FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 303-324

1

Overview about Low-Level and High-Level Decision
Diagrams for Diagnostic Modeling of Digital Systems

Invited paper

Raimund Ubar

Abstract: BDDs have become the state-of-the-art data structure inl\@&D. In
this paper, a special class of BDDs is presented called8tally Synthesized BDDs
(SSBDD). The idea of SSBDDs is to establish one-to-one nmagpipétween the nodes
of SSBDDs and signal paths in the related digital circuitctsa mapping allowed
to investigate and solve with SSBDDs a lot of test and diagnetated problems of
digital circuits, which are associated explicitly with thieucture. Such problems are,
for example, direct representation of faults, fault catiag and fault masking, delay
testing, hazard detection, etc. The main concept of usiBCES is laying on the
topological view on the graphs, where each path on a SSBDDeanapped directly
to a subcircuit of the related circuit. Such a topologicawiallowed to generalize
the knowledge and methods of test synthesis and fault daditge the Boolean level
to higher register-transfer and behavior levels of digtatems by introducing High-
Level DDs (HLDD). The paper gives a short historical ovewief the development
of SSBDDs and HLDDs.

Keywords: Binary Decision Diagrams; logic level and high level BDDsusturally
synthesized BDDs.

Introduction

Within the last two decades BDDs have become the state-of-the-art dataustru
in VLSI CAD for representation and manipulation of Boolean functions. BDD
were first introduced for logic simulation in [1], and for test generatior2ji3]. In

Manuscript received July 20, 2011. An earlier version of this pames presented at the Reed

Muller 2011 Workshop, May 25-26, 2011, Gustavelund Confererer@r€, Tuusula, Finland.

The author is with Computer Engineering Department Tallinn Universityeehfiology Tallinn,

Estonia (e-mailr ai ub@l d. tt u. ee).

Digital Object Identifier: 10.2298/FUEE1103303U

303

304 R. Ubar:

1986, Bryant proposed a new data structure called reduced or8&ed (ROB-
DDs) [4]. He showed the simplicity of the graph manipulation and proved the
model canonicity that made BDDs one of the most popular representations of
Boolean functions [5-7]. Different types of BDDs have been predamnd inves-
tigated during decades such as shared or multi-rooted BDDs [8], tetieargion
diagrams (TDD), or in more general, multi-valued decision diagrams (MDD) [9
edge-valued binary decision diagrams (EVBDD) [8], functional denisiagrams
(FDD) [10], zero-suppressed BDDS (ZBDD) [11], algebraic decisdiagrams
(ADD) [12], Kronecker FDDs [13, 14], binary moment diagrams (BMD}], free
BDDs [16], multiterminal BDDs (MTBDD) and hybrid BDDs [17], Fibonaate-
cision diagrams [18] etc. Overviews about different types of BDDslmafound

for example in [6,7,19].

Traditional use of BDDs has been functional, i.e the target has beerreses
and manipulate the Boolean functions by BDDs as efficiently as possibles Les
attention has been devoted to represent with BDDs the structural prepaftise
circuits in the form of mapping between the BDD nodes and the gates, suibgirc
or signal paths of the related circuit implementations. The structural asfdegic
circuits was first introduced into BDDs in [2, 20]. The idea was to establigh o
to-one mapping between the nodes of BDDs and signal paths in the relaitadl dig
circuit. Such a mapping allowed to investigate a lot of problems of design and
test, which essentially are caused by the structural properties of the gjieaiit,
directly and exclusively with BDDs. These BDDs were called initially altermativ
graphs [2], and later structurally synthesized BDDs (SSBDD) [21] &sstthe way
how the BDDs were synthesized directly from the gate-level networktsiieiof
logic circuits.

The difficulties in developing of analytical multi-level and hierarchical ap-
proaches of digital test generation and fault simulation are related to tldeofiee
different languages and models to handle different levels of abstractibtost
frequent examples are logic expressions for combinational circuits, tetatsi-
tion diagrams for finite state machines (FSM), abstract execution graystes
graphs, instruction set architecture (ISA) descriptions, flow-chhesjware de-
scription languages (HDL, VHDL, Verilog, System C etc.), Petri nets éanplex
digital systems. Most of them are not well suited for cause-effecbraag in di-
agnostic modeling of systems. They also need specialized and dedicatee for
given language processing and reasoning algorithms, which makes auiditt
develop uniform approaches to test synthesis, fault analysis andodiagrHDL
based modeling methods which are efficient for simulation purposes lackjpiae c
bility of analytical reasoning and analysis that is needed in test generatidiaalt
diagnosis.

Excellent opportunities for multi-level and hierarchical diagnostic modelfng o

Overview about Low-Level and High-Level Decision Diagrams... 305

digital systems are provided by high-level decision diagrams (HLDD)y Bflew
uniform representation of different levels of abstraction, unifornpbrhased fault
analysis, and uniform effect-cause or cause-effect proceturdmgnostic reason-
ing of digital systems. The main goal of introducing of HLDDs was to generaliz
the diagnostic algorithms based on Boolean differential calculus and dravesd

to the graph language of BDDs for using them at higher levels of syststraab
tion [22]. Whereas the traditional use of BDDs is based on graph manipulatio
techniques, the generalization of SSBDD-based diagnosis algorithmigleldvel
DDs lays mainly on the topological view on the graphs.

The rest of the paper is organized as follows. In Section 2, a shortibato
overview of the SSBDD development is given, followed by presenting #ie d
nition and basic properties of SSBDDs together with describing the testdelate
operations with SSBDDs. Section 3 is devoted to high-level DDs. A shddrhis
ical overview is given, followed by an example of using HLDDs for reergting
high-level systems. Thereatfter it is explained how the test related opesatsvel-
oped for SSBDDs were generalized to high-level graphs. Sectionclunes the
paper.

2 Overview of Structurally Synthesized SSBDDS

2.1 Short history of SSBDD developments

The BDDs introduced by Lee [1] were not an attractive model for mebeas for a
long time. The reason was the fast explosion of the complexity of BDDs fge lar
Boolean functions.
In Russia, the idea of using BDDs (named as Alternative Graphs) foesept-
ing Boolean functions was mentioned the first time in [23]. In the middle of 70-s
the research on BDDs was launched in the Institute of Control Problenexiade
research institute of Russia in Moscow. Several papers were publiskiael most
prestigious Russian journal Avtomatika i Telemehanika (Avtomation and Remote
Mechanics) on using binary graphs for representing digital circuity Blua-
tion of the complexity of binary programs [25], and on representing finite sta
machines with binary programs [26]. However, the BDDs were found ve ha
future in comparison with existing methods, and the research on this topiestopp
In parallel, similar research was going on at the Tallinn University of Tekhn
ogy, in Estonia, however, from another point of view. The main targsttovareate
a graph like model in a form of Binary Decision Diagrams to representtsitaic
aspects of combinational circuits, especially, to represent possibléusaluaults
in circuits, for test generation purposes. The graphs were syntbefireetly from
the topology of the gate-level network, and they were called this time altegnativ

306 R. Ubar:

graphs. The first publications about the alternative graphs (SSB®&s)in Rus-
sian [2], in German [27, 28] in 1976, and in English [29] in 1980. An wiew of
SSBDDs was given also in the monographs [30, 31].

The main motivation to introduce SSBDDs was to improve the efficiency of test
generation methods for combinational circuits by exploiting the possibility to re-
duce the complexity of the model compared to the traditional gate-level agmea
Different properties of the SSBDD model were investigated in [31-38]¢clwal-
lowed to develop efficient algorithms for test generation [29, 36]. A hmethod
for synthesizing test pairs to make test sequences robust regartiingas&ing of
multiple faults, was developed in [29, 37]. In [29], the first time, a genfenal
model, called later as conditional stuck-at-fault (SAF) model [38, 39] whis-
duced. Based on this idea, defect oriented fault simulation and testagjener
methods were developed [40, 41].

Based on the one-to-one mapping between the nodes in SSBDDs and Hie sign
paths in circuits, efficient methods of deductive [42] and critical pathirtglel 3]
fault simulation were developed. A very fast fault simulation approackdas
parallel reasoning of faults on SSBDDs simultaneously for many test paiters
developed in [44], and later generalized for extended fault classesditditional
SAF [45] and X-fault model [46]. The first time, a novel algorithm for medtued
simulation based on Boolean differential algebra was implemented with using SS-
BDDs [21,47]. Later, the SSBDDs were used for speeding-up timing stronlaf
digital circuits [48] as well.

SSBDDs have been used for optimization of fault location processes inldigita
circuits [49, 50], for design error diagnosis [51], for testability evabraof cir-
cuits [52], and for optimization of SSBDDs for fast evaluation of the qualfty o
Built-in Self-Test of digital systems [53]. A new type of SSBDDs with multiple
inputs (SSMIBDD) was recently proposed to further optimize SSBDDsdult f
collapsing purposes [54], and speeding up logic simulation [55, 56].

SSBDDs have been the basis of several software tools developesitfeyt¢he-
sis and analysis, used in the industry. For example, the first automateatteshp
generator (ATPG) in the world based on BDDs was implemented in the beginning
of 80-s and used in the defence and computer industries in Soviet Umidi86
the authors of the ATPG were awarded by the Silver Medal from the Exhibitio
of the National Economy in Moscow. Currently, the diagnostic softwar&e
Turbo-Tester which includes tools for test generation and fault simulatiosed
in many universities and institutions throughout the world [57].

Overview about Low-Level and High-Level Decision Diagrams... 307

2.2 SSBDDs as a structural-functional logic level model for digital iccuits

Let us have a tree-like gate level combinational circuit with n inputs. Fdn suc
circuit we can create by a superposition of elementary BDDs of the gateBBRI[S3
with n nodes [20]. Between the paths in the tree and the nodes in the graph, th
exists a one-to-one mapping. Every combinational circuit can be refjasia
network of modules, where each module represents a fan-out-friea (Ed-R) of
maximum size. The SSBDD model for a given circuit can be regarded eiscd s
SSBDDs, where each of them represents such a FFR. This way of ngptiedin
circuit by BDDs allows to keep the complexity of the model (the total number of
nodes in all graphs) linear to the number of gates in the circuit.

Definition 1 SSBDD model for a given combinational circuit is a set of SSBDDs
covering all FFRs of maximum size and a set of 1-node SSBDDs cg\&ipri-
mary inputs which have fan-out branches.

As a side effect of the synthesis of the SSBDD model, we have got a strict
relationship between the nodes in the SSBDDs and the signal paths in the snodule
(FFRs) of the circuit.

SSBDDs reflect two types of mapping between the graph model and thedrelate
logic circuit: (1) the nodes in SSBDDs represent signal paths, anéf@ia groups
of the nodes in SSBDDs represent certain subcircuits of the whole circuit.

1 Module

d
2 al&

(a) (b)

Fig. 1. Combinational circuit and SSBDD.

Example 1 In Fig.1. we have a combinational circuit with a FFR-module and a
SSBDD which represents the Boolean function

y=(6AT73)V(1V(2AT1))(5VT7>2)

308 R. Ubar:

of the module, whereas the numbers 1,2,5,6 represent input variatdetbeasub-
scripted numbers17 7, and & represent the branches of the fan-out stem 7 in the
circuit. The variables in the nodes of SSBDD, in general, may be invertegtWo
terminal nodes of the SSBDD are labeled by Boolean constahigruth) and=0
(false). The SSBDD can be interpreted as a procedure of calculatingline of
the functional variable y at the given values of the node variables. Tduwegdure

is carried out by tracing a path through nodes in the SSBDD. The valudtte of
node variable means the direction to the right from the node, and the vafubé o
node variable means the direction down. Calculation begins in the root ande,
the procedure will terminate in one of the terminal nodes ?1 or ?0. The vRjue o
will be determined by the constant in the terminal node where the procepe s
In this example, an input pattern 110000 (123456) is simulated, and the path

(6,1,2,7,5,= 1)
is traced (shown by bold lines in Fig. 1), producing the reguitl.

Later, for simplicity, we will omit the two terminal nodes in SSBDDs, and
agree that leaving the graph to the right means entering the node #1, gimg)lea
the graph down means entering the node #0.

To each of all 7 signal paths in the circuit, a node in the SSBDD correspond
For example, to the path from the input of the module 71 through internalsnode
a, d, ande in the module up to the outpyt the node 7 in the SSBDD corre-
sponds. On the other hand, for example, the group of nodes 6zandhe SSBDD
represent a subcircuit of two gates ¢ and y in the circuit.

Corollary 1 Since all the SAF faults on the inputs of a FFR form the collapsed
fault set of the FFR, and since all these faults are represented byulte dathe
nodes of the corresponding SSBDD, then it follows that the synthesiSSBDD

is equivalent to the fault collapsing procedure similar to fault folding [54].

Direct relation of nodes to signal paths and groups of nodes to sultsiedu
lows to handle with SSBDDs easily such problems like fault modeling, fault col-
lapsing, fault masking, path delay or segment delay fault modeling, multi-dialue
simulation, hazard analysis, fault diagnosis or faulty area diagnosisofgsev-
eral specific properties of the SSBDDs allowed to increase the efficafraniving
different tasks of test generation, fault simulation and fault diagnosis.

2.3 Operations on SSBDDs

Consider a FFR-module of a circuit with a functign= f(X) whereX is set of
input variables of the module. Let SSBDO®), with a set of node# represent the

Overview about Low-Level and High-Level Decision Diagrams... 309

module. Two nodes dfl , #0 and #1, are labeled with Boolean constants 0 and 1,
respectively. All remaining nodes € M are labeled by variablegm) € X, and
have exactly two output edges leading to the successor madasdm® of m. The
variablex(m) may be inverted. The edden, m®) in the SSBDD where € {0,1}

is called activated ik(m) = e. A path (m,n) is called activated if all the edges
which form the path are activated. To activate a p@hn) means to assign the
node variables along this path with proper values. rbgtbe the root node of a
SSBDDG,. And, letX" be an input vector applied at the momepnn the inputs of
the module represented by SSBIIE). We call the vectoX' as a local test pattern
for the moduley = f(X).

2.3.1 Logic simulation

Logic simulation on the SSBDI, means tracing the graph for the given test
patternX! which is applied to the modulg= f(X). As the result, the value of y
is calculated. The value ofwill be equal toe € {0,1} if there is activated a path
(mo, #e) from the root nodeng to the terminal nodee#in Gy. Logic simulation can
be carried out on SSBDDs in parallel for many test patterns [55].

Example 2 Consider the circuit and its SSBDD in Fig.1. Let for each nage

the right-hand edge is activated Bym) = 1, and the lower-hand edge is acti-
vated byx(m) = 0. For simplicity, the terminal nodes with constants 0 and 1 are
omitted. The bold edges on the SSBDD show the activated path for a test vecto
X' =(1,2,5,6,7) = (11001 which calculates the value= 1.

2.3.2 Path activation

A reverse task to logic simulation is path activation which has the goal to find
a proper assignmeX! to produce the needed value fpr Test generation on
SSBDDs is based on path activation tasks.

2.3.3 Test generation

To generate a test pattern for testing the fa(ih) /e (x(m) stuck-ate) at the node
m, e € {0,1}, two paths are to be activated: (1) a patfy,¢e*),wheree’ € {0,1},
ande* # e, which contains the nod®, and (2) a second patinf, #e). Both paths
should be activated consistently, i.e. by the same assigngietftx(m) = e (the
correct case) the output value will lpe= €, otherwise, ifx(m) = e (the case when
the fault is presenty =e.

310 R. Ubar:

No trial
needed

(@)

0
(b)
Fig. 2. lllustrations for the Properties 1 (a) and for the Property 2 (9SBDD.

Example 3 As an example, consider test generation on the SSBDD for the fault
71/0 (stuck-at-0 at the nodg)in Fig.1. When activating the patimg, #1), 4 =1,
through nodes @, 2,71,5 on the SSBDD to the terminal node #1, we construct the
test patterrX! = (1,2,5,6,7) = (11001). The second patm€, #0) consists only of

the terminal node #0, and hence, is constantly activated. Note that thetieshp
generated for the node 71 of the SSBDD, detects the fayl8, a/1, d/0, e/1,
andy/0 in the related gate-level circuit.

Test generation can be accelerated by exploiting the following propeffties o
SSBDDs.

Property 1 In SSBDDs, for each node m, there exists either a pathm®) or a
path(m® m'), see Fig.2a. The proof of the Property 1 results from the method of
superposition of the SSBDD synthesis [22].

When generating a test pattern for a fault in a modigevhich is a part of a
circuit C, then the whole test generation task consists of three subtasks: (1) test
generation for a fault i€y, (2) fault propagation from the outpytof Cy to the
primary outputs ofC, and (3) justification of the assigned values during the first
two subtasks by the values of the primary inputsCof Propagation of the fault
from the input of the module to its output is a test generation task for the module.
Justification of the value on the output of the module by the values onits inputs is a
path activation task. All the listed tasks should be solved consistently byajame
a single test vector for the primary inputs@f When an inconsistency is found, a
backtrack to the last assignment should be made to carry out another trial.

Overview about Low-Level and High-Level Decision Diagrams... 311

The following property of the SSBDDs allows to reduce dramatically the num-
ber of backtracks.

Property 2 If in SSBDD, no pathfy, #e) with x(m) = e, can be activated, then no
path (n, #e) with x(m) = e, wheree # €*, cannot be activated as well. The proof
of the Property 2 is based on the Property 1 [22].

Example 4 In Fig.2b, a path (1, #1) should be activated. Assume that a path (1,9)
shown by bold lines is activated. Assume as well that the values of the heriab

9 and 10 have been already (during processing of other graplighedso 0, and
therefore, no path exists from 9 to the terminal #1. We should backtrac¢otbe
nodes 4, and then to 3 and then to 2 to try other search possibilities.

Using Property 1, there is no need any more for these backtracesiskeema
cording to Property 1, after failing in the node 9, we can immediately return the
message “No path (1, #1) can be activated”.

2.3.4 Fault simulation

The goal of fault simulation is to determine which faults are detected by tha give
test pattern. On SSBDDs, first, the activated pah, ('), € < {0,1}, will be
determined by logic simulation of the given pattetn LetM! C M is the subset of
nodes which belong to the activated pattp,(#€'). All the nodes inM! should be
suspected as candidate locations of a fault when an error is obsertied output
y of the module. However, the set of suspected faulty nodes can be gasibd by
further simulation on the SSBDDs. The fault at the nagde M!, which changes
the value ofx(m), is detected by the patteixt, if X! activates as well a second
path(m*, #€*), wherem* is the successor of m, not belongingh, ande'* +# €.
The following property (so called “direction rule”) for SSBDDs allows toluee
the number of suspected candidate nodedinwvithout simulation, and hence, to
speed up the total fault simulation process.

Property 3 If a test vectorX! which activates in the SSBDD a patim, #€¢'), then
only these nodes € Mt, wherex(m) = €, may be the candidate fault locations and
should be checked for existing of the second activated (path#e*). The proof is
based on Properties 1 and 2 [22].

Example 5 Consider in Fig.1 the path through noded,®, 71,5 on the SSBDD
activated to the terminal with constant 1. According to Property 3, only tdeso

2, 7, and5 may be the candidate fault locations, and should be checked if changing
the direction of the path from these nodes will lead to the terminal with constant
0. For the nodes 2 and, ;7simulation is not needed. The faults in 6 ahdannot
change the value on the output at this test pattern.

312 R. Ubar:

2.3.5 Fault diagnosis

SSBDDs can be efficiently used in fault diagnosis carried out accofrmirie
effect-cause concept. Consider a circuit in Fig.3 where an error ooutpait is
detected at the given test pattern. The erroneous signals are badkineaugh the
circuit in the following way. Assume that the output signal of the modlile er-
roneous. Traditional way would be now to test all the input signals of thaufeod
If all the input signals ofC will be correct then the fault is located in this module.
Otherwise, if an error is detected on an input then the backtracing proeedl| be
continued from this input towards the primary inputs of the circuit. SSBDDsvallo
to reduce the number of measurements during the backtracing of erralssign

Errors’igpq\l\traced (1) Q e e 1
A Y
nangr 7| C W* CMES

0

(a) (b)

Fig. 3. Fault diagnosis using SSBDDs.

Example 6 In Fig.3, the SSBDD of the moduleé under diagnosis is shown. The
module has 8 inputs and the SSBDD has 8 nodes. Consider the path adtiyated
the failed test pattern (bold lines on the SSBDD). The correct value onutipeo

of the moduleC should be 0. Similarly, as during the fault simulation, according to
Property 3, only three nodes 1, 6, and 7 from all the eight nodes ofSB®S may

be the fault location candidates and should be pinpointed in the case ofdgherer
the output ofC.

2.3.6 Multi-valued simulation

SSBDDs allow to carry out dynamic analysis of gate networks (delay feiltia-
tion, hazard detection etc.) by using multi-valued simulation [21]. Considamn as
example, 5-valued simulation with the alphaBet {0, 1, €, h, x}, where the value 0
(1) represents a type of waveform having a stable logic value @ (i) represents
a waveform having a step-up transition from 0 to 1 (step-down transit@mn f
to 0), and x represents unknown waveform or dont care waveforamdlhg the
valuese, h, x on SSBDDs has a similarity with fault simulation where we consider
as well the instability of a signal in this case, correct value vs. errongus.

The idea of a uniform handling of the multi-valued simulation and fault simu-
lation is based on partial Boolean derivatives. Let the SSBDD with a sebads

Overview about Low-Level and High-Level Decision Diagrams... 313

M represent a circuit with a function= f (X). The condition of detecting a fault at
the nodam can be represented by the Boolean differential equatjgidx(m) = 1.
To satisfy this equation, two paths have to be activatag; £€) which contains m,
and ® ,#e"), wheree # . Differently from the fault simulation where the values
of variables are binary, in multi-valued simulation, it is not the case.

To solve the problem of multi-valued simulation, in [21] the concept of maxi-
mum of Boolean derivatives was introduced, where the {@gxox(m)} was cal-
culated over all combinations of the dynamic values in the alphabet S. FD[3$B
it means that on the patimg, #e), for all the nodesn with encountered values
h, X, these values are to be changedcet@nd on the related pathme(, #e¥), all
the encountered values h, x are to be changed &. Assumex(m) = {&,h,x}.
The multi-valued simulation will have the following result: if mgky/dx(m)} =1,
theny = x(m), otherwise, if maxdy/dx(m)} = 0, then the value of will be e=€*.

The value x on the output of the module means static hazard. For detectizgityn
hazards, the number of signal values (waveform types) should eaiged [21].

Presented above methods of using SSBDDs have been implemented astiffer
tools of test generation, fault simulation and fault analysis and are intdgrate
computer aided test tool Turbo-Tester [57].

2.4 Modeling digital systems with multiple input SSBDDs (SSMIBDD)

The idea of decomposition of digital circuits into the FFR modules of maximum
size was to keep the complexity of the SSBDD model measured in the number of
nodes linear to the number of gates in the circuit [21].

Synthesis of the SSBDD model by the graph superposition proceduz8][2,
starts from the initial set of BDDs, where each logic gate is representaddpD.
Each superposition step merges two graphs and removes a node frorhdlee w
SSBDD model.

In the synthesis approach for SSBDDs, the superposition stopped grtoaif
nodes of the SSBDD where each of them represents a path in the rel&dRt
a fan-out branch to the output of the FFR. If continuing the superpodigyond
the fan-out stems of the circuit, we would have to substitute all the fanoetsringd
the BDD of the fan-out gate, which would mean that instead of reducing tleimo
its size in the number of nodes would explode.

By introducing the concept of SSBDDs with multiple inputs (SSMIBDD), we
can still further compress the SSBDD model by continuing the superpositmn p
cedure beyond the fan-out stems

In [54, 55], a method was proposed for partial superposition of BD&®hd
the fan-out stems of the circuit. To avoid the explosion of the model, and to still
continue removing the nodes from the model by superposition, we allovarout

314 R. Ubar:

(@) (b)

Fig. 4. SSBDDs with multiple inputs (shared SSBDDs).

Table 1. Mapping between the nodes of SSMIBDDS and the paths in thé circu

SSMIBDD for 19 SSMIBDD for 20

Node | Path Node | Path

14 149—19 17 17, —-20

11 11,—19 16 169 —18,—20

7 7—-19 13 13p—15—-18—-20

15 15%—-17,—-19 5 5-12y-15 —-18,—20
12 12— 14 — 175 — 19 1 | 1-10p-12 15 18- 20
3 3—-113—-14—-175—19 2 2—100—121 - 15 —-18—-20
4 4—-11;—-14—-17,—-19

SSMIBDD for 21

Node | Path
18 18, - 21
9 9-21
8 8—16;—21

6 6—13;— 16,21
10 | 10, —13; 16,21

stems xi with a set of branch&$x;) = {X 1,Xi 2, .., X «} the procedure of superpo-
sition for a single node; j € B(x;) only. At this superposition point, an additional
input to the SSBDD under construction is established. This would be arerther
tering point for the graph to calculate the valuesaf a demand for that will appear
from the other nodes of the model labelled¥jy € B(x)\X; j. As the result, in the
SSMIBDD model of the circuit, the total number of nodes will be smaller than in
the SSBDD model, which means additional fault collapsing, whereas the ngappin
between the nodes in SSMIBDDs and signal paths in the circuit will remain still
valid.

Overview about Low-Level and High-Level Decision Diagrams... 315

Example 7 Consider as an example a combinational circuit and a set of three SS-
MIBDDs in Fig.4. The BDDs represent disjoint parts of the circuit highlighte
Fig.4. Table 1 describes the mapping between the signal paths in the cittiitan
nodes in the SSMIBDD model. We use the notation where the subscripts Codind 1
the node numbers in the circuit correspond to the higher and lower farethes,
respectively. The activated paths are highlighted on the graphs by fvoleisafor

the input patterrx' = (1,2,3,4,5,6,7,8,9) = (10010011]. The output values of

the circuit calculated on the SSMIBDDs arg = 0, Yoo = 0, Yo1 = 1.

3 Overview of High Level DDS

3.1 Short history of HLDD developments

High-level approaches to diagnostic analysis of digital systems lay orretiffe
languages and models. Most frequent examples are state transitiomubegrdi-

nite state machines (FSM), abstract execution graphs, register triavaiefRTL)
flowcharts, system graphs, instruction set architecture (ISA) déiscrip hardware
description languages (HDL, VHDL, Verilog, System C), Petri netsysteim level
description. All these models need different dedicated algorithms, whicksriak
difficult to create a uniform high-level approach to diagnostic analysidigital
systems. Existing high-level modeling methods which are efficient for simulation
lack the capability of analytical reasoning that is needed for formalizingytrstr-
ation and fault diagnosis problems. Promising opportunities for multi-levehand
erarchical diagnostic modeling of digital systems provide decision diagaid} (
because of their uniform cover of different levels of abstraction, lzechuse of
their capability for uniform graph-based fault analysis and diagnostisor@ng
principles. The most important impact of the high-level DDs (HLDD) is the pos
sibility of generalization and extending of the methods developed for logiaitsrc
using BDDs to higher abstraction levels of digital systems on the uniformhgrap
based formalism.

The first attempt in generalization of BDDs for representing RTL digitat sys
tems by introducing vector alternative graphs (VAG) was done in [58,8B% data
path RTL circuits were represented as a set of functionally linked vedt®i}é
(called VAGSs) where the nodes of graphs were labeled by logic cordr@bles,
state variables of FSMs, and n-bit word register variables (instructiomsanoin-
structions). A method was presented for automated test microprogramesigth
for data paths. In [60, 61], a method was proposed for automated sigibie
test programs with HLDDs for microprocessors. A short overview dB[3BSs
and HLDDs was given in the All-Union Workshop “Technical Diagnostif&2],
which was the most important event in this field in the former Soviet Union, and

316 R. Ubar:

an extended description of the joint theory of DDs was presented in thertdiss
tion [22] which included the implementation results of the SSBDDs and HLDDs in
the computer industry of SU.

During 1987 1995, after the collapse of SU and as the result of subésequ
economic instabilities in Estonia the scientific research was not the first priority
among the students and university staff. The first overview paper itidBragoout
the joint presentation of DDs was published in 1996 [20].

During the last decade, the HLDDs have been used in different fieldgbf
level and hierarchical test. As the result, new promising algorithms, teabsiqu
and prototype tools have been developed, which allowed to improve thiewdfjc
of RT level cycle based simulation [63, 64], hierarchical test progratoraated
synthesis [65, 66], hierarchical fault simulation [67, 68], and faulgdasis [69].

3.2 HLDD as a structural-functional high-level model for digital sysems

The goal for introducing of HLDDs was to generalize the logic level metlzous
algorithms of fault simulation, test generation and fault diagnosis from logéd le
to higher RTL and functional levels. For this purpose, the class of Vasakas
extended from Boolean ones to the Boolean Vector, and integer variabigshe
class of Boolean functions was extended to the data manipulation operafons ty
cally used in high-level descriptions of digital systems.

R:

Y1 Y2 Ys VY.
E ‘i a — c
M2 e
ol [
IN #MZ »—;* CT
(a)

Fig. 5. Representing a register transfer level data path by a HLDD.

In Fig.5, an example of a RTL data-path and its HLDD is presented. The vari-
ablesR; andR; represent registertiN denotes the input bus, the integer variables
V1, Y2 , Y3, Y4 represent control signalsl;, M», M3 are multiplexers, and the func-
tionsR; + Ry, andRy x R, represent the adder and multiplier, correspondingly. Each
node in the DD represents a subcircuit of the system (e.g. the nedes, vy,

Overview about Low-Level and High-Level Decision Diagrams... 317

y4 represent multiplexers and decoders). The whole DD describes tlawibeh
of the input logic of the registeR,. To test a node in the DD means to test the
corresponding to the node component or subcircuit.

Depending on the class of the system (or its representation level), we way ha
various HLDDs where the nodes have different interpretations antioredaips to
the system structure. In the RTL descriptions, we usually partition the system
control and data paths. In this case, the nonterminal nodes in the HLDEs co
spond to the control path, and they are labeled by state or output varathites
control part, interpreted as addresses or instruction words. On thehathd, the
terminal nodes in the HLDDs correspond to the data path, and they aredddyele
the data words or functions of data words, which correspond to breggsters, or
data manipulation blocks. The state transfer and output functions of tointuits
are represented as well by HLDDs. When using HLDDs for describamgptex
digital systems, we have to represent the system by a suitable set of imteoted
components (combinational or sequential subcircuits). Thereafteraweetb de-
scribe the components by their functions which can be represented bipsiLD

Two methods for synthesis of HLDDs for representing digital systems were
described in [65, 70]. The first method is based on symbolic executionookp
dural descriptions, which corresponds to the functional represemtaittisystems.
The method can be used in cases when the system is given functionallyas a p
cedure in a hardware description language. The second method isdraieth-
tive superposition of HLDDs, and the created model corresponds tdghddvel
structural representation of the system. The method can be used in ¢egethe
system is given structurally as a network of components (subsysterddhraach
component its HLDD is already given. The second method can be rejasda
generalization of the superposition procedure for BDDs [20].

3.3 Operations on HLDDs

The methods for test generation and fault simulation developed for SSB&rDise
easily generalized for using at higher abstraction levels of systems.oBsépity
of such a generalization results from the topological similarity of DDs at l@amer
higher levels (Fig.6). In case of SSBDDs, each node has two outpasedqd the
graph has two terminal nodes with constants 0 and 1. HLDDs differ froBCES
in having more edges from nodes and more terminal nodes, whereasrtiealer
nodes in general case may be labeled by functions. Both graphsaepeemap-
ping into the structure of the system they describe. In both cases, theifatlles
system can be modeled similarly by errors in the nodes or in the interconrgection
between the nodes. In both cases, for both types of graphs, tesatiendor a
given nodem s carried out by activating a path from the root nodentand from

318 R. Ubar:

all successor nodes ofto different terminal nodes.

Consider a syster as a network of components (or subsystems) where each
component is represented by a functipe- f(X) whereX is a set of variables
(Boolean, Boolean vectors or integers), &f(a) is a finite set of possible values of
x € X. Let HLDD Gy with a set of nodeM represent this component. The terminal
nodesm™ € MT may be labeled either by variableén™) € X, digital functions
x(m™) = f'(X), or constantx(m'™) = ¢;. All the remaining nodesn € M\MT
are labeled by variablegm) € X, and havgV (x(m))| output edges leading to the
successor nodes® wheree € V(x(m)). The edgem, mf) in the HLDD is called
activated ifx(m) = e. A path(m,n) is called activated if all the edges which form
the path are activated. To activate a p@athn) means to assign the node variables
along this path with proper values. L be the root node of a HLDIBy. Let X!
be an input vector applied at the momewpn the inputs of the module represented
by Gy. We call the vectoX! as a local test pattern for the compongst f(X).

3.3.1 Logic simulation

It is easy to see that the SSBDD defined earlier can be regarded asia spse
of HLDDs. Similarly, as we defined the operations of logic simulation and path
activation in Section 2.3 for SSBDDs we can do it for HLDDs.

Example 8 In test pattern simulation, a path is traced in the graph, guided by the
values of input variables of X until a terminal node is reached, similarly asain th
case of SSBDDs. In Fig.5, the result of simulating the vector Xt = (y1, $2y#,

R1, R2, IN) =-,0,3,2,10,6,- is R2 = R1*R2 = 60 (here - means dont cardyahk
arrows mark the activated path, and the grey node R1*R2 is reachédikaton).
Instead of simulating by a traditional approach all the components in the circuit,
the DD only 3 control variables are visited during simulation (y4, y3, y24,any

a single data manipulation R2 = R1*R2? MT is carried out.

3.3.2 Test generation

The differences in test generation result from the fact that the nunfbmutput
edges from nodes and the number of terminal nodes in HLDDs are ing @ase
larger than 2. The fault model in the case of HLDDs is also more complex than
in the case of SSBDDs, and will be not discussed here. Without going étéilsl
regarding fault handling, consider the following simplified idea of test geitan

for the nodes of HLDD.

To generate a test pattern for testing a nodén+ 1) paths are to be activated:

first, a path(mg, m), and secondn pathsle = (mf,m"®) for all e € V(x(m)), and

Overview about Low-Level and High-Level Decision Diagrams... 319

Root node

Root node
O
mT1 O Ll
mb2
. mT n
mT0
(a) ()

Fig. 6. Path activation and test generation on the SSBDD and the HLDD.

n= |V (x(m))|, so that
x(mt) # x(m"2) # - x(m™") 1)

All paths should be activated consistently by the same assign¥ienThe test
vector X! includes as well the data found by solving the inequality (1). The test
for the node m consists of n experiments whef) will have all the values of
V(x(m)). Respectively, the observed function variaplghould take the expected
values calculated by solving the inequality (1).

Example 9 As an example, consider test generation for testing the multipxer
represented by the noge in the HLDD in Fig.5. We activate, first, the path from
the root nodey, to the nodey; under test by assigning = 2. Second, we activate 4
paths from the successorsyaf for each value =0, 1,2, 3 of y3. Two of the paths,
I1, I, for valuese = 1 ande = 2, respectively, are activated “without action”, since
the successors g for these values are terminal nodes. Other two phkthsdls;
may be activated, for example, lgy = 0 andy, = 0, respectively (the number of
other possibilities is three). The test d&a= D1, R, = D, IN = D3 are found by
satisfying the inequalitiR; + Ry # IN # Ry # Ry * Ry.

4 Conclusion

An overview was given about two types of Decision Diagrams Structurafty S
thesized BDDs and High-Level DDs for diagnostic modeling of digital systems
The main focus of both models is on the topological view on the graphs arapen r
resenting in DDs besides the functions the implementation details of the structure
of the system as well. A short insight was given to the history of the dexetap

of these models.

320 R. Ubar:

SSBDDs are synthesized directly from the topology of the gate-level metwo
of a digital circuit by iterative superposition of partial SSBDDs. SSBDé&ftect
two types of mapping between the graph model and the related logic circuite sing
nodes in SSBDDs represent single signal paths, and groups of mo8&8DDs
represent certain subcircuits of the circuit. Such mappings allow to esgreg SS-
BDDs the internal structural details of the circuit, which is precondition drieg
the structure related tasks like logic hazard detection, signal timing and piggal
delay analysis, fault modeling, test generation and fault diagnosis. Arview
about the main properties of SSBDDs and about the diagnostic modelingdrelate
algorithms was given.

To overcome the difficulties of high-level diagnostic reasoning of comglpx d
ital systems when using traditional hardware description languages, Ligigg-
DDs were introduced. HLDDs provide a basis for analytical causeefind
effect-cause reasoning that is needed in automated test programssyaie fault
diagnosis in digital systems. Introducing of HLDDs allowed to generalizeitige d
nostic algorithms developed for SSBDDs for using them at higher levelgstém
abstraction. While the traditional use of BDDs is based on graph manipulation
techniques, the generalization of diagnosis algorithms from logic level $8BD
high-level DDs lays mainly on the topological properties of the graphs.DE%B
used for representing logic circuits can be regarded as a specialfdds®Ds for
representing digital systems on higher abstraction levels. In a similar wagamve
regard the stuck-at-fault model defined for SSBDDs as a specialofdlse node
fault model for HLDDs.

Acknowledgment

The authors are grateful to the Reviewers whose comments helped to intipeove
presentation

The work has been supported by Estonian SF grant 7483, FP7 1$pd-
AMOND, and Research Centre CEBE funded by EU Structural Funds.

References

[1] C. Y. Lee, “Representation of switching circuits by hipalecision programs,The
Bell System Technical Journgdp. 985-999, July 1959.

[2] R. Ubar, “Test generation for digital circuits with altetive graphs,Proceedings of
Tallinn Technical Universityno. 409, pp. 75-81, 1976, in Russian.

[3] S. B. Akers, “Functional testing with binary decisioradrams,’J. of Design Au-
tomation and Fault-Tolerant Computin@ct. 1978.

[4] R. E. Bryant, “Graph-based algorithms for boolean fimttmanipulation,”|IEEE
Trans. on Computersol. C-35, no. 8, pp. 667-690, 1986.

Overview about Low-Level and High-Level Decision Diagrams... 321

[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

S. Minato,BDDs and Applications for VLSI CAD Kluwer Academic, 1996.
T. SasaoRepresentations of Discrete Functioph. Fujita, Ed. Kluwer Academic,
1996.

R. Drechsler and B. Beckeinary Decision Diagrams Kluwer Academic, 1998.

S. Minato, N. Ishiura, and S. Yajima, “Shared binary dam diagrams with at-
tributed edges for efficient boolean function manipulatiom Proc. 27th ACM/IEEE

Design Automation Conference, IEEE/ACM ICCAD@Blando, FL, USA, June 24—
28, 1990, pp. 52-57.

A. Srinivasan, T. Ham, S. Malik, and R. K. Bryanton, “Algihms for discrete func-
tion manipulation,” inProc. International Conference on Computer-Aided Design.
ICCAD-90. Digest of Technical paperk1-15 1990, pp. 92-95.

U. Kebschull, E. Schubert, and W. Rosenstiel, “Multdelogic synthesis based on
functional decision diagrams,” iBrd European Conference on Design Automation,
IEEE EDAC92 Mar. 16-19, 1992.

S. Minato, “Zero-suppressed bdds for set manipulaitiocombinational problems,”
in Proc. 30th Conference on Design Automation ACM/IEEE DA@e 14-18, 1993,
pp. 272-277.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Ma&. Pardo, and
F. Somenzi, “Algebraic decision diagrams and their apfibcs,” in Int. Conf. on
Computer Aided Design. ICCAD-93. Digest of technical paphBiov. 7-11, 1993,
pp. 188-191.

A. Sarabi, P. F. Ho, K. Iravani, W. R. Daasch, and M. A.K&erski, “Minimal multi-
level realization of switching functions based on kronedkmctional decision di-
agrams,” inProc. of IEEE International Workshop on Logic Synthesis|.8N93
Tahoe City, CA, USA, May 1993, pp. P3a—1 — P3a—6.

R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.P&rkowski, “Efficient
representation and manipulation of switching functionselobon ordered kronecker
functional decision diagrams,” Bilst Conference on design Automation, DAC-1994
June 6-10, 1994, pp. 415-419.

R. E. Bryant and Y.-A. Chen, “Verification of arithmetignctions with binary mo-
ment diagrams,” iflProc. 32nd ACM/IEEE DAC1995.

J. Bern, C. Meinel, and A. Slobodova, “Efficient obddskd boolean manipulation
in cad beyond current limits,” iB2nd Conference on Design Automation, DAG’95
San Francisco, CA, USA, 1995, pp. 408-413.

E. M. Clarke, M. Fuijita, and X. Zhadiepresentations of Discrete Functionsulti-
terminal binary decision diagrams and hybrid decision iiag ed. Kluwer Aca-
demic, 1996, pp. 93-108.

R. S. Stankow, J. Astola., M. Stanko@i and K. Egiazarian, “Circuit synthesis from
fibonacci decision diagramsyLSI Design, Special Issue on Spectral Techniques and
Decision Diagramsvol. 14, pp. 23—-34, 2002.

M. G. Karpovsky, R. S. Stankowj and J. T. AstolaSpectral Logic and Its Applica-
tions for the Design of Digital Devices Wiley-Interscience, 2008.

R. Ubar, “Test synthesis with alternative grapHEEE Design and Test of Comput-
ers pp. 48-57, 1996.

——, “Multi-valued simulation of digital circuits with sticturally synthesized binary
decision diagramsMultiple Valued Logig¢vol. 4, pp. 141-157, 1998.

——, “Diagnostics of complex digital systems,” Ph.D. dig®tion, Latvian
Academy of Sciences, Riga, Latvia, 1986.

322 R. Ubar:

[23] B. N. Shneider, “O realizatsii bulevyx funktsii altextivnymi grafami,” inll Vs-
esojuznoje soveshtshanije po teorii releinyh ustroistyrdtshnyh avtomatoRiga,
Latvia, 1971, p. 1.

[24] O. P. Kuznetsov, “Grafy logitsheskih avtomatov i ih pibeazovanija,’Avtomatika |
telemehanikano. 9, pp. 149-158, 1975.

[25] V. A. Kuzmin, Otsenka slozhnosti realizatsii funktsii algebry logikogteishimi vi-
dami binarnyh programpil976, vol. 29, pp. 11-39, sb. Trudov | nstituta Matematiki
SO AN SSSR.

[26] O. P. Kuznetsov, “O programmnoi realizatsii logitskiesfunktsii i avtomatov. i.
analiz i sintez binarnyh programmitomatika | telemehanika, year=

[27] R. Ubar, “Berechnung von testsirf die fehlerdiagnose in digitalen systemen,” in
Proc. of 21. Int. Wiss. Koll. lImenau, Germany: Technical University of limenau,
Oct. 1976, pp. 33-35.

[28] ——, “Beschreibung digitaler einrichtungen mit altefimah grapheniir die fehler-
diagnose, Nachrichtentechnik/Elektronikio. 3, pp. 96—102, 1980.

[29] M. Plakk and R. Ubar, “Digital circuit test design usitige alternative graph model,”
in Automation and Remote Control Plenum Publishing Corporation, USA, Nov.
1980, vol. 41, no. 5, pp. 714-722.

[30] R. Ubar,Diagnosis of Digital Devices Tallinn Technical University, 1980, vol. |
and Il, in Russian.

[31] A. Seleznev, B. Dobriza, and R. Ubabesign of Automatic Test Equipments
Moscow, USSR: Mashinostrojenie, 1983, in Russian.

[32] R. Ubar, “Description of digital devices by alternatigraphs,” inProc. of Tallinn
Technical Universityno. 474, Tallinn, Estonia, 1979, pp. 11-33.

[33] A. Jutman, A. Peder, J. Raik, M. Tombak, and R. Ubar, uSturally synthesized
binary decision diagrams,” iBth International Workshop on Boolean Problems
Freiberg, Germany, Sept. 2004, pp. 271-278.

[34] A.Jutman, J. Raik, and R. Ubar, “On efficient logic-lesinulation of digital circuits
represented by the ssbdd model,”28rd Int. Conf. on Microelectroni¢ol. 2, Ni§,
Serbia, May 12-15, 2002, pp. 621-624.

[35] ——, “Ssbdds: Advantageous model and efficient algoritfonsligital circuit mod-
eling, simulation and test,” itsth Int. Workshop on Boolean Problensreiberg,
Germany, Sept. 19-20, 2002, pp. 157-166.

[36] R. Ubar, “Combining functional and structural appres in test generation for digi-
tal systems,Journal of Microelectronics and Reliabilityol. 38, no. 3, pp. 317-329,
1998.

[37] M. Plakk and R. Ubar, “Synthesis of test pairs for conattional circuits,” inPro-
ceedings of Tallinn Technical Universijtyo. 474, Tallinn, 1979, pp. 45-68, in Rus-
sian.

[38] K. B. Keller, “Hierarchical pattern faults for deschily logic circuit failure mecha-
nisms,” Patent 5546 408, Aug. 13, 1994.

[39] R. D. Blanton and J. P. Hayes, “On the properties of thpufrpattern fault model,”
ACM Trans. Des. Automat. Electron. Systl. 8, no. 1, pp. 108-124, Jan. 2003.

[40] R. Ubar, W.Kuzmicz, W. Pleskacz, and J. Raik, “Defegented fault simulation and
test generation in digital circuits,” iBnd Int. Symp. on Quality of Electronic Desjgn
San Jose, California, USA, Mar. 26-28, 2001, pp. 365-371.

[41] J. Raik, R. Ubar, J. Sudbrock, W. Kuzmicz, and W. Plegk&dot: New determinis-
tic defect-oriented atpg tool,.”

Overview about Low-Level and High-Level Decision Diagrams... 323

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

R.Ubar, “Fault simulation in digital systems usingeaitative graphs,” irB6. Int.
Wiss. Koll, Imenau, Germany, Oct. 21-24, 1991, pp. 737-742.

J. Raik, R. Ubar, S. Devadze, and A. Jutmgfficient Single-Pattern Fault Simula-
tion on Structurally Synthesized BDDs Berlin, Heidelberg, New York: Springer
Verlag, 2005, vol. 3463, pp. 332-344.

R. Ubar, S. Devadze, J. Raik, and A. Jutman, “Fast fastigtion in digital circuits
with scan path,” ill3th Asia and South Pacific Design Automation Conference- ASP
DAC, Seoul, Korea, Jan. 21-24, 2008, pp. 667-672.

——, “Fast fault simulation for extended class of faultsoan-path circuits,” ifsth
IEEE Int. Symposium on Electronic Design, Test and Appboat DELTA 2010Ho
Chi Minh City, Vietnam, Jan. 13-15, 2010, pp. 14-19.

——, “Parallel x-fault simulation with critical path tratg technique,” inEEE Conf.
Design, Automation and Test in Europe DATE-2(fesden, Germany, Mar. 8-12,
2010, pp. 1-6.

V. Alango, T. Kont, and R. Ubar, “New test design techraq for fault detection in
digital objects,” inProc. of Tallinn Technical Universityno. 708, Tallinn, Estonia,
1990, pp. 45-61.

A. Jutman, R. Ubar, and Z. Peng, “Algorithms for spegdimp timing simulation of
digital circuits,” inIEEE Conf. Design, Automation and Test in Europe DATE-2001
Munich, Germany, Mar. 13-16, 2001, pp. 460-465.

A. Viilup, T. Lohuaru, and R. Ubar, “Fault localizatian digital circuits with au-
tomatic test equipments,” iRroc. of Tallinn Technical Universityno. 432, Tallinn,
Estonia, 1977, pp. 37-45.

R. Ubar, “Fault diagnosis in digital devices,”froceedings of the Estonian Academy
of Sciences, Engngl995, no. 1/1, pp. 51-67.

——, “Design error diagnosis with resynthesis in combimaal circuits,”Journal of
Electronic Testing: Theory and Applicatignsl. 19, pp. 73—-82, 2003.

R. Ubar, J. Heinlaid, J. Raik, and L. Raun, “Calculatmintestability measures on
structurally synthesized binary decision diagrams,Pinc. of the 6th Baltic Elec-
tronics ConferenceTallinn, Estonia, Oct. 7-9, 1998, pp. 179-182.

R. Ubar, T. Vassiljeva, J. Raik, A. Jutman, M. Tombakg @ Peder, “Optimization
of structurally synthesized bdds,” ifhe 4th IASTED International Conference on
Modelling, Simulation and OptimizatioiKauai, Hawaii, USA, Aug. 17-19, 2004,
pp. 234-240.

R. Ubar, D. Mironov, J. Raik, and A. Jutman, “Structufallt collapsing by super-
position of bdds for test generation in digital circuitsy’ IEEE 11th International
Symposium on Quality Electronic Desjgan Jose, CA, USA, Mar. 22-24, 2010, pp.
250-257.

D.Mironov, R. Ubar, S. Devadze, J. Raik, and A. Jutmatrdcturally synthesized
multiple input bdds for speeding up logic-level simulatmirdigital circuits,” in Eu-
romicro Conf. on Digital System Design DSD’20Q10le, France, Sept. 1-3, 2010,
pp. 658—663.

G. Jervan, A. Markus, P. Paomets, J. Raik, and R. Ubanb@ tester: A cad sys-

tem for teaching digital test,” itMicroelectronics Education Kluwer Academic
Publishers, 1998, pp. 287-290.

[Online]. Available: http://www.pld.ttu.ee/tt/

R. Ubar, “Description of computers by vector altermatijraphs for diagnostic micro-
program synthesis,” iProc. of Tallinn Technical Universityrallinn, Estonia, 1980,
no. 497, pp. 11-20, in Russian.

324 R. Ubar:

[59] ——, “Vektorielle alternative graphen und fehlerdiagadfir digitale systeme,”
Nachrichtentechnik/Elektronjkol. 31, no. 1, pp. 25-29, 1981.

[60] ——, “Test generation for digital systems on the vectoerative graph model,” in
Proc. of the 13th Annual Int. Symp. on Fault Tolerant Conmqm,tMilan, Italy, year=.

[61] ——, “Test generation for microprocessors,” Rroc. of the 6th Conf. on Fault-
Tolerant Systems and Diagnosti@&no, Czechoslovakia, 1983, pp. 209-215.

[62] ——, “General approach to test synthesis for digital disand systems,” iRroc. of

the 10th All-Union Workshop on Technical Diagnosti€allinn, Estonia, Oct. 1984,
pp. 75-81, in Russian.

[63] R. eveugle and R. Ubar, “Modeling vhdl clock-driven mingrocesses by decision
diagrams,’J. of Electron Technologyol. 32, no. 3, pp. 282-287, 1999.

[64] A. Morawiec, R. Ubar, and J. Raik, “Cycle-based simiolatalgorithms for digital
systems using high-level decision diagrams,1BEE Proc. of Design Automation
and Test in Europe DATE’200@aris, France, Mar. 27-30, 2000, p. 743.

[65] J.Raik and R. Ubar, “Fast test pattern generation fQusatial circuits using decision
diagram representationsjournal of Electronic Testing: Theory and Applicatipns
vol. 16, no. 3, pp. 213-226, 2000.

[66] G.Jervan, R. Ubar, Z. Peng, and P. Elesst Generation: A Hierarchical Approach

[67] R. Ubar, J. Raik, E. Ivask, and M. Brik, “Multi-level féusimulation of digital sys-
tems on decision diagrams,” IEEE Workshop on Electronic Design, Test and Ap-
plications DELTA’02 Christchurch, New Zealand, Jan. 29-31, 2002, pp. 86-91.

[68] R. Ubar, S. Devadze, M. Jenihhin, J. Raik, G. Jervan,Riritllervee, “Hierarchical
calculation of malicious faults for evaluating the fawdterance,” in4th IEEE In-
ternational Symposium on Electronic Design, Test and Appibns DELTA 2008
Hong Kong, Jan. 23-25, 2008, pp. 222-227.

[69] J. Raik, U. Repinski, R. Ubar, M. Jenihhin, and A. Chepur‘High-level design
error diagnosis using backtrace on decision diagram&him 28th IEEE NORCHIP
ConferenceTampere, Finland, Nov. 5-16, 2010, pp. 1-4.

[70] R. Ubar, J. Raik, A. Karputkin, and M. Tombak, “Syntresif high-level decision
diagrams for functional test pattern generation,”1th Int. Conference MIXDES
2009 Lodz, Poland, June 25-27, 2009, pp. 519-524.

