pattern generation,” in16th Int. Conference MIXDES
2009, Lodz, Poland, June 25–27, 2009, pp. 519–524.

