FACTA UNIVERSITATIS (NIS)
SER.: ELEC. ENERG. vol. 24, no.3, December 2011, 281-301

Decision Diagrams - from A Mathematical Notion to
Engineering Applications

Radomir S. Stankovic, Raimund Ubar, and Jaakko T. Astola

Abstract: The paper presents a historical perspective to the theodgedition dia-
grams from the first definitions of the trees in mathematitated to the represen-
tations of discrete sets to the more recent definitions démint decision trees and
related diagrams that are widely used in few areas of comgu8pecial attention has
been paid to the relationships (similarities and diffeesm)detween Binary decision
diagrams (BDD) and Structurally synthesized binary decisliagrams (SSBDD).

Keywords: Switching theory; logic design; decision diagrams; testiri digital
devices.

1 Introduction

In mathematic, trees are used represent discrete sets. In set theegyisadefined
as a partially ordered set (poséf) <) such that for eache T, the sef{se T|s<t}
is well-ordered by the relation. See, for instance, [15, 21, 24].

For eacht € T, the order type ofs€ T|s< t} is called the height df. In other
words, the height of a vertex is the length of the longest path to a leaf fram th
vertex. The depth of a vertex is the length of the path from the root vertdxigo
vertex. Thus, the root vertex has the depth of zero.

Single rooted trees are often used, since many problems discussed for multi-
rooted trees can be reduced to related problems for single-rooted tf¢ebe

Manuscript received July 20, 2011. An earlier version of this pames presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Confererer@r€, Tuusula, Finland.

R. S. Stankow is with Dept. of Computer Science, Faculty of Electronics, 18 039 Serbia,
(e-mail: Radomi r. St ankovi c@nmai | . com). R. Ubar is with Dept. of Computer Engineering,
Tallinn Technical University, Tallinn, Estonia (e-mailai ub@l d. tt u. ee). J. T. Astola is with
Dept. of Signal Processing, Tampere University of Technology-8101 Tampere, Finland (e-
mail: Jaakko. Astol a@ut . fi)

Digital Object Identifier: 10.2298/FUEE1103281S

281

282 R. S. Stankow, R. Ubar, and J. T. Astola:

same time, single rooted trees are easily related to the trees in graph thebry, tha
from another point of view can be efficiently used to represents gralbhiiscrete

sets and mappings among them, which is the train of thoughts followed in this
paper leading to the decision trees and decision diagrams for represenfatigic
functions and logic circuits as their implementation in hardware.

It should be noticed that the notion of partially well-ordered sets, upontwhic
the trees are defined, was introduced by Dj. Kurepa in his doctoralrdiea
defended at Sorbonne, Paris, France, in 1935 [22]. The dissart#ti€urepa is
reported in [21] at page 69, as the first profound study of trees itheety. In the
dissertation Kurepa used the term ramification sets for well-ordered sstnible
ramifié and tableaux raméiin French). See also [23—-25]. Dj. Kurepa also defined
a concept that is known as the Kurepa tree and set a hypothesis calledrédpa
hypothesis. See, [16,21,37,51], and references therein.

In set theory, many different trees have been introduced, as fonoestéhe
Aronszajn tree, the Kurepa tree, the Suslin tree, that have been indabdiyc
Kurepa, etc., see for instance [15, 21, 22, 24, 25]. Their featurésedationships
have been studied until the present time [16], and new concept areingo{b1].

A tree can be viewed as either a graph or as a data structure. These two in-
terpretations of this concept are actually equivalent, since a tree as strlatare
contains both a set of elements and connections between elements, whithines
atree as a graph.

In graph theory, a directed graph is said to be acyclic if it contains no gycle
An acyclic graph is said to be rooted if exactly one of its vertices, called i ro
has no predecessors. In other words, the depth of this vertex is Ortéxve a
graph with no successors is calletkaf or aterminalor constant vertexA rooted,
acyclic, directed graph is called a tree if each of its vertices, excludingttetras
exactly one predecessor. In other words, any connéaegclic rooted directed
graph is a tree.

In computing, we often deal with large sets of discrete data. Therefiseat-
ural to use decision trees, and their reduced forms, decision diag@mspfesen-
tation and manipulation. These representations naturally extend to rejatésen
of tabular data [40], and representation of discrete functions viewatbapings
between discrete and often finite sets [2].

In switching theory, decision trees were used already by C.E. Shanneprts
sent the sets of all possible minterms of a function with a small number of vagiable
The same representations can be seen in a paper by Kurepa [26§sitigctep-
resentations of switching functions in the broader context of mathematidal log
and machine implementation of sets of computing instructions, in a presentation at

1A graph is described as connected if there is a route of edges andbeidesn each two nodes.

Decision Diagrams - ... 283

the International Symposium on Theory of Switching organized by H. A#ltdns
Harvard Lab on April 2-5, 1957.

As itis often the case in science, when the same or similar problems are consid-
ered by scholars in different geographic areas, and especially if coination and
information flow is prohibited for whatever reaséni happens that the same or
closely related concepts are independently introduced and studiedpplietao
solve the same or related problems, by different authors at about theisaan(@r
even simultaneously) without being informed about the related work of tlegsoth
In this context, it is interesting to discuss relationships, meaning similarities and
differences, of the concepts that have been developed independuntly a study
can often provide some new ideas and certainly brings a deeper umdigmgtaf
the matter.

A particular example of such a situation can be observed when discusising B
nary Decision Trees (BDT) and Diagrams (BDD), and Structurally Switled
Binary Decision Diagrams (SSBDD) and their applications in Switching theory
and Logic design.

In this paper, we will briefly discuss these two concepts, their relationships
(similarities and differences).

2 Decision Trees and Diagrams in Switching Theory and Logic Dégn

It is commonly accepted that the profound study and applications of dedsion
agrams in representation of switching functions and related extensiorgeard
alizations to other classes of functions started after the publication of theaemin
paper by R. Bryant in 1986 [12]. It has been pointed out by sewetablars that
the subject has a much longer history, see for instance [48, 55]. Decigigrams
were used to represent switching functions by S. Lee in 1959 [30].9&7 &nd
1969, the similar concept was used by Ehrenfeticht and Orlowska id214]n
1975 and 1977, Kuznetsov worked on synthesis of BDDs from the gdeorks.

In 1978 by S.B. Akers [3-5] used BDDs for functional testing.

In 1976, a strongly related concept was introduced by R. Ubar [5&utihe
name of alternative graphs (AG) for the purpose of structural testihg.cbncept
was extended into the Structural Alternative Graphs (Structural AG)deraio
serve better in tasks such as testing of digital systems. The same concept wa
later reported as Structurally Synthesized Binary Decision Diagrams (B3 &l
extensively used in many publications, see for instance [43, 45-460567, 70].

Many different decision diagrams have been defined for the purpfosent
pact representations of different classes of discrete functionghanélationships

2In the past often caused by political reasons.

284 R. S. Stankow, R. Ubar, and J. T. Astola:

among them have been investigated, see for instance [8] for a partigalapte

of such discussions. For a classification of decision diagrams, wetoeffes, 56].
The spectral interpretation provided a unified view to various essentiafrelift
decision diagrams [54, 55]. Interestingly, although a lot of work has ldeae in
this area, SSBBDs have remained uninvolved in such considerations. pldmee
among a variety of decision diagrams used in Switching theory and Logicrdesig
is still undetermined. For that reason, this task has been undertaken dnyttioes

of this paper. We will focus on relationships of SSBDD to the most closelyeetla
concept of BDD.

3 Binary Decision Diagrams

Binary decision diagrams (BDD) can be viewed as a data structure tailsred e
pecially for representation of switching (Boolean) functions. In this cdrtteey

can be related to the application of the Shannon expansion with respecthe all
variables in a functiorf to be represented. Recall that the Shannon expansion al-
lows to decompose a functiohinto co-factorsfo = f(xs,...,x =0,...,%,) and
fi=f(x1,...,%x =1,...,%), with respect to each variabkg i = 1,2,...,n, as

f =XfoVxfa,

whereV is the logic OR.

Note that in the Shannon expansion, that is traditionally viewed as an AND-OR
expansion, the logic OR can be replaced by EXOR, since the terms in theséxpa
are disjoint. Due to that, the Shannon expansion can also be viewed aszn AN
EXOR expansion which is an interpretation often used when discussingjatec
diagrams. Thus, BDD are graphical representations of the functiapad¢gsions
derived by the recursive application of the Shannon decomposition rule.

BDD can be alternatively discussed as a particular example of directeticacy
graphs consisting of a set of non-terminal vertices, and a set of con&rices
connected with edges. They are obtained from the Binary Decision (B8 by
removing redundant information about the function represented. Tdhimdancy
is seen as appearance of isomorphic subtrees, that are subsecgmpthed by the
application of suitably defined reduction rules, see for instance [4%.pfboblem
of reducing the size of BDD was also discussed in [58] by listing the rules fo
removing redundant parts from the BDD.

For a formal definition of BDD, we refer, for instance, to [48, 49], whidethe
purpose of considerations in this paper, BDD will be introduced by thenpial.

Decision Diagrams - ... 285

4 Complexity of BDD

In this section, we will briefly repeat and discuss some well-known featafe
BDD in order to explain and justify introduction of many other decision diagrams
besides BDD. We will also point out rationales leading to the definition of S3BD

A different picture about the compactness of decision diagrams is obtained
when representing particular functions that are often met in engineeraugiqe
and, on the other hand, arbitrary switching functions.

For many practical functions, BDD are compact in the number of vertices.
There are, however, functions, as for instance multipliers, that have &lex-
ponential complexity. The size of a BDD is sensitive to the order of the Vasab
and can range from polynomial to exponential complexity for the same fumdtio
pending on the selected order of the variables. There are functiores¢havariant
to the order of the variables, as for instance symmetric functions by defiratieh
also functions that have BDD of exponential complexity for any order efvtri-
ables. Again, multipliers are such an example. For arbitrary switching fursctio
called general switching functions, the following conclusions are pteden[32].

1. A tight upper bound for the worst case size of reduced OBDD’s, is
(2™1/n)(1+ €) wheren is the number of variables aralis an arbitrarily
small positive number.

2. The two reduction rules have disparate reduction capacity. The metdéng
alone contributes the reduction factofnlin the worst case siz&(2"/n),
while the deletion rule contributes no more than 1% for large

3. Almost all Boolean functions require at lea8f2n vertices even in the op-
timal variable ordering. Moreover almost all switching functions are not
sensitive to variable ordering.

As pointed out in [32], these complexity measures correspond to thosedler
by Miller in 1956 for multi-level networks [39], and already in 1949 by Stam
[52] and improved by Lupanov in 1955 [33] for contact networks. iRore details
on this subject, see the discussion in [20].

It should be noted that BDD provide compact representations for manty fu
tions useful in various applications. Nevertheless, there are functibaether the
BDD have an exponential complexity in the number of vertices.

That was a reason to define various classes of decision diagrams aicosa-at
pact representation of certain classes of functions.

These diagrams represent functions, that can be viewed as outpugscafite
cuits.

286 R. S. Stankow, R. Ubar, and J. T. Astola:

We cannot say that these decision diagrams represent circuits, althmayh
tions represented by decision diagrams can be easily mapped into circdig3.[7,
Such circuits will have layout derived from the shape of the used decdie
grams and will consists of modules corresponding to the decomposition sdds u
in the definition of the diagrams. In the case of BDD, the modules(arel)
multiplexers, since they can be viewed as a hardware realization of the&han
decomposition rule.

A desire to derive graphical representations of logic circuits directl{eausof
those of the functions they implement, led to the definition of Structurally Synthe-
sized Binary Decision Diagrams [58], that will be briefly introduced in tH®vo
ing sections. It is interesting to note that SSBDD were introduced in 1916468
the purpose of testing of logic networks, which is the same problem to the solutio
of which BDD were used in 1978 [4].

4.1 Typed Decision Graphs

The introduction of this kind of decision diagrams was driven by certaitv-pro
lems that were noticed in certain concrete industrial applications that weeé de
oped in the Bull Corporation in France around 1987. The staff of thed&eb
Center of this corporation, managed by Gerard Roucairol, was occapieng
the other things by an extensive simulation of processors, to which taskoé lot
computer power had to be devoted. Francgois Anceau, a member of tespor-
development team of the Center, suggested to prove the correctnasse$gors
versus the VHDL specifications rather than to perform simulations. As iof{él

the task was transferred to researchers J.P. Billon, and Jean-Cheditaulre, to
whom latter joined Alain Coudert, a student at that time. Typed Decision Graph
(TDG) were introduced in [9], and were used as the underlying datatstauto
represent large Boolean functions.

The main idea behind TDG if that a switching functiérand its logic nega-
tion f’ can be represented by the BDD that differ in the order of values otaons
vertices. For instance, if the constant vertices in the BDDffare 0, and 1, then
constant vertices in the BDD fdr will be 1 and 0, otherwise these BDD are iden-
tical. This feature enables to increase the number of isomorphic subtreB®iD,a
by assigning a minus sign at the front of a subdiagram representingsarstiton
f’ that is the logical complement of a subfunctibrin the BDD. In this way, if
the sign is added to the BDD, the canonicity can be questioned, since thartons
value 0 can be represented as eittier0) or (—,1). The problem is resolved when
the choice is fixed and applied consistently. For instance, it is pointed autpise
instance [34], that a good choice with respect to the number of vertices gradph

Decision Diagrams - 287

Typed Shannon tree

Fig. 1. BDT, BDD, TDG, and reduced TDG fdrin Example 1.

is the following [36]

Tst(f(xg,...,xn))(al,....&)
def{ (+,St(f (Xe, .., X)) (an, -, &)

if f(a,...,a,1,...,1)=1

(—,St(f(x1,...,%))(aq,...,a)),otherwise

It follows that TDG are closely related to the BDD with complemented (also

called negated) edges, that are suggested as a way to simplify BDDr sestdoce
[11], [38].

In TDG, the minus signs are assigned to the left outgoing edges, as thisris dete

mined by the corresponding function values, and the values of constdities are

288 R. S. Stankow, R. Ubar, and J. T. Astola:

Fig. 2.BDD and TDG for the function in Example 2.

set to 1. Due to these features, they can be related to the Edge-valugddsna
sion diagrams (EVBDD) with multiplicative attributes, as Factored EVBDD [71].

The following example, taken from [36] illustrates the concept of TDG and
links then to BDD.

Example 1 Fig. 1 shows the Binary decision tree (BDT), Binary decision diagram
(BDD), the Typed Shannon tree, and reduced form of it, the TypediDegigaph
(TDG) for the function {x,y,z) = xy+yz+ Zy.

The efficiency of TDG compared to BDD is well illustrated by the following
example taken from [35]. Further details on TDG can be found in [13].

Example 2 Fig. 2 shows BDD and TDG for the the functiofafb,c) =ad®boc.
From this figure, the comment about the link to EVBDD [31] becomes abvio

5 Structurally Synthesized Binary Decision Diagrams

In [58], two classes of graphs callédternative graphgAG) and Structural al-
ternative graphgqStructural AG) for the purpose of modeling and testing digital
devices were introduced. These graphs have been reported laBéuasirally
Synthesized Binary Decision Diagraf®SBDD) in connection with the wide use
of BDD after the appearance of the seminal paper by Bryant [12].

Formally, a SSBDD is defined as follows.

Decision Diagrams - ... 289

-]
=][=] (=]

()

Fig. 3. A circuit and a SSBDD which correspond to the Boolean formula (1).

Definition 1 A BDD is a rooted directed acyclic graph € (M, I", X) with a ver-
tex set M= My UMry. T is a relation on M wherd (m) C M denotes the set of
successors of m, arfd-(m) ¢ M denotes the set of predecessors of m. The non-
terminal vertices ne My are labeled by Boolean variablegm) € X, and have
exactly two successor vertice$ mI'(m), e€ {0,1}. The graph has two termi-
nal vertices m € My labeled by a constant(exr) € {0,1} and calledleafs For
the terminal vertices mwe have (my) = 0, and for the root vertex gie My we
havel ~1(mg) = 0. If there exists an assignmentw) = e, then we say that the
edgém,m®) in G is activated. Activated edges connecting verticeand m form
an activated path (im, m;). An activated path(img,mr) is called full activated
path

Definition 2 ABDD G, = (M, T, X) represents a Boolean function=yf (X) where
X = (X1,Xz,---,%n), iff for all the possible vectors e {0,1}" there is a path
| (mo, mr) activated in G so that y= f(X') = e(mr).

Definition 3 A BDD G, = (M, I, X) is called SSBDD fif it represents a Boolean
function y= f(X) in the form of equivalent parenthesis expression Wit lit-
erals, which describes a gate-level tree-like combinational circyiivih a set
of inputs IN, and is composed on the basis of AND, OR, and NOT gatesg wh
IM| =|IN|, |X| < |M|, and there exist a bijection M- IN and a surjection X— M.

Example 3 An example of a SSBDD for the Boolean parenthesis expression

Y= (X11X12) V X12(X31 V Xa) V X13%22X32, (1)

290 R. S. Stankow, R. Ubar, and J. T. Astola:

which is equivalent to the gate-level circuit in Fig. 3a is represented in Fig. 3
Here|M| = |IN| = 8, and|X| = 4. By convention, the right-hand edge from a vertex
corresponds to the valuk and the down-hand edge corresponds to the valag
the vertex variable. Note that vertex variables in a SSBDD may also beénver
(see Section 6). We call this graph structurally synthesized becausedtiied
from and represents the structure of the formula (1) and the correspgrmitcuit

in Fig. 3a. There exists a one-to-one mapping between the vertices inaple gr
Fig. 3b and the inputs of the fan-out free subcircuit in Fig. 3a (and the litarals
the formula (1)).

The SSBDD are generated by the superposition of the BDD of gates airsub
cuits of the given circuit, which allows to represent in the model both funalitgn
and structural information of the circuit [58], [66]. Superposition igiearout for
a given circuit in the direction from the outputs to the inputs. A similar way is used
for creating the BDD for a given logic expression as a process of iter&gic
operations with BDD starting from the trivial BDD for variables [49].

The SSBDD model for the given circuit has a linear complexity. This results
from the fact that digital circuits are represented as systems of SSBDBErew
for each fanout-free region (FFR) a separate SSBDD is generatedhelother
hand, the use of the SSBDD model is equivalent to representing of thgadnad
gate-level network as a higher level module (FFR) network, whereagatieelevel
structure of each module is represented more concisely by the cordisg@s-
BDD.

The following example illustrates how an SSBDD is constructed for the given
FFR circuit.

Example 4 Consider the FFR circuit in Fig. 4. The analysis of the circuit shows
that it can be described by the set of equations:g+ f;e=a-b; f =d-c;d=a.
Fig. 5 shows the train of thoughts to construct a SSBDD for this circuit.

The output y depends on the inputs e and f, and since this is an OR circuit, if
e= 0, the output depends on f (Fig. 5(a)). Since e depends on a and lp netd
show it explicitly, but replace with a and later examine the influence of b=IDa
since the circuit is AND, whatever is the value for b, y will depend just ondf an
we draw an edge from a to f. Ifa 1, we ask for the value of b and draw a right
edge to b. If b= 1, we go to the input of the circuit, which is a constant vetex
in the graph which by the convention is not shown explicitly.#f @, then again y
depends solely on f. The value of f is the output of an AND circuit andrikp
onitsinputs d and c. Thus, f is replaced by d and # d we ask for the value of
¢ by following the right-hand edge (Fig. 5(c)). The values for c are ddtexdhby
the inputs of the circuit. Thus, they are constant vertices and not sHéwece d is

Decision Diagrams - ... 291

the output of an inverter whit the input a, then=da, and we get the graph as in
Fig. 5(d).

Fig. 4. Circuit realizing the function f in Example 4.

6 Relationships between BDD and SSBDD

BDD and SSBDD are both single rooted binary acyclic graphs. In this thay,
belong to the large family of rooted binary acyclic graphs including treesatteat

used in mathematics for representation of discrete sets and mapping among them.

Binary means that there are two outgoing edges of each non-terminad.vEintere
are, however, some differences of SSBDD compared to the traditionBl tRBt
will be briefly summarized in the following statements.

BDD and SSBDD can be viewed as function-based and structure-dased
sion diagrams, respectively, and the most significant difference betilvese two
notions is in the way they are generated.

For a given function, the BDD is constructed by the recursive application
the Shannon expansion rule to all the variables in function to be reprdsémtbe
same way, various other decision diagrams are defined by using diféxemsion
rules, as for instance the positive and negative Davio expansion A9g4$5].

6.1 The meaning of vertices

In a BDD, the vertices correspond to MYXx 1) modules, that can be viewed
as hardware realizations of the Shannon expansion rule. The deciables
assigned to the vertices are used as control variables in the multiplexeeswi3th
the vertices in BDD have only the functional meaning as the points wherdalecis
of type "if-then-else” are made.

Statement 1 The vertices in a SSBDD correspond to signal paths in the gate-level

circuit on the basis of AND, OR, and NOT gates, it represents. This isdatiside

292 R. S. Stankow, R. Ubar, and J. T. Astola:

and most important property of SSBDD, and this property results frormttbod
of synthesis of SSBDD.

*I =
P"P

Fig. 5. SSBDD for the function f in Example 4.

<
O
® =
O

Example 5 For example, the vertex xdenoted by the bold circle in the SSBDD in
Fig. 3b, corresponds to the signal patky1,a,y) shown by bold lines in Fig. 3a.
On the other hand, Fig. 6 shows the network realizing the function f in Exadnple
derived from the BDD.

The fact that the vertices in SSBDD represent signal paths in the orginait
allows SSBDD to explicitly model the faults in the circuit. With BDD the faults
can be modeled only implicitly by providing the fault lists, and creating a faulty
BDD for each fault. As exception, only the faults on the primary inputs of@udir
can be modeled by the vertices of the BDD which represents the functiore of th
circuit.

Statement 2 SSBDD can represent different structural characteristics of the cir-
cuitin a compressed way, similarly as BDD can represent the functioreddittuit

in a compressed way. Examples of such characteristics are: stru¢audés on the
lines of the circuit, delays on the signal paths, different types of delay fatgtisc
and dynamic hazards in logic. The listed characteristics of logic circuitioabe
simulated explicitly with BDD which represent only the function.

Example 6 Since the vertexyxin Fig. 3b corresponds to the signal patky1,a,y)
in Fig. 3a, then the fault stuck-at-1 at the vertex,Xor example, models all three
stuck-at-1 faults on the pailx;1,a,y).

Decision Diagrams - ... 293

Ty r,

01

o I

01

Fig. 6. Network derived from the BDD to realize the function f Example 4.

The compression of fault sets and selecting of representative faultddad ca
fault collapsing[57], [69]. Fault collapsing is a side effect of the procedure of SS-
BDD synthesis. The number of stuck-at-faults processed in the SSBDRImbd
the given circuit is twice the number of vertices in the model. Typically, the num-
ber of representative faults for the SSBDD model is half the number disfau
gate-level circuits [19]. This is nearly the same result achieved by othetsral
fault collapsing methods like the folding method [57]. However, the SSBDDaihod
represents explicitly the collapsed fault set by the set of vertices, a$éne other
gate-level fault diagnosis methods do it implicitly by separate lists of selegbed re
resentative faults. Recently, an extension of SSBDDS in a form of staligtgyn-
thesized multiple input (multiple-rooted) BDD (SSMIBDD) was proposed, twhic
allows additional compression of the model which leads automatically to additional
fault collapsing [69].

Since each vertex in the SSBDD represents a signal path in the circuit, it is
possible also to represent in a compact way the path delays as verteg delay
SSBDD, and model different delay faults in an efficient way on the SSRiaidel
[68].

The possibility to model delays on signal paths by SSBDD led to find different
applications in simulation of structural aspects of logic circuits like hazarysisa
with multi-valued simulation [67], delay fault and timing simulation [18]. The
SSBDD achieved higher speed of simulation or analysis compared to the method
that work on the gate level which can be explained by raising the simulation fro
gate to macro (FFR) level.

294 R. S. Stankow, R. Ubar, and J. T. Astola:

Fig. 7. Ordering of vertices in the SSBDD in Fig. 3.

6.2 Special properties of SSBDD

Statement 3 In SSBDD all the vertices except the terminal ones with constant la-
bels1 andO are ordered whereas in the general case of BDD the vertices are only
partially ordered.

Example 7 The SSBDD represented in Fig. 3, can be stretched out into a string of
vertices as shown in Fig. 7, which highlights the ordering of vertices.

Consider a fully activated path in the given SSBDD which traverses atubs
of verticesM’ C M. Let us call a vertexm a 1-vertex if there is an assignment
x(m) = 1, and a O-vertex if there is an assignme(mh) = 0. Note that the variable
x(m) may be inverted.

Statement 4 SSBDD with a function ¥ f(X) has the following property: (1) in
every path from the root vertex to theterminal, the variables in thé-vertices

form a conjunction of the disjunctive normal form iXf); (2) in every path from
the root vertex t@-terminal, the inverted variables Brvertices form a conjunction
of the disjunctive normal form of the inverte¢X).

To create SSBDD which have such properties, sometimes it is needed to use
inverted variables in the vertices of SSBDD. These properties arellisefsing
SSBDD for fault simulation and fault diagnosis.

Example 8 Consider how these properties support fault diagnosis in the given cir-
cuit. Let us have an input test patte®i1lapplied to the circuit in Fig. 3a which
produces on the outputy 1. Thel-vertices of the full activated path in the SSBDD

in Fig. 3b form the conjunctiof;3xoox32. If the output value at this pattern will

be erroneous ¥ 1, then the conjunction shows the possible causes of the detected
error.

Statement 5 Each SSBDD is a BDD. The converse is generally not valid. It would
be interesting to determine if a given BDD is a SSBDD or not.

Decision Diagrams - ... 295

This question was investigated in [44] where the necessary and suffioiadti-
tions were found to say when a BDD is also a SSBDD. SSBDD A gate-lewlitir
can always be straightforwardly derived from a SSBDD.

6.3 Complexity

Statement 6 Not all possiblefull pathsfrom the root vertex to terminals in a SS-
BDD which represents a function=y f(X) can be activated by the assignments
of the variables x X. If a full path cannot be activated we say this full path is
infeasible

The reason for the infeasibility of a full path in a SSBDD is in the fact that a
full path can have the same variable in different vertices both, as invantgdot
inverted. Infeasibility of a full path in a SSBDD refers to the inherent nelduncy
in SSBDD.

Example 9 Consider the SSBDD in Fig. 7, which is the same SSBDD as in Fig. 3b,
where the longest path is stretched out as a string of vertices showitigityp
their ordering. Every SSBDD can always be represented as a simildcisé@ out
string of vertices which represents the longest path in the SSBDD. Itystease

in Fig. 7 that for activating this longest path for example up to therminal the
following condition should be fulfilled:

X1XoX1X3XaX1 XoX3 = 1,

which, however, is inconsistent which means that such a full activatedipath
feasible. The breakpoint on the highlighted longest path is the vRteBecause

of the assignment;x= 1 made at the root vertex, the traversing of the path after
the vertexx;3 ends in0O-terminal.

In the BDD generated by recursive use of the Shannon expansionhale
all the full paths feasible. After minimizing the BDD generated for a given logic
expression as a process of iterative logic operations [49], the resa&lby will
have also all the full paths feasible.

Statement 7 SSBDD in general case are redundant. It means that a full path in
a SSBDD may have the same variable at different vertices traversea tpath.
This is not the case in BDD.

Having this kind of redundancy in SSBDD is needed for preserving alhtihe
portant structural properties of the circuit in the model, which allow for tredyesis,

296 R. S. Stankow, R. Ubar, and J. T. Astola:

for example, of static and dynamic hazards in the given circuit. BDD whielyan-
erated from logic expressions of the circuit by iterative logic operatid@§ pnd

are optimized afterwards, loose the possibility of analyzing the mentioned struc
tural properties of the given circuit.

The problem with BDD regarding the complexity was discussed in the previous
sections. From Statement 7 it results that the SSBDD are even more complex tha
BDD. Let us compare first the estimations of the complexities of SSBDD and BDD
when representing the FFRs. Consider a Boolean functionmwitriables which
represents a tree-like circuit withN| inputs.

Statement 8 The number of verticed!| in a BDD is n< |[M| < |[IN|, and in the
SSBDD iSM’ = “N , hence, ’MBDD‘ < ‘MSSBDE{ = ||N|.

From the statement it results that the number of vertices in BDD are always
equal or less than in SSBDD. The reason is that in SSBDD we have to model
explicitly all the signal paths in the original circuit represented by the vextice

SSBDD, and hence, the minimization of the number of vertices in SSBDD is not
allowed as in the case of BDD.

Table 1. Comparison of the complexity of BDD and SBDD.

Circuit In Out Gates ROBDD[3] FBDD[1] SSBDD

c432 36 7 232 30200 1063 308

c499 41 32 618 49786 25866 601

c880 60 26 357 7655 3575 497
c1355 41 32 514 39858 N/A 809
c1908 33 25 718 12463 5103 866
€c2670 233 140 997 N/A 1815 1313
c3540 50 22 1446 208947 21000 1648
c5315 178 123 1994 32193 1594 2712
c6288 32 32 2416 N/A N/A 3872
c7552 207 108 2978 N/A 2092 3552

The explosion of the complexity in the case of SSBDD is avoided by using
them for representing only FFR subcircuits. The whole circuit is handéed a
network of FFR modules where each module is a SSBDD. As a result, the gate-
level networks will be substituted by module level networks with less complexity.
In Table 1, a comparison of the number of vertices as a measure of complexity
of the model for different classes of BDD is shown: ROBDD [3], FBDD &nd
SSBDD taken from [19]. The comparison is given for the benchmar€AB85.

Decision Diagrams - ... 297

As can be seen, the complexity of SSBDD is in a linear relation with the complexity
of original circuits in the number of gates.

7 Closing Remarks

Switching (Boolean) functions are a particular class of logic functionsfipilogic
functions), and logic functions can be further viewed as functions digarete
sets. Switching functions are implemented by logic networks that can be vasved
facets of digital systems.

Binary decision diagrams BDD and SSBDD are graphical representaifons
switching functions and their circuit implementations, respectively. In thiseson
they are particular examples of decision diagrams used in computing feserpr
tations of tabular data (where a hierarchy among data is implicitly assumed throug
the order of rows and columns) and other ordered sets of data. Duedrisitence
of some order relations, there is a direct link to trees that are a poweoluhtset
theory. Single rooted trees in set theory are directly related to the treesyih tire-
ory via the concept of directed acyclic graphs expressing both seksmésts and
connections between elements. Since BDD and SSBDD are both formallgdiefin
as particular examples of single rooted acyclic graphs, the train of links @mon
these essential mathematical concepts is completed.

BDD and SSBDD are used in different tasks in digital system represemtatio
and modeling, design, verification, testing, and in general the study ofldsgga
tem.

Acknowledgments

The authors are grateful to the Reviewers whose comments improved seafae
tion in the paper.

This work was supported by the Academy of Finland, Finnish Center a¢lExc
lence Programme, Grant No. 213462, and by Estonian Science Foumdediut
7483, and Research Centre CEBE funded by EU Structural Funds.

References
[1] Abramovici, M., Breuer, M.A., Friedman, A.DDigital Systems Testing and Testable
Design New York, IEEE Press, 1990, 652p.

[2] Akers, S.B.,"On atheory of Boolean functionggurnal of the Sociaety of Industrial
and Applied Mathematicd/l. 7, No. 4, 1959, 487-498.

[3] Akers, S.B., "Binary decision diagramslEEE Trans. Computersvol. 27, No. 6,
1978, 509-516.

298 R. S. Stankow, R. Ubar, and J. T. Astola:

[4] Akers, S.B., "Functional testing with binary decisiolagrams”,Proc. 8th Ann. IEEE
Conf. Fault-Tolerant Comput1978, 75-82.

[5] Akers, S.B., "Functional testing with Binary Decisioridgrams”,J. of Design Au-
tomation and Fault-Tolerant Computingol. 2, 1978, 311-331.

[6] Anceau, F., Private communication 2010.

[7] Astola, J.T., Stanko®, R.S.,Fundamentals of Switching Theory and Logic Design
Springer, 2006.

[8] Becker, B., Drechsler, R., Werchner, R., "On the relatioetween BDD’s and
FDD's”, Inform. Comput.Vol. 123, No. 2, 1995, 185-197.

[9] Billon, J.P.,Perfect Normal Forms for Discrete ProgramBechnical Report 87039,
BULL, France, June 1987.

[10] Boute, R.T., "The Binary Decision Machine as a prograabie controller”,EU-
ROMICRO Newsletteiol. 1, No. 2, January 1976, 1622.

[11] Brace, K., Rudell, R., Bryant, R., "Efficient implemeaion of a BDD package”,
Proc. 27th ACM/IEEE Design Automation Conferent@90, 40-45.

[12] Bryant, R.E., “Graph-based algorithms for Booleandtimns manipulation,1EEE
Trans. Comput.Vol. C-35, No. 8, 1986, 667-691.

[13] Coudret, O., Madre, J.C., "Towards an interactive ffatde analyser”|JASTED
International Conference on Reliability, Quality Contrahd Risk Assessment,
IASTED’92 Washington DC, USA, November 1992.

[14] Ehrenfeticht, A., Orlowska, E., "Mechanical Proof Bedlure for Propositional Cal-

culus”Bulletin de I’Academie Polonaise des Scien@syie des sciences math., astr.
et phys., - Vol. XV, No. 1, 1967, 25-30.

[15] Jech, T., "Trees"The Journal of Symbolic Logi&ol. 36, 1971, 1-14.

[16] Jin, R., "Some independence results realted to the &tegd, Notre Dame Journal
of Formal Logic Vol. 32, No, 3, Summer 1991, 448-457.

[17] Jutman, A., Raik, J., Ubar, R., "On efficient Logic-légenulation of digital circuits
represented by the SSBDD mode?3rd Int. Conf. on Microelectroni¢d/ol. 2, May
2002, 621-624.

[18] Jutman, A., Ubar, R., Peng, Z., "Algorithms for speeaginp timing simulation of
digital circuits”, DATE Munich, March 13-16, 2001, 460-465.
[19] Jutman, A., Raik, J., Ubar, R., "SSBDD: Advantageousdeiand efficient algo-

rithms for digital circuit modeling, simulation & test5th Int. Workshop on Boolean
Problems Freiberg, Germany, September 19-20, 2002, 157-166.

[20] Karpovsky, M.G., Stankogj R.S. Astola, J.T.Spectral Logic and Its Applications
for the Design of Digital DevicedViley & Sons, 2008.

[21] Kunen, K.,Set Theory, An Introduction to Independence Prodtgth-Holland, Am-
sterdam, 1980.

[22] Kurepa, Dj.,Ensembles ordor@s et ramis PhD. Thesis, Paris, Sorbonne, 1935.
Reprinted inPubl. Math. Univ. Belgrade\Vol. 4, 1935, 1-138, and republished in

A. Vi€, Z. Mamuze, Z. Mijajlovi¢, S. Todogevic (eds.),Selected papers of Djuro
Kurepg Matemattki institut SANU, Belgrade, Serbia, 1996.

[23] Kurepa, Dj., "L’ hypotlese de remification’Comptes Rendus Hebodomaires des
Seances de I’Academie des Sciences de PA8i36.

[24] Kurepa, Dj., "Ensembles lineaires et une classe destabl ramifes”, Publ. Math.
Univ. Belgrade \Vol. 6, 129-160.

Decision Diagrams - ... 299

[25] Kurepa, Dj., "A propos d’'une generalization de la natid’ensembles bien or-
donres”, Acta Mathematicavol. 75, 1942, 139-150.

[26] Kurepa, Dj. R., "Sets-Logics-MachinesProc. Int. Symp. Theory of Switchingar-
vard University, Cambridge, 1957, Part 1, 137-146.

[27] Kurepa, Dj., "On A-trees”Publications de I'Institut Mathematiqu&ol. 8 , No. 22,
1968, 153-161.

[28] Kuznetsov, O.P., "Grafy logitsheskih avtomatov i itepbrazovanija” Avtomatika i
telemehanikaNo. 9, 1975, 149-158.

[29] Kuznetsov O.P, "O programmnoi realizatsii logitshiéskunktsii i avtomatov, I,
Analiz i sintez binarnyh programAvtomatika i telemehanik&lo. 7, 1977, 163-174.

[30] Lee, C.Y., "Representation of switching circuits byary-decision programsBell.
Syst. Tech. JVol. 38, July 1959, 985-999.

[31] Lai, Y.-T., Pedram, M., Vrudhula, S.B.K., "EVBDD-bagelgorithms for integer
linear programming, spectral transformation, and fumctiecomposition”,|EEE
Trans. Computer-Aided Design of Integrated Circuits andt&ys Vol. 13, No. 8,
1994, 959-975.

[32] Liaw, H.T., Lin, C.S., "On the OBDD-representation cdrteral Boolean functions”,
IEEE Trans. Computersd/ol. 41, No. 6, 1992, 661-664.

[33] Lupanov, O.B., "On the possibilities of synthesis ofwerks from different types of
elements”Dokl. Akad. Nauk SSSR03, 1955, 561-563, (in Russian).

[34] Madre, J.C., Billon, J.P., "Proving circuit correciseusing formal comparison be-
tween expected and extracted behaviBrgc. 25th DAC Anaheim, California, USA,
June 12-15, 1988, 205-201.

[35] Madre, J.-C., Coudert, O., Currat, M., Debreil, A., Bet, C., "The formal verifica-
tion chain at BULL",Euro ASIC '90Q 1990, 474-479.

[36] Mauborgne, L., "Binary decision graphs”, in A. Corte§. File, (eds.)Static Ana-
lyis Symposium (SAS99)l. 1694 ofLecture Notes in Computer Scien&pringer-
Verlag, 1999, 101116.

[37] Mijajlovi¢&, Z., "Djuro Kurepa”,Publlications de L’ Institut MatBmatique, Nouvelle
série, tome 57, No. 71, 1995, 13-18.

[38] Minato, S., Ishiura, N., Yajima, S., "Shared binary @&an diagrams with attributed
edges for efficient Boolean function manipulatioRtpc. 27th IEEE/ACM DACJune
1990, 52-57.

[39] Muller, D.E., "Complexity in electronic switching auits”, IRE Trans. Electron.
Comput, Vol. EC-5, No. 1, 1956, 15-19.

[40] Miyakawa, M., "Optimum decision trees - An optimal \alie theorem and its re-
lated applicationsActa Inf, Vol. 22, No. 5, 1985, 475-498.

[41] Miyakawa, M., "Criteria for selecting a variable in tikenstruction of efficient deci-
sion trees” JEEE Trans. Computerd/ol. 38, No. 1, 1989, 130-141.

[42] Orlowska, E., "Mechanical theorem proving in a certalass of formulae of the
predicate calculusStudia Logica: An International Journal for Symbolic Logic
25, 1969, 17-29.

[43] Pall, M., Ubar, R.R., "Computer-aided module-levedttgeneration for digital de-
vices on the basis of their alterantive-graph-mod&fteprints SOCOCO-7@roc.
2nd IFAC/IFIP Symp. on Software for Comp. Corfftague, 1979, Vol. 2.

[44] Peder, A., Tombak, M., "Superpositional Graph&tta et Commentationes Univer-
sitatis Tartuensis de Mathematich3, 2009, 51-64.

300 R. S. Stankow, R. Ubar, and J. T. Astola:

[45] Plakk, M., Ubar, R., "Digital circuit test design usitige Alternative graph model”,
Automation and Remote Controlol. 41, No. 5, Part 2, 1980, Plenum Publishing
Corporation, USA, 714-722.

[46] Raik, J., Ubar, R., "Feasibility of Structurally syrtsized BDD models for test gen-
eration”,Proc. of the IEEE European Test Worksh@p98, 145-146.

[47] Raik, J., Ubar, R., "Fast test pattern generation fgusatial circuits using decision
daigram representationsJournal of Electronic Testing - Theory and Applicatipns
Vol. 16, 2000, 213-226.

[48] Sasao, T.Switching Theory for Logic Synthesiuwer Academic Publishers, 1999.

[49] Sasao, T., Fujita, M., (ed.Representations of Discrete Functipiduwer Academic
Publishers, 1996.

[50] Selezneyv, A., Dobriza, B., Ubar, RDesign of Automatic Test Equipmeniashinos-
trojenie, Moscow, USSR, 1983, 224 pp., (in Russian).

[51] Shelah, S., Jin, R., "Planting Kurepa trees and killleghKunen trees in a model by
using one inaccessible cardinaFyundamenta Mathematicag&41, 1992, 287-296.

[52] Shannon, C.E., "The synthesis of two-terminal switch€ircuits”,Bell System Tech.
J., Vol. 28, No. 1, 1949, 59-98.

[53] Somenzi, F., "Efficient manipulation of decision diagrs”,Int. Journal on Software
Tools for Technology Transfevol. 3, 2001, 171-181.

[54] StankovE, R.S., "Unified view of decision diagrams for represeotatof discrete
functions”,Multi. Val. Logic, Vol. 8, No. 2, 2002, 237-283.

[55] Stankovt, R.S., Astola, J.TSpectral Interpretation of Decision DiagranSpringer,
2003.

[56] Stankov€, R.S., Sasao, T., "Decision diagrams for discrete funsticlassification

and unified interpretation’Proc. Asian and South Pacific Design Automation Con-
ference, ASP-DAC’98okohama, Japan, February 13-17, 1998, 439-446.

[57] To, K., "Fault folding for irredundant and redundantnaoinational circuits”JEEE
Trans. Computersvol. C-22, No. 11, 1973, 1008-1015.

[58] Ubar, R., "Test generation for digital circuits usingeaantive graphs”Proc. Tallinn
Technical UniversityEstonia, No. 409, 1976, 75-81 (in Russian).

[59] Ubar, R., "Description of models of digital devices Hyrantive grpahs”Proc. of the
Tallinn Polytechnic InstituteNo. 474, 1979, 11-33.

[60] Ubar, R.R., "Beschreibung digitaler Einrichtungent miternative Graphen fur die
Fehlerdiagnose’Nachrictentechnik/Elektronjk 980, 30, H. 3, 96-102.

[61] Ubar, R., "Desription of computers by vector altermatgraphs for diagnostic mi-
croprogram synthesisRroc. of Tallinn Technical UniversifyNo. 497, 1980, Tallinn,
11-20 (in Russian).

[62] Ubar, R., "Vektorielle Alternative Graphen und Feldignose fr digitale Systeme”,
Nachrichtentechnik/Elektronjk/ol. 31, H.1, 1981, 25-29.

[63] Ubar, R., "Test generation for digital systems on thetgealternative graph model”,
Proc. of the 13th Annual Int. Symp. on Fault Tolerant CommtMilano, Italy, 1983,
374-377.

[64] Ubar, R., "Test generation for microprocessorBtpc. of the 6th Conf. on Fault-
Tolerant Systems and Diagnosti&no, Czechoslovakia, 1983, 209-215.

[65] Ubar, R., "General approach to test synthesis for digiircuits and systemsProc.
of the 10th All-Union Workshop on Technical Diagnostitallinn, Oct., 1984, 75-81
(in Russian).

Decision Diagrams - ... 301

[66]
[67]

[68]

[69]

[70]

[71]

Ubar, R., "Test synthesis with alterantive grapHEEE Design & Test of Computers
1996, 48-57.

Ubar, R., "Multi-valued simulation of digital circustwith Structurally synthesized
binary decision diagramsMultiple-Valued Logi¢cVol. 4, 1998, 141-157.

Ubar, R., Devadze, S., Raik, J., Jutman, A., "Parallgbit simulation with critical
path tracing techniquelEEE Conf. Design, Automation & Test in Europe - DATE-
201Q Dresden, Germany, March 8-12, 2010, 1-6.

Ubar, R., Mironov, D., Raik, J., Jutman, A., "Structufault collapsing with linear
complexity for test generation in digital circuitdEEE Int. Symposium on Circuits
and Systems - ISCAS'2Q®aris, France, May 30-June 2, 2010, 1-6.

Viilup, A., Lohuaru, T., Ubar, R., "Fault localizatian digital circuits with automatic
test equipments’RProc. of Tallinn Technical UniversifiNo.432, 1977, Tallinn, pp.37-
45 (in Russian).

Vrudhula, S.B.K., Pedram, M., Lai, Y.-T., “Edge valubthary decision diagrams,”
in: [49], 109-132.

