
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 24, no.3, December 2011, 281-301

Decision Diagrams - from A Mathematical Notion to
Engineering Applications

Radomir S. Stankovíc, Raimund Ubar, and Jaakko T. Astola

Abstract: The paper presents a historical perspective to the theory ofdecision dia-
grams from the first definitions of the trees in mathematics related to the represen-
tations of discrete sets to the more recent definitions of different decision trees and
related diagrams that are widely used in few areas of computing. Special attention has
been paid to the relationships (similarities and differences) between Binary decision
diagrams (BDD) and Structurally synthesized binary decision diagrams (SSBDD).

Keywords: Switching theory; logic design; decision diagrams; testing of digital
devices.

1 Introduction

In mathematic, trees are used represent discrete sets. In set theory, a tree is defined
as a partially ordered set (poset)(T,<) such that for eacht ∈T, the set{s∈T|s< t}
is well-ordered by the relation<. See, for instance, [15,21,24].

For eacht ∈ T, the order type of{s∈ T|s< t} is called the height oft. In other
words, the height of a vertex is the length of the longest path to a leaf from that
vertex. The depth of a vertex is the length of the path from the root vertex tothis
vertex. Thus, the root vertex has the depth of zero.

Single rooted trees are often used, since many problems discussed for multi-
rooted trees can be reduced to related problems for single-rooted trees.At the

Manuscript received July 20, 2011. An earlier version of this paper was presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Conference Centre, Tuusula, Finland.

R. S. Stankovíc is with Dept. of Computer Science, Faculty of Electronics, 18 000 Niš, Serbia,
(e-mail:Radomir.Stankovic@gmail.com). R. Ubar is with Dept. of Computer Engineering,
Tallinn Technical University, Tallinn, Estonia (e-mail:raiub@pld.ttu.ee). J. T. Astola is with
Dept. of Signal Processing, Tampere University of Technology, FIN-33101 Tampere, Finland (e-
mail: Jaakko.Astola@tut.fi)

Digital Object Identifier: 10.2298/FUEE1103281S

281

282 R. S. Stankovíc, R. Ubar, and J. T. Astola:

same time, single rooted trees are easily related to the trees in graph theory, that
from another point of view can be efficiently used to represents graphically discrete
sets and mappings among them, which is the train of thoughts followed in this
paper leading to the decision trees and decision diagrams for representation of logic
functions and logic circuits as their implementation in hardware.

It should be noticed that the notion of partially well-ordered sets, upon which
the trees are defined, was introduced by Dj. Kurepa in his doctoral dissertation
defended at Sorbonne, Paris, France, in 1935 [22]. The dissertation of Kurepa is
reported in [21] at page 69, as the first profound study of trees in settheory. In the
dissertation Kurepa used the term ramification sets for well-ordered sets (ensemble
ramifié and tableaux ramifíe in French). See also [23–25]. Dj. Kurepa also defined
a concept that is known as the Kurepa tree and set a hypothesis called theKurepa
hypothesis. See, [16,21,37,51], and references therein.

In set theory, many different trees have been introduced, as for instance, the
Aronszajn tree, the Kurepa tree, the Suslin tree, that have been introduced by
Kurepa, etc., see for instance [15, 21, 22, 24, 25]. Their features and relationships
have been studied until the present time [16], and new concept are introduced [51].

A tree can be viewed as either a graph or as a data structure. These two in-
terpretations of this concept are actually equivalent, since a tree as a datastructure
contains both a set of elements and connections between elements, which results in
a tree as a graph.

In graph theory, a directed graph is said to be acyclic if it contains no cycles.
An acyclic graph is said to be rooted if exactly one of its vertices, called the root,
has no predecessors. In other words, the depth of this vertex is 0. A vertex in a
graph with no successors is called aleafor aterminalor constant vertex. A rooted,
acyclic, directed graph is called a tree if each of its vertices, excluding the root, has
exactly one predecessor. In other words, any connected1 acyclic rooted directed
graph is a tree.

In computing, we often deal with large sets of discrete data. Therefore, itis nat-
ural to use decision trees, and their reduced forms, decision diagrams, for represen-
tation and manipulation. These representations naturally extend to representation
of tabular data [40], and representation of discrete functions viewed asmappings
between discrete and often finite sets [2].

In switching theory, decision trees were used already by C.E. Shannon torepre-
sent the sets of all possible minterms of a function with a small number of variables.
The same representations can be seen in a paper by Kurepa [26], discussing rep-
resentations of switching functions in the broader context of mathematical logic
and machine implementation of sets of computing instructions, in a presentation at

1A graph is described as connected if there is a route of edges and nodesbetween each two nodes.

Decision Diagrams - 283

the International Symposium on Theory of Switching organized by H. Aikenat his
Harvard Lab on April 2-5, 1957.

As it is often the case in science, when the same or similar problems are consid-
ered by scholars in different geographic areas, and especially if communication and
information flow is prohibited for whatever reasons2, it happens that the same or
closely related concepts are independently introduced and studied, and applied to
solve the same or related problems, by different authors at about the sametime (or
even simultaneously) without being informed about the related work of the others.
In this context, it is interesting to discuss relationships, meaning similarities and
differences, of the concepts that have been developed independently. Such a study
can often provide some new ideas and certainly brings a deeper understanding of
the matter.

A particular example of such a situation can be observed when discussing Bi-
nary Decision Trees (BDT) and Diagrams (BDD), and Structurally Synthesized
Binary Decision Diagrams (SSBDD) and their applications in Switching theory
and Logic design.

In this paper, we will briefly discuss these two concepts, their relationships
(similarities and differences).

2 Decision Trees and Diagrams in Switching Theory and Logic Design

It is commonly accepted that the profound study and applications of decisiondi-
agrams in representation of switching functions and related extensions andgener-
alizations to other classes of functions started after the publication of the seminal
paper by R. Bryant in 1986 [12]. It has been pointed out by severalscholars that
the subject has a much longer history, see for instance [48,55]. Decision diagrams
were used to represent switching functions by S. Lee in 1959 [30]. In 1967 and
1969, the similar concept was used by Ehrenfeticht and Orlowska in [14,42]. In
1975 and 1977, Kuznetsov worked on synthesis of BDDs from the gate networks.

In 1978 by S.B. Akers [3–5] used BDDs for functional testing.
In 1976, a strongly related concept was introduced by R. Ubar [58] under the

name of alternative graphs (AG) for the purpose of structural testing. The concept
was extended into the Structural Alternative Graphs (Structural AG) in order to
serve better in tasks such as testing of digital systems. The same concept was
later reported as Structurally Synthesized Binary Decision Diagrams (SSBDD) and
extensively used in many publications, see for instance [43,45–47,50,60–67,70].

Many different decision diagrams have been defined for the purpose of com-
pact representations of different classes of discrete functions, andthe relationships

2In the past often caused by political reasons.

284 R. S. Stankovíc, R. Ubar, and J. T. Astola:

among them have been investigated, see for instance [8] for a particular example
of such discussions. For a classification of decision diagrams, we referto [55, 56].
The spectral interpretation provided a unified view to various essentially different
decision diagrams [54, 55]. Interestingly, although a lot of work has been done in
this area, SSBBDs have remained uninvolved in such considerations. Their place
among a variety of decision diagrams used in Switching theory and Logic design
is still undetermined. For that reason, this task has been undertaken by theauthors
of this paper. We will focus on relationships of SSBDD to the most closely related
concept of BDD.

3 Binary Decision Diagrams

Binary decision diagrams (BDD) can be viewed as a data structure tailored es-
pecially for representation of switching (Boolean) functions. In this context they
can be related to the application of the Shannon expansion with respect to allthe
variables in a functionf to be represented. Recall that the Shannon expansion al-
lows to decompose a functionf into co-factorsf0 = f (x1, . . . ,xi = 0, . . . ,xn) and
f1 = f (x1, . . . ,xi = 1, . . . ,xn), with respect to each variablexi , i = 1,2, . . . ,n, as

f = x f0∨xi f1,

where∨ is the logic OR.

Note that in the Shannon expansion, that is traditionally viewed as an AND-OR
expansion, the logic OR can be replaced by EXOR, since the terms in the expansion
are disjoint. Due to that, the Shannon expansion can also be viewed as an AND-
EXOR expansion which is an interpretation often used when discussing decision
diagrams. Thus, BDD are graphical representations of the functional expressions
derived by the recursive application of the Shannon decomposition rule.

BDD can be alternatively discussed as a particular example of directed acyclic
graphs consisting of a set of non-terminal vertices, and a set of constant vertices
connected with edges. They are obtained from the Binary Decision Trees(BDT) by
removing redundant information about the function represented. This redundancy
is seen as appearance of isomorphic subtrees, that are subsequently removed by the
application of suitably defined reduction rules, see for instance [49]. The problem
of reducing the size of BDD was also discussed in [58] by listing the rules for
removing redundant parts from the BDD.

For a formal definition of BDD, we refer, for instance, to [48,49], whilefor the
purpose of considerations in this paper, BDD will be introduced by the Example 1.

Decision Diagrams - 285

4 Complexity of BDD

In this section, we will briefly repeat and discuss some well-known features of
BDD in order to explain and justify introduction of many other decision diagrams
besides BDD. We will also point out rationales leading to the definition of SSBDD.

A different picture about the compactness of decision diagrams is obtained
when representing particular functions that are often met in engineering practice
and, on the other hand, arbitrary switching functions.

For many practical functions, BDD are compact in the number of vertices.
There are, however, functions, as for instance multipliers, that have BDD of ex-
ponential complexity. The size of a BDD is sensitive to the order of the variables,
and can range from polynomial to exponential complexity for the same function de-
pending on the selected order of the variables. There are functions thatare invariant
to the order of the variables, as for instance symmetric functions by definition, and
also functions that have BDD of exponential complexity for any order of the vari-
ables. Again, multipliers are such an example. For arbitrary switching functions,
called general switching functions, the following conclusions are presented in [32].

1. A tight upper bound for the worst case size of reduced OBDD’s, is
(2n+1/n)(1+ ε) wheren is the number of variables andε is an arbitrarily
small positive number.

2. The two reduction rules have disparate reduction capacity. The mergingrule
alone contributes the reduction factor 1/n in the worst case sizeO(2n/n),
while the deletion rule contributes no more than 1% for largen.

3. Almost all Boolean functions require at least 2n/2n vertices even in the op-
timal variable ordering. Moreover almost all switching functions are not
sensitive to variable ordering.

As pointed out in [32], these complexity measures correspond to those derived
by Miller in 1956 for multi-level networks [39], and already in 1949 by Shannon
[52] and improved by Lupanov in 1955 [33] for contact networks. Formore details
on this subject, see the discussion in [20].

It should be noted that BDD provide compact representations for many func-
tions useful in various applications. Nevertheless, there are functions whether the
BDD have an exponential complexity in the number of vertices.

That was a reason to define various classes of decision diagrams aimed atcom-
pact representation of certain classes of functions.

These diagrams represent functions, that can be viewed as outputs of logic cir-
cuits.

286 R. S. Stankovíc, R. Ubar, and J. T. Astola:

We cannot say that these decision diagrams represent circuits, althoughfunc-
tions represented by decision diagrams can be easily mapped into circuits [7,48].
Such circuits will have layout derived from the shape of the used decision dia-
grams and will consists of modules corresponding to the decomposition rules used
in the definition of the diagrams. In the case of BDD, the modules are(2× 1)
multiplexers, since they can be viewed as a hardware realization of the Shannon
decomposition rule.

A desire to derive graphical representations of logic circuits directly, instead of
those of the functions they implement, led to the definition of Structurally Synthe-
sized Binary Decision Diagrams [58], that will be briefly introduced in the follow-
ing sections. It is interesting to note that SSBDD were introduced in 1976 [58] for
the purpose of testing of logic networks, which is the same problem to the solution
of which BDD were used in 1978 [4].

4.1 Typed Decision Graphs

The introduction of this kind of decision diagrams was driven by certain prob-
lems that were noticed in certain concrete industrial applications that were devel-
oped in the Bull Corporation in France around 1987. The staff of the Research
Center of this corporation, managed by Gerard Roucairol, was occupiedamong
the other things by an extensive simulation of processors, to which task a lotof
computer power had to be devoted. François Anceau, a member of the processor-
development team of the Center, suggested to prove the correctness of processors
versus the VHDL specifications rather than to perform simulations. As notedin [6],
the task was transferred to researchers J.P. Billon, and Jean-Christophe Madre, to
whom latter joined Alain Coudert, a student at that time. Typed Decision Graphs
(TDG) were introduced in [9], and were used as the underlying data structure to
represent large Boolean functions.

The main idea behind TDG if that a switching functionf and its logic nega-
tion f ′ can be represented by the BDD that differ in the order of values of constant
vertices. For instance, if the constant vertices in the BDD forf are 0, and 1, then
constant vertices in the BDD forf ′ will be 1 and 0, otherwise these BDD are iden-
tical. This feature enables to increase the number of isomorphic subtrees in aBDD,
by assigning a minus sign at the front of a subdiagram representing a subsunction
f ′ that is the logical complement of a subfunctionf in the BDD. In this way, if
the sign is added to the BDD, the canonicity can be questioned, since the constant
value 0 can be represented as either(+,0) or (−,1). The problem is resolved when
the choice is fixed and applied consistently. For instance, it is pointed out, see for
instance [34], that a good choice with respect to the number of vertices in the graph

Decision Diagrams - 287

0

1

0

0

0
0

0 0

0

-,0

0

-,0

0

-,0

0

0

0

-,0

0

-,0

0

0

0

1

0

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

x

x

a

y y

x

y

y

by

y

z

z

c

c

c

z

z

z

z

z

z

z

f

f

f

f

-,0

-,0

-,0

Shannon tree BDD

Typed Shannon tree TDG

Fig. 1. BDT, BDD, TDG, and reduced TDG forf in Example 1.

is the following [36]

Tst(f (x1, . . . ,xn))(a1, . . . ,ai)

de f
=







(+,St(f (x1, . . . ,xn))(a1, . . . ,ai))
if f (a1, . . . ,ai ,1, . . . ,1) = 1
(−,St(f (x1, . . . ,xn))(a1, . . . ,ai)),otherwise

It follows that TDG are closely related to the BDD with complemented (also
called negated) edges, that are suggested as a way to simplify BDD, see for instance
[11], [38].

In TDG, the minus signs are assigned to the left outgoing edges, as this is deter-
mined by the corresponding function values, and the values of constant vertices are

288 R. S. Stankovíc, R. Ubar, and J. T. Astola:

0

0

00

0 0

1 1

1

11

1 1

1

1

1

a

b

a

b

c

b

c c

f f

-,0

-,0

-,0

BDD TDG

Fig. 2. BDD and TDG for the function in Example 2.

set to 1. Due to these features, they can be related to the Edge-valued binary deci-
sion diagrams (EVBDD) with multiplicative attributes, as Factored EVBDD [71].

The following example, taken from [36] illustrates the concept of TDG and
links then to BDD.

Example 1 Fig. 1 shows the Binary decision tree (BDT), Binary decision diagram
(BDD), the Typed Shannon tree, and reduced form of it, the Typed Decision graph
(TDG) for the function f(x,y,z) = xy+yz+zy.

The efficiency of TDG compared to BDD is well illustrated by the following
example taken from [35]. Further details on TDG can be found in [13].

Example 2 Fig. 2 shows BDD and TDG for the the function f(a,b,c) = a⊕b⊕c.
From this figure, the comment about the link to EVBDD [31] becomes obvious.

5 Structurally Synthesized Binary Decision Diagrams

In [58], two classes of graphs calledAlternative graphs(AG) andStructural al-
ternative graphs(Structural AG) for the purpose of modeling and testing digital
devices were introduced. These graphs have been reported latter asStructurally
Synthesized Binary Decision Diagrams(SSBDD) in connection with the wide use
of BDD after the appearance of the seminal paper by Bryant [12].

Formally, a SSBDD is defined as follows.

Decision Diagrams - 289

x1

x2

x3

x4
x4

x11

x11

x21

x21

x12

x12

x31

x31

x13

x13

x22 x22

x32

x32

y

y

&

&

&
&

11

1

_

0

1

0

()a ()b

a

Fig. 3. A circuit and a SSBDD which correspond to the Boolean formula (1).

Definition 1 A BDD is a rooted directed acyclic graph G= (M,Γ,X) with a ver-
tex set M= MN ∪MT . Γ is a relation on M whereΓ(m) ⊂ M denotes the set of
successors of m, andΓ−1(m) ⊂ M denotes the set of predecessors of m. The non-
terminal vertices m∈ MN are labeled by Boolean variables x(m) ∈ X, and have
exactly two successor vertices me ∈ Γ(m), e∈ {0,1}. The graph has two termi-
nal vertices mT ∈ MT labeled by a constant e(mT) ∈ {0,1} and calledleafs. For
the terminal vertices mT we haveΓ(mT) = /0, and for the root vertex m0 ∈ MN we
haveΓ−1(m0) = /0. If there exists an assignment x(m) = e, then we say that the
edge(m,me) in G is activated. Activated edges connecting vertices mi and mj form
an activated path l(mi ,mj). An activated path l(m0,mT) is called full activated
path.

Definition 2 A BDD Gy = (M,Γ,X) represents a Boolean function y= f (X) where
X = (x1,x2, . . . ,xn), iff for all the possible vectors Xt ∈ {0,1}n there is a path
l(m0,mT) activated in Gy so that y= f (Xt) = e(mT).

Definition 3 A BDD Gy = (M,Γ,X) is called SSBDD if it represents a Boolean
function y= f (X) in the form of equivalent parenthesis expression with|IN| lit-
erals, which describes a gate-level tree-like combinational circuit Cy with a set
of inputs IN, and is composed on the basis of AND, OR, and NOT gates, where
|M|= |IN|, |X| ≤ |M|, and there exist a bijection M→ IN and a surjection X→ M.

Example 3 An example of a SSBDD for the Boolean parenthesis expression

y = (x11x12)∨x12(x31∨x4)∨x13x22x32, (1)

290 R. S. Stankovíc, R. Ubar, and J. T. Astola:

which is equivalent to the gate-level circuit in Fig. 3a is represented in Fig. 3b.
Here|M|= |IN|= 8, and|X|= 4. By convention, the right-hand edge from a vertex
corresponds to the value1, and the down-hand edge corresponds to the value0 of
the vertex variable. Note that vertex variables in a SSBDD may also be inverted
(see Section 6). We call this graph structurally synthesized because it is derived
from and represents the structure of the formula (1) and the corresponding circuit
in Fig. 3a. There exists a one-to-one mapping between the vertices in the graph in
Fig. 3b and the inputs of the fan-out free subcircuit in Fig. 3a (and the literalsin
the formula (1)).

The SSBDD are generated by the superposition of the BDD of gates or subcir-
cuits of the given circuit, which allows to represent in the model both functionality
and structural information of the circuit [58], [66]. Superposition is carried out for
a given circuit in the direction from the outputs to the inputs. A similar way is used
for creating the BDD for a given logic expression as a process of iterative logic
operations with BDD starting from the trivial BDD for variables [49].

The SSBDD model for the given circuit has a linear complexity. This results
from the fact that digital circuits are represented as systems of SSBDD, where
for each fanout-free region (FFR) a separate SSBDD is generated. On the other
hand, the use of the SSBDD model is equivalent to representing of the traditional
gate-level network as a higher level module (FFR) network, whereas thegate-level
structure of each module is represented more concisely by the corresponding SS-
BDD.

The following example illustrates how an SSBDD is constructed for the given
FFR circuit.

Example 4 Consider the FFR circuit in Fig. 4. The analysis of the circuit shows
that it can be described by the set of equations: y= e+ f ; e= a·b; f = d ·c; d = a.
Fig. 5 shows the train of thoughts to construct a SSBDD for this circuit.

The output y depends on the inputs e and f , and since this is an OR circuit, if
e= 0, the output depends on f (Fig. 5(a)). Since e depends on a and b, we do not
show it explicitly, but replace with a and later examine the influence of b. If a= 0,
since the circuit is AND, whatever is the value for b, y will depend just on f and
we draw an edge from a to f . If a= 1, we ask for the value of b and draw a right
edge to b. If b= 1, we go to the input of the circuit, which is a constant vertex1
in the graph which by the convention is not shown explicitly. If b= 0, then again y
depends solely on f . The value of f is the output of an AND circuit and depends
on its inputs d and c. Thus, f is replaced by d and if d= 1 we ask for the value of
c by following the right-hand edge (Fig. 5(c)). The values for c are determined by
the inputs of the circuit. Thus, they are constant vertices and not shown.Since d is

Decision Diagrams - 291

the output of an inverter whit the input a, then d= a, and we get the graph as in
Fig. 5(d).

a

b

c

d

e

f

y

&

&

+

Fig. 4. Circuit realizing the function f in Example 4.

6 Relationships between BDD and SSBDD

BDD and SSBDD are both single rooted binary acyclic graphs. In this way,they
belong to the large family of rooted binary acyclic graphs including trees thatare
used in mathematics for representation of discrete sets and mapping among them.
Binary means that there are two outgoing edges of each non-terminal vertex. There
are, however, some differences of SSBDD compared to the traditional BDD that
will be briefly summarized in the following statements.

BDD and SSBDD can be viewed as function-based and structure-baseddeci-
sion diagrams, respectively, and the most significant difference between these two
notions is in the way they are generated.

For a given function, the BDD is constructed by the recursive applicationof
the Shannon expansion rule to all the variables in function to be represented. In the
same way, various other decision diagrams are defined by using different expansion
rules, as for instance the positive and negative Davio expansion rules [49], [55].

6.1 The meaning of vertices

In a BDD, the vertices correspond to MUX(2× 1) modules, that can be viewed
as hardware realizations of the Shannon expansion rule. The decision variables
assigned to the vertices are used as control variables in the multiplexers. Otherwise,
the vertices in BDD have only the functional meaning as the points where decisions
of type ”if-then-else” are made.

Statement 1 The vertices in a SSBDD correspond to signal paths in the gate-level
circuit on the basis of AND, OR, and NOT gates, it represents. This is the decisive

292 R. S. Stankovíc, R. Ubar, and J. T. Astola:

and most important property of SSBDD, and this property results from themethod
of synthesis of SSBDD.

a

a a

a

b

b b

c cd

e

f f

y y

y y

_

()a ()b

()c ()d

Fig. 5. SSBDD for the function f in Example 4.

Example 5 For example, the vertex x11 denoted by the bold circle in the SSBDD in
Fig. 3b, corresponds to the signal path(x11,a,y) shown by bold lines in Fig. 3a.
On the other hand, Fig. 6 shows the network realizing the function f in Example4
derived from the BDD.

The fact that the vertices in SSBDD represent signal paths in the originalcircuit
allows SSBDD to explicitly model the faults in the circuit. With BDD the faults
can be modeled only implicitly by providing the fault lists, and creating a faulty
BDD for each fault. As exception, only the faults on the primary inputs of a circuit
can be modeled by the vertices of the BDD which represents the function of the
circuit.

Statement 2 SSBDD can represent different structural characteristics of the cir-
cuit in a compressed way, similarly as BDD can represent the function of the circuit
in a compressed way. Examples of such characteristics are: structural faults on the
lines of the circuit, delays on the signal paths, different types of delay faults, static
and dynamic hazards in logic. The listed characteristics of logic circuits cannot be
simulated explicitly with BDD which represent only the function.

Example 6 Since the vertex x11 in Fig. 3b corresponds to the signal path(x11,a,y)
in Fig. 3a, then the fault stuck-at-1 at the vertex x11, for example, models all three
stuck-at-1 faults on the path(x11,a,y).

Decision Diagrams - 293

0

0

0

1

1

1

a

b

c

f

r0

r0

r0 r1

r1

r1

0 1

a
a

b
b

c
c

f

_

_

_

S

S

S

Fig. 6. Network derived from the BDD to realize the function f Example 4.

The compression of fault sets and selecting of representative faults is called
fault collapsing[57], [69]. Fault collapsing is a side effect of the procedure of SS-
BDD synthesis. The number of stuck-at-faults processed in the SSBDD model of
the given circuit is twice the number of vertices in the model. Typically, the num-
ber of representative faults for the SSBDD model is half the number of faults in
gate-level circuits [19]. This is nearly the same result achieved by other structural
fault collapsing methods like the folding method [57]. However, the SSBDD model
represents explicitly the collapsed fault set by the set of vertices, whereas the other
gate-level fault diagnosis methods do it implicitly by separate lists of selected rep-
resentative faults. Recently, an extension of SSBDDS in a form of structurally syn-
thesized multiple input (multiple-rooted) BDD (SSMIBDD) was proposed, which
allows additional compression of the model which leads automatically to additional
fault collapsing [69].

Since each vertex in the SSBDD represents a signal path in the circuit, it is
possible also to represent in a compact way the path delays as vertex delays in
SSBDD, and model different delay faults in an efficient way on the SSBDDmodel
[68].

The possibility to model delays on signal paths by SSBDD led to find different
applications in simulation of structural aspects of logic circuits like hazard analysis
with multi-valued simulation [67], delay fault and timing simulation [18]. The
SSBDD achieved higher speed of simulation or analysis compared to the methods
that work on the gate level which can be explained by raising the simulation from
gate to macro (FFR) level.

294 R. S. Stankovíc, R. Ubar, and J. T. Astola:

x4x11 x21 x12 x31 x13 x22 x32

_
1

0

Fig. 7. Ordering of vertices in the SSBDD in Fig. 3.

6.2 Special properties of SSBDD

Statement 3 In SSBDD all the vertices except the terminal ones with constant la-
bels1 and0 are ordered whereas in the general case of BDD the vertices are only
partially ordered.

Example 7 The SSBDD represented in Fig. 3, can be stretched out into a string of
vertices as shown in Fig. 7, which highlights the ordering of vertices.

Consider a fully activated path in the given SSBDD which traverses a subset
of verticesM′ ⊆ M. Let us call a vertexm a 1-vertex if there is an assignment
x(m) = 1, and a 0-vertex if there is an assignmentx(m) = 0. Note that the variable
x(m) may be inverted.

Statement 4 SSBDD with a function y= f (X) has the following property: (1) in
every path from the root vertex to the1-terminal, the variables in the1-vertices
form a conjunction of the disjunctive normal form of f(X); (2) in every path from
the root vertex to0-terminal, the inverted variables in0-vertices form a conjunction
of the disjunctive normal form of the inverted f(X).

To create SSBDD which have such properties, sometimes it is needed to use
inverted variables in the vertices of SSBDD. These properties are useful in using
SSBDD for fault simulation and fault diagnosis.

Example 8 Consider how these properties support fault diagnosis in the given cir-
cuit. Let us have an input test pattern0111applied to the circuit in Fig. 3a which
produces on the output y= 1. The1-vertices of the full activated path in the SSBDD
in Fig. 3b form the conjunctionx13x22x32. If the output value at this pattern will
be erroneous y= 1, then the conjunction shows the possible causes of the detected
error.

Statement 5 Each SSBDD is a BDD. The converse is generally not valid. It would
be interesting to determine if a given BDD is a SSBDD or not.

Decision Diagrams - 295

This question was investigated in [44] where the necessary and sufficient condi-
tions were found to say when a BDD is also a SSBDD. SSBDD A gate-level circuit
can always be straightforwardly derived from a SSBDD.

6.3 Complexity

Statement 6 Not all possiblefull pathsfrom the root vertex to terminals in a SS-
BDD which represents a function y= f (X) can be activated by the assignments
of the variables x∈ X. If a full path cannot be activated we say this full path is
infeasible.

The reason for the infeasibility of a full path in a SSBDD is in the fact that a
full path can have the same variable in different vertices both, as invertedand not
inverted. Infeasibility of a full path in a SSBDD refers to the inherent redundancy
in SSBDD.

Example 9 Consider the SSBDD in Fig. 7, which is the same SSBDD as in Fig. 3b,
where the longest path is stretched out as a string of vertices showing explicitly
their ordering. Every SSBDD can always be represented as a similar stretched out
string of vertices which represents the longest path in the SSBDD. It is easy to see
in Fig. 7 that for activating this longest path for example up to the1-terminal the
following condition should be fulfilled:

x1x2x1x3x4x1x2x3 = 1,

which, however, is inconsistent which means that such a full activated pathis in-
feasible. The breakpoint on the highlighted longest path is the vertexx13. Because
of the assignment x1 = 1 made at the root vertex, the traversing of the path after
the vertexx13 ends in0-terminal.

In the BDD generated by recursive use of the Shannon expansion, also have
all the full paths feasible. After minimizing the BDD generated for a given logic
expression as a process of iterative logic operations [49], the resultingBDD will
have also all the full paths feasible.

Statement 7 SSBDD in general case are redundant. It means that a full path in
a SSBDD may have the same variable at different vertices traversed by the path.
This is not the case in BDD.

Having this kind of redundancy in SSBDD is needed for preserving all theim-
portant structural properties of the circuit in the model, which allow for the analysis,

296 R. S. Stankovíc, R. Ubar, and J. T. Astola:

for example, of static and dynamic hazards in the given circuit. BDD which are gen-
erated from logic expressions of the circuit by iterative logic operations [49], and
are optimized afterwards, loose the possibility of analyzing the mentioned struc-
tural properties of the given circuit.

The problem with BDD regarding the complexity was discussed in the previous
sections. From Statement 7 it results that the SSBDD are even more complex than
BDD. Let us compare first the estimations of the complexities of SSBDD and BDD
when representing the FFRs. Consider a Boolean function withn variables which
represents a tree-like circuit with|IN| inputs.

Statement 8 The number of vertices|M| in a BDD is n≤ |M| ≤ |IN|, and in the
SSBDD is|M| = |IN|, hence, n≤ |MBDD| ≤ |MSSBDD| = |IN|.

From the statement it results that the number of vertices in BDD are always
equal or less than in SSBDD. The reason is that in SSBDD we have to model
explicitly all the signal paths in the original circuit represented by the vertices in
SSBDD, and hence, the minimization of the number of vertices in SSBDD is not
allowed as in the case of BDD.

Table 1. Comparison of the complexity of BDD and SBDD.

Circuit In Out Gates ROBDD [3] FBDD [1] SSBDD

c432 36 7 232 30200 1063 308
c499 41 32 618 49786 25866 601
c880 60 26 357 7655 3575 497

c1355 41 32 514 39858 N/A 809
c1908 33 25 718 12463 5103 866
c2670 233 140 997 N/A 1815 1313
c3540 50 22 1446 208947 21000 1648
c5315 178 123 1994 32193 1594 2712
c6288 32 32 2416 N/A N/A 3872
c7552 207 108 2978 N/A 2092 3552

The explosion of the complexity in the case of SSBDD is avoided by using
them for representing only FFR subcircuits. The whole circuit is handled as a
network of FFR modules where each module is a SSBDD. As a result, the gate-
level networks will be substituted by module level networks with less complexity.
In Table 1, a comparison of the number of vertices as a measure of complexity
of the model for different classes of BDD is shown: ROBDD [3], FBDD [1] and
SSBDD taken from [19]. The comparison is given for the benchmarks ISCAS’85.

Decision Diagrams - 297

As can be seen, the complexity of SSBDD is in a linear relation with the complexity
of original circuits in the number of gates.

7 Closing Remarks

Switching (Boolean) functions are a particular class of logic functions (binary logic
functions), and logic functions can be further viewed as functions overdiscrete
sets. Switching functions are implemented by logic networks that can be viewedas
facets of digital systems.

Binary decision diagrams BDD and SSBDD are graphical representationsof
switching functions and their circuit implementations, respectively. In this context,
they are particular examples of decision diagrams used in computing for represen-
tations of tabular data (where a hierarchy among data is implicitly assumed through
the order of rows and columns) and other ordered sets of data. Due to theexistence
of some order relations, there is a direct link to trees that are a powerful tool in set
theory. Single rooted trees in set theory are directly related to the trees in graph the-
ory via the concept of directed acyclic graphs expressing both sets of elements and
connections between elements. Since BDD and SSBDD are both formally defined
as particular examples of single rooted acyclic graphs, the train of links among
these essential mathematical concepts is completed.

BDD and SSBDD are used in different tasks in digital system representation
and modeling, design, verification, testing, and in general the study of digital sys-
tem.

Acknowledgments

The authors are grateful to the Reviewers whose comments improved the presenta-
tion in the paper.

This work was supported by the Academy of Finland, Finnish Center of Excel-
lence Programme, Grant No. 213462, and by Estonian Science Foundation grant
7483, and Research Centre CEBE funded by EU Structural Funds.

References

[1] Abramovici, M., Breuer, M.A., Friedman, A.D.,Digital Systems Testing and Testable
Design, New York, IEEE Press, 1990, 652p.

[2] Akers, S.B., ”On a theory of Boolean functions”,Journal of the Sociaety of Industrial
and Applied Mathematics, Vol. 7, No. 4, 1959, 487-498.

[3] Akers, S.B., ”Binary decision diagrams”,IEEE Trans. Computers, Vol. 27, No. 6,
1978, 509-516.

298 R. S. Stankovíc, R. Ubar, and J. T. Astola:

[4] Akers, S.B., ”Functional testing with binary decision diagrams”,Proc. 8th Ann. IEEE
Conf. Fault-Tolerant Comput., 1978, 75-82.

[5] Akers, S.B. , ”Functional testing with Binary Decision Diagrams”,J. of Design Au-
tomation and Fault-Tolerant Computing, Vol. 2, 1978, 311-331.

[6] Anceau, F., Private communication 2010.
[7] Astola, J.T., Stanković, R.S.,Fundamentals of Switching Theory and Logic Design,

Springer, 2006.

[8] Becker, B., Drechsler, R., Werchner, R., ”On the relation between BDD’s and
FDD’s”, Inform. Comput., Vol. 123, No. 2, 1995, 185-197.

[9] Billon, J.P.,Perfect Normal Forms for Discrete Programs, Technical Report 87039,
BULL, France, June 1987.

[10] Boute, R.T., ”The Binary Decision Machine as a programmable controller”,EU-
ROMICRO Newsletter, Vol. 1, No. 2, January 1976, 1622.

[11] Brace, K., Rudell, R., Bryant, R., ”Efficient implementation of a BDD package”,
Proc. 27th ACM/IEEE Design Automation Conference, 1990, 40-45.

[12] Bryant, R.E., “Graph-based algorithms for Boolean functions manipulation,”IEEE
Trans. Comput., Vol. C-35, No. 8, 1986, 667-691.

[13] Coudret, O., Madre, J.C., ”Towards an interactive fault tree analyser”,IASTED
International Conference on Reliability, Quality Controland Risk Assessment,
IASTED’92, Washington DC, USA, November 1992.

[14] Ehrenfeticht, A., Orlowska, E., ”Mechanical Proof Procedure for Propositional Cal-
culus”,Bulletin de l’Academie Polonaise des Sciences, Serie des sciences math., astr.
et phys., - Vol. XV, No. 1, 1967, 25-30.

[15] Jech, T., ”Trees”,The Journal of Symbolic Logic, Vol. 36, 1971, 1-14.

[16] Jin, R., ”Some independence results realted to the Krepa tre”, Notre Dame Journal
of Formal Logic, Vol. 32, No, 3, Summer 1991, 448-457.

[17] Jutman, A., Raik, J., Ubar, R., ”On efficient Logic-level simulation of digital circuits
represented by the SSBDD model”,23rd Int. Conf. on Microelectronics, Vol. 2, May
2002, 621-624.

[18] Jutman, A., Ubar, R., Peng, Z., ”Algorithms for speeding-up timing simulation of
digital circuits”,DATE, Munich, March 13-16, 2001, 460-465.

[19] Jutman, A., Raik, J., Ubar, R., ”SSBDD: Advantageous model and efficient algo-
rithms for digital circuit modeling, simulation & test”,5th Int. Workshop on Boolean
Problems, Freiberg, Germany, September 19-20, 2002, 157-166.

[20] Karpovsky, M.G., Stanković, R.S. Astola, J.T.,Spectral Logic and Its Applications
for the Design of Digital Devices, Wiley & Sons, 2008.

[21] Kunen, K.,Set Theory, An Introduction to Independence Proofs, North-Holland, Am-
sterdam, 1980.

[22] Kurepa, Dj.,Ensembles ordonnés et ramifíes, PhD. Thesis, Paris, Sorbonne, 1935.
Reprinted inPubl. Math. Univ. Belgrade, Vol. 4, 1935, 1-138, and republished in
A. Ivi ć, Z. Mamuzíc, Ž. Mijajlovi ć, S. Todořcevíc (eds.),Selected papers of Djuro
Kurepa, Matematǐcki institut SANU, Belgrade, Serbia, 1996.

[23] Kurepa, Dj., ”L’ hypoth́ese de remification”,Comptes Rendus Hebodomaires des
Śeances de l’Academie des Sciences de Paris, 1936.

[24] Kurepa, Dj., ”Ensembles lineaires et une classe de tableaux ramifíes”, Publ. Math.
Univ. Belgrade, Vol. 6, 129-160.

Decision Diagrams - 299

[25] Kurepa, Dj., ”A propos d’une generalization de la notion d’ensembles bien or-
donńes”,Acta Mathematica, Vol. 75, 1942, 139-150.

[26] Kurepa, Dj. R., ”Sets-Logics-Machines”,Proc. Int. Symp. Theory of Switching, Har-
vard University, Cambridge, 1957, Part 1, 137-146.

[27] Kurepa, Dj., ”On A-trees”,Publications de l’Institut Mathematique, Vol. 8 , No. 22,
1968, 153-161.

[28] Kuznetsov, O.P., ”Grafy logitsheskih avtomatov i ih preobrazovanija”,Avtomatika i
telemehanika, No. 9, 1975, 149-158.

[29] Kuznetsov O.P, ”O programmnoi realizatsii logitsheskih funktsii i avtomatov, I,
Analiz i sintez binarnyh program”,Avtomatika i telemehanika, No. 7, 1977, 163-174.

[30] Lee, C.Y., ”Representation of switching circuits by binary-decision programs”,Bell.
Syst. Tech. J., Vol. 38, July 1959, 985-999.

[31] Lai, Y.-T., Pedram, M., Vrudhula, S.B.K., ”EVBDD-based algorithms for integer
linear programming, spectral transformation, and function decomposition”,IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 13, No. 8,
1994, 959-975.

[32] Liaw, H.T., Lin, C.S., ”On the OBDD-representation of general Boolean functions”,
IEEE Trans. Computers, Vol. 41, No. 6, 1992, 661-664.

[33] Lupanov, O.B., ”On the possibilities of synthesis of networks from different types of
elements”,Dokl. Akad. Nauk SSSR, 103, 1955, 561-563, (in Russian).

[34] Madre, J.C., Billon, J.P., ”Proving circuit correctness using formal comparison be-
tween expected and extracted behavior”,Proc. 25th DAC, Anaheim, California, USA,
June 12-15, 1988, 205-201.

[35] Madre, J.-C., Coudert, O., Currat, M., Debreil, A., Berthet, C., ”The formal verifica-
tion chain at BULL”,Euro ASIC ’90, 1990, 474-479.

[36] Mauborgne, L., ”Binary decision graphs”, in A. Cortesi, G. Filé, (eds.),Static Ana-
lyis Symposium (SAS99), Vol. 1694 ofLecture Notes in Computer Science, Springer-
Verlag, 1999, 101116.

[37] Mijajlovi ć, Ž., ”Djuro Kurepa”,Publlications de L’ Institut Math́ematique, Nouvelle
série, tome 57, No. 71, 1995, 13-18.

[38] Minato, S., Ishiura, N., Yajima, S., ”Shared binary decision diagrams with attributed
edges for efficient Boolean function manipulation”,Proc. 27th IEEE/ACM DAC, June
1990, 52-57.

[39] Muller, D.E., ”Complexity in electronic switching circuits”, IRE Trans. Electron.
Comput., Vol. EC-5, No. 1, 1956, 15-19.

[40] Miyakawa, M., ”Optimum decision trees - An optimal variable theorem and its re-
lated applications”,Acta Inf., Vol. 22, No. 5, 1985, 475-498.

[41] Miyakawa, M., ”Criteria for selecting a variable in theconstruction of efficient deci-
sion trees”,IEEE Trans. Computers, Vol. 38, No. 1, 1989, 130-141.

[42] Orlowska, E., ”Mechanical theorem proving in a certainclass of formulae of the
predicate calculus”,Studia Logica: An International Journal for Symbolic Logic, T.
25, 1969, 17-29.

[43] Pall, M., Ubar, R.R., ”Computer-aided module-level test generation for digital de-
vices on the basis of their alterantive-graph-model”,Preprints SOCOCO-79,Proc.
2nd IFAC/IFIP Symp. on Software for Comp. Contr., Prague, 1979, Vol. 2.

[44] Peder, A., Tombak, M., ”Superpositional Graphs”,Acta et Commentationes Univer-
sitatis Tartuensis de Mathematica, 13, 2009, 51-64.

300 R. S. Stankovíc, R. Ubar, and J. T. Astola:

[45] Plakk, M., Ubar, R., ”Digital circuit test design usingthe Alternative graph model”,
Automation and Remote Control, Vol. 41, No. 5, Part 2, 1980, Plenum Publishing
Corporation, USA, 714-722.

[46] Raik, J., Ubar, R., ”Feasibility of Structurally synthesized BDD models for test gen-
eration”,Proc. of the IEEE European Test Workshop, 1998, 145-146.

[47] Raik, J., Ubar, R., ”Fast test pattern generation for sequential circuits using decision
daigram representations”,Journal of Electronic Testing - Theory and Applications,
Vol. 16, 2000, 213-226.

[48] Sasao, T.,Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.
[49] Sasao, T., Fujita, M., (ed.),Representations of Discrete Functions, Kluwer Academic

Publishers, 1996.
[50] Seleznev, A., Dobriza, B., Ubar, R.,Design of Automatic Test Equipments, Mashinos-

trojenie, Moscow, USSR, 1983, 224 pp., (in Russian).

[51] Shelah, S., Jin, R., ”Planting Kurepa trees and killingJechKunen trees in a model by
using one inaccessible cardinal”,Fundamenta Mathematicae, 141, 1992, 287-296.

[52] Shannon, C.E., ”The synthesis of two-terminal switching circuits”,Bell System Tech.
J., Vol. 28, No. 1, 1949, 59-98.

[53] Somenzi, F., ”Efficient manipulation of decision diagrams”,Int. Journal on Software
Tools for Technology Transfer, Vol. 3, 2001, 171-181.

[54] Stankovíc, R.S., ”Unified view of decision diagrams for representation of discrete
functions”,Multi. Val. Logic, Vol. 8, No. 2, 2002, 237-283.

[55] Stankovíc, R.S., Astola, J.T.,Spectral Interpretation of Decision Diagrams, Springer,
2003.

[56] Stankovíc, R.S., Sasao, T., ”Decision diagrams for discrete functions: classification
and unified interpretation”,Proc. Asian and South Pacific Design Automation Con-
ference, ASP-DAC’98Yokohama, Japan, February 13-17, 1998, 439-446.

[57] To, K., ”Fault folding for irredundant and redundant combinational circuits”,IEEE
Trans. Computers, Vol. C-22, No. 11, 1973, 1008-1015.

[58] Ubar, R., ”Test generation for digital circuits using alterantive graphs”,Proc. Tallinn
Technical University, Estonia, No. 409, 1976, 75-81 (in Russian).

[59] Ubar, R., ”Description of models of digital devices by altrantive grpahs”,Proc. of the
Tallinn Polytechnic Institute, No. 474, 1979, 11-33.

[60] Ubar, R.R., ”Beschreibung digitaler Einrichtungen mit alternative Graphen fur die
Fehlerdiagnose”,Nachrictentechnik/Elektronik, 1980, 30, H. 3, 96-102.

[61] Ubar, R., ”Desription of computers by vector alternative graphs for diagnostic mi-
croprogram synthesis”,Proc. of Tallinn Technical University, No. 497, 1980, Tallinn,
11-20 (in Russian).

[62] Ubar, R., ”Vektorielle Alternative Graphen und Fehlerdiagnose fr digitale Systeme”,
Nachrichtentechnik/Elektronik, Vol. 31, H.1, 1981, 25-29.

[63] Ubar, R., ”Test generation for digital systems on the vector alternative graph model”,
Proc. of the 13th Annual Int. Symp. on Fault Tolerant Computing, Milano, Italy, 1983,
374-377.

[64] Ubar, R., ”Test generation for microprocessors”,Proc. of the 6th Conf. on Fault-
Tolerant Systems and Diagnostics, Brno, Czechoslovakia, 1983, 209-215.

[65] Ubar, R., ”General approach to test synthesis for digital circuits and systems”,Proc.
of the 10th All-Union Workshop on Technical Diagnostics, Tallinn, Oct., 1984, 75-81
(in Russian).

Decision Diagrams - 301

[66] Ubar, R., ”Test synthesis with alterantive graphs”,IEEE Design & Test of Computers,
1996, 48-57.

[67] Ubar, R., ”Multi-valued simulation of digital circuits with Structurally synthesized
binary decision diagrams”,Multiple-Valued Logic, Vol. 4, 1998, 141-157.

[68] Ubar, R., Devadze, S., Raik, J., Jutman, A., ”Parallel X-fault simulation with critical
path tracing technique”,IEEE Conf. Design, Automation & Test in Europe - DATE-
2010, Dresden, Germany, March 8-12, 2010, 1-6.

[69] Ubar, R., Mironov, D., Raik, J., Jutman, A., ”Structural fault collapsing with linear
complexity for test generation in digital circuits”,IEEE Int. Symposium on Circuits
and Systems - ISCAS’2010, Paris, France, May 30-June 2, 2010, 1-6.

[70] Viilup, A., Lohuaru, T., Ubar, R., ”Fault localizationin digital circuits with automatic
test equipments”,Proc. of Tallinn Technical University, No.432, 1977, Tallinn, pp.37-
45 (in Russian).

[71] Vrudhula, S.B.K., Pedram, M., Lai, Y.-T., “Edge valuedbinary decision diagrams,”
in: [49], 109-132.

