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GPU Accelerated Computation of Fast Spectral
Transforms

Dušan B. Gajić and Radomir S. Stankovíc

Abstract: This paper discusses techniques for accelerated computation of several fast
spectral transforms on graphics processing units (GPUs) using the Open Computing
Language (OpenCL). We present a reformulation of fast algorithms which takes into
account peculiar properties of transforms to make them suitable for the GPU imple-
mentation. A special attention is paid to the organization of computations, memory
transfer reductions, impact of integer and Boolean arithmetic, different structure of
algorithms, etc. Performance of the GPU implementations iscompared with the clas-
sical C/C++ implementations for the central processing unit (CPU). Experiments con-
firm that, even though the spectral transforms considered involve only simple arith-
metic, significant speedups are achieved by implementing the algorithms in OpenCL
and performing them on the GPU.
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1 Introduction

In traditional computer systems, graphics processing units (GPUs) have been used
as fixed-function hardware for rendering graphics. The recent evolution of their
architecture towards support of general algorithmic tasks has lead to the technique
of general purpose computing on GPUs (GPGPU) which offers increased compu-
tational power and memory bandwidth for many practical applications [1–4].

Switching theory and logic design often require computations with large vec-
tors. In particular, this is the case when spectral transforms are used for analysis
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of logic functions and design of corresponding networks [5, 6]. Performing spec-
tral transforms of large functions is a computationally intensive task in spite ofthe
existence of fast algorithms [5,6].

In this paper, we investigate GPU implementations of several spectral trans-
forms, often used in switching theory and logic design, and perform an analysis
of their efficiency. The motivation for the research comes from the following con-
siderations. In [7, 8], it is shown that the Fast Fourier Transform (FFT) [8], is
extremely well suited for processing on GPUs because it involves intense complex
number arithmetic and transcendental operations. The Walsh transform [5, 6], that
is the Fourier transform on finite dyadic groups, reduces to performing additions
and subtractions. We show that in spite of the simplicity of the arithmetic opera-
tions involved in the Walsh transform, a considerable speedup can be achieved by
a simple adaptation of algorithms to the GPU architecture.

We also consider the Reed-Muller transform and the arithmetic transform [5,6],
that are based on the basis vectors of the same form, however involving integer and
Boolean operations, respectively. The idea behind the selection of thesetransforms
is to compare the performance of their implementations since GPUs do not natively
support Boolean vectors and on the hardware level interpret them as integers [9–
11].

The Walsh, the Reed-Muller, and the arithmetic transforms have the same time
complexity of O(N log2N), whereN = 2n is the size of the vector andn is the
number of variables in the function. These spectral transforms have transform ma-
trices that are Kronecker product representable. Therefore, we also implemented
and analyzed the Haar transform [5, 6, 12], that is not a Kronecker representable
transform, but has a layered-Kronecker structure [12] and is characterized by the
time complexity ofO(N). Although this transform offers less data parallelism and
is computationally less demanding than the Walsh transform, and considerably less
than the FFT, the experimental results confirm that even in this case significant
speedups can be achieved.

For the Walsh and the Haar transforms, we also compared GPU implementa-
tions based on two different classes of algorithms, the in-place fast algorithms of the
Cooley-Tukey type and the so-called fast algorithms with constant geometry[5,6].
This comparison was done in order to explore various approaches in implementing
these families of different algorithms for the GPU and develop techniques to im-
prove performance. For the implementation, functions and spectra are represented
by vectors, stored in memory as arrays, which are a data structure well suited for
the underlying GPU hardware. Computations in the FFT-like algorithms discussed
are performed componentwise over elements of arrays.
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2 Related Work

Implementation of various FFT algorithms on different technological platformsis a
widely considered subject, see for instance [5,6,8] and referencestherein. In partic-
ular, the GPU-accelerated calculation of FFT algorithms using CUDA is described
in [7, 13]. NVIDIA provides an FFT library called CUFFT, as well as CUDA
SDK [14] examples of the Walsh and the Haar transforms on single-precision float-
ing point numbers, which all use CUDA platform for improving program perfor-
mance. A GPU-based CUDA implementation of low-density parity-check codes
(LDPC) that uses the Walsh transform and the inverse Walsh transform inaccel-
erating the decoding process is presented in [2]. The method in [2] reduces the
LDPC decoding time from 9 days on the CPU to less than 6 minutes on an array of
high-performance GPUs.

OpenCL is a more recent development in GPGPU than CUDA. AMD Ac-
celerated Parallel Processing SDK [15] has examples of the Walsh and theHaar
transforms on single-precision floating point numbers, but these implementations
are very limited and could not be used for comparison (e.g., the Haar transform
from [15] offers GPU processing only for vectors withN≤ 512). To the best of our
knowledge, except for the earlier version of this paper [16], there are no published
discussions of OpenCL GPU implementations of the spectral transforms consid-
ered here.

3 GPU Computing Model with OpenCL

The GPU computing model follows the GPU architecture which is based on a par-
allel array of many programmable processors. The architecture of many-core GPUs
is quite different from multi-core CPUs [17]. GPUs are designed for efficient exe-
cution of thousands of threads in parallel on as many processors as possible at each
moment. Thus, the computational processes in the GPU computing are divided
into many simple tasks that can be performed at the same time. This intensive
multi-threading allows execution of various tasks on GPU processors whilstdata is
fetched from and/or stored to the GPU global memory. It also ensures the scala-
bility of the GPU computing model, since processors are abstracted as threads, and
provides support for fine-grained parallel programming models [9,11,17,18].

3.1 GPU Architecture

Figure 1 gives the details of the GPU architecture and an overview of the algorithm
processing flow on GPUs.
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Fig. 1. Details of the GPU architecture and the GPGPU processing flow.

The fundamental building block of the GPU is a single instruction, multiple
data (SIMD) streaming multiprocessor (SM). Each SM consists of severalstream-
ing processors (SPs) but only one instruction fetch/decode unit. This implies that all
processors in an SM must execute the same instruction simultaneously. A stream-
ing processor is typically arranged as a four or five-way very long instruction word
(VLIW) processor [9,11], allowing execution of several scalar operations simulta-
neously. Processing elements can execute either integer operations or single and
double precision floating point operations. One processing element in each SP can
perform transcendental operations such as sine, logarithm, etc. Each streaming
multiprocessor has registers and a small on-chip shared memory. Main storage is
located in a high-latency off-chip GPU global memory. Each access to the GPU
global memory is relatively slow and takes from 400 to 800 clock cycles [11]. In
contrast, computations on the GPU are performed very fast (up to 32 basicinstruc-
tions per clock cycle per SM [9, 11]). Therefore, for optimal performance, GPUs
use many active threads to fully utilize streaming multiprocessors while data is
transferred from/to the global memory.

3.2 GPU Computing Model

In stream processing, a single data parallel function, called a kernel, is executed
over a stream of data by many threads in parallel. A thread (also called a work-
item in OpenCL) is the smallest execution entity and represents a single instance
of the kernel. Threads are organized into blocks, which are sets of threads that can
communicate and synchronize their execution. Each block is executed by a single
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SM, but due to an existence of specific GPU hardware, an SM can execute multiple
blocks simultaneously [9]. To support programs involving data dependent con-
trol flow, GPUs use a variant of SIMD called a single instruction, multiple threads
(SIMT) model [9,11,17]. A SIMT multiprocessor is capable of executingindivid-
ual threads independently, in contrast to traditional SIMD vector architectures (e.g.,
x86 SSE) in which all threads are always executed in synchronous groups. When
programming for SIMD systems, data parallelism must be expressed explicitly on
the software level for each vector instruction. With the GPU SIMT architecture,
data parallelism between independent threads is discovered automatically onthe
hardware level. Differences between SIMT and SIMD models are elaborated in
more detail in [11,17,18].

3.3 OpenCL Framework

For the development of GPU implementations, we had a choice between different
application programming interfaces (APIs), like NVIDIA CUDA [14] or a more
recent standard Open Computing Language - OpenCL [10]. CUDA is a vendor
specific technology and supports only NVIDIA GPU hardware. Therefore, advan-
tage was given to the OpenCL since it is a hardware agnostic and open standard that
is strongly supported by many key industry players such as Apple, Google, Intel,
AMD, NVIDIA, ARM, Nokia, etc. Furthermore, the OpenCL C programming lan-
guage, included in the OpenCL framework [10], allows development of code that
is both accelerated and portable across various hardware platforms (GPUs, field
programmable gate arrays - FPGAs, digital signal processors - DSPs, embedded
processors). This language represents a subset of the ISO C99 language with cer-
tain restrictions (e.g., recursion is not allowed) and special extensions for parallel
programming. It is in many aspects similar to CUDA C and the transition from one
language to the other is almost straightforward.

OpenCL offers a computing model that is an abstraction of the underlying GPU
architecture. OpenCL abstractions for GPU streaming multiprocessors andproces-
sors are called compute units (CUs) and stream cores (SCs), respectively [10, 18].
The OpenCL program execution model is defined by the way the kernels are pro-
cessed [10]. An OpenCL program consists of two parts:

1. Host (CPU) code that creates the context and, among else, makes the kernel
calls, and

2. Device (GPU) code that implements the kernel.

A context for the execution of the kernels is defined by the host. The context
includes resources like devices, kernels, and program and memory objects. The
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host creates a data structure called a command-queue to coordinate the execution
of the kernels on the devices. The host then places commands into the command-
queue which are afterwards scheduled onto the devices that exist within the context.
When a kernel is submitted for execution by the host, an index space is defined. A
single instance of the kernel, called a work-item or a thread, is executed for each
point in the index space [10, 18]. A number representing the global identifier of
a work-item is assigned to it based on the corresponding point in the index space
to distinguish the data to be processed by each work-item. Every time a kernel
is launched, many work-items (a number specified by the programmer) are cre-
ated. Each work-item executes the same code, but the specific path through the
code and the data operated upon can vary for each of the work-items. Work-items
are grouped into work-groups to provide communication and cooperation between
them.

4 Fast Spectral Transforms

Spectral transforms are an efficient tool in solving many tasks in switching theory
and logic design [11, 20]. The spectra are usually computed by FFT-like algorithms
with the time complexity ofO(N log2N).

In this paper, we discuss two different kinds of spectral transforms:

1. Kronecker transforms [5], represented by the Walsh, the arithmetic, and the
Reed-Muller transforms.

2. Layered-Kronecker transforms [12], represented by the Haar transform.

In matrix notation, Kronecker transforms can be defined in a unified way as:

T(n) =
n
⊗

i = 1
T i(1), T i(1) =

[

a b
c d

]

, (1)

wheren is the number of variables in the function and parametersa, b, c, andd are
specified in Table 1 for transforms discussed in this paper.

The Haar transform is defined as:

H(n) =

[

H(n−1)⊗
[

1 1
]

I(n−1)⊗ [1−1]

]

, H(0) = [1] , (2)

wheren is the number of variables in the function to be processed andI stands for
the identity matrix.

Notice that this is the definition of the non-normalized Haar transform that is
usually used in spectral logic, however, the same method can be directly extended
to the normalized Haar transform [5,6].
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Table 1. Entries in basic transform matrices for Kronecker transforms.

Transform
Entry value

a b c d

Walsh 1 1 1 −1

Reed-Muller 1 0 1 1

Arithmetic 1 0 −1 1

Different ways of factorization of transform matricesT(n) andH(n) yield dif-
ferent fast algorithms [5, 6]. In this paper, we consider the Cooley-Tukey algo-
rithms and the so-called algorithms with constant geometry (see Figures 2(b) and
2(f)) [5, 6]. This selection was made in order to compare the efficiency ofin-place
implementations (Cooley-Tukey algorithms) and out-of-place implementations (al-
gorithms with constant geometry) on the GPU. Figure 2 shows the fast algorithms
for the considered transforms forN = 8. The solid and the dotted lines carry pos-
itive (+1) and negative (-1) coefficients, respectively. Computations for the fast
Walsh transform (FWT), the fast arithmetic transform (FAT) and the fastHaar trans-
form (FHT) are over integers, while for the fast Reed-Muller transform (FRMT) we
use Boolean operations. It should be noted that the spectral coefficients in Figures
2(a), 2(c), and 2(d) are in the natural (Hadamard) order, while in other figures they
are in the sequency order [5,6].
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(a) Cooley-Tukey FWT

(b) Constant geometry FWT                              (d) Cooley-Tukey FAT                               (f) Constant geometry FHT

                                (c) Cooley-Tukey FRMT                                 (e) Cooley-Tukey FHT

Fig. 2. Spectral transform flow graphs forN = 8.
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5 Mapping of Algorithms

Mapping of an algorithm to a targeted hardware technology is hardly ever directly
possible. A careful tailoring of algorithms for the implementation on a concrete
technology permits to fully exploit all the favorable properties of both the fast al-
gorithms and the hardware. In the case considered, this particularly concerns the
organization of the computations, memory transfer reductions, impact of the integer
and the Boolean arithmetic, structure of algorithms and other related issues.

5.1 Kernel Design and Optimization

Figure 3 presents a general overview of the computing model that we devised for
mapping of the spectral transforms to the GPU architecture.
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Fig. 3. Mapping of fast spectral transforms to the GPU architecture andcomputing model.

As in all FFT-like algorithms, the algorithm steps are executed sequentially
and parallelism is exploited only within the steps. In every step of the Kronecker
transforms we perform the elementary butterfly operations over pairs of numbers,
therefore,N/2 threads are created and executed in parallel. For the Haar transform,
the number of active threads isN/2 for the first step, but halves after each step.
In all of the OpenCL fast algorithm implementations presented in this paper, a
single thread performs the following tasks: first, it fetches two numbers from the
GPU memory, then it performs the elementary butterfly operation according to the
respective transform, and, finally, stores the results back to the GPU global memory.
Computation of the spectrum is divided into many active threads in order to keep
the GPU compute units active while the data is being fetched from and stored to
the GPU global memory.
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Before the device code execution starts and after the computations are com-
plete, data also needs to be transferred between the main memory of the host and
the global GPU memory. These memory operations take from 25% to 75% of the
total GPU running times, as reported in Section 6. An important conclusion is that
the GPU processing makes sense only for problem sizes large enough to make the
price of buffer creation and transfers acceptable (in the case of fastspectral trans-
forms the experiments show that this is approximately forn≥ 18).

Since speed of memory transfers can be considered as a bottleneck in GPU
computing, memory coalescing is an important optimization technique [9,14]. The
application of this technique to the GPU implementations results in simultaneous
memory accesses to the GPU global memory by multiple threads in a single mem-
ory transaction. Achieving efficient coalescing on the GPU requires techniques that
are completely opposite to the methods of parallel programming for the CPU [9].
In the case of AMD GPUs and OpenCL, coalescing has less impact on perfor-
mance than for NVIDIA GPUs and CUDA, but still significantly affects it [9]. For
this reason, we organize the computations so that threads with consecutiveglobal
identifiers access consecutive memory locations.

Optimization of the kernel code in the reported research includes a technique
of replacing integer divide and modulo operations, involved in Eq.(3), with the
corresponding bitwise operations. Ifi is an integer that is a power of two and
j is any integer, the integer division ofj with i is equivalent toj >> log2 i and
the modulo operation( j mod i) can be replaced with the bitwise AND operation
( j&(i− 1)) [19]. Integer divide and modulo operations are costly since they are
implemented in hardware through tens of basic GPU instructions, while subtrac-
tion, logical operations, and base-2 logarithm are all included in the basic set of
GPU hardware instructions and have a throughput of up to 32 operationsper clock
cycle per SM [11,17].

5.2 Cooley-Tukey Fast Algorithms for the Kronecker Transforms

Algorithm 1 presents the general outline of the FFT-like algorithms for the Kro-
necker transforms.

Each thread in the OpenCL implementation of the Cooley-Tukey algorithms for
the Kronecker transforms reads two elements from the input GPU buffer.Indices of
the elements to be fetched,op1 andop2, for all three spectral transforms discussed,
are calculated as follows:

op1← thread id modstep+2·step· (thread id/step), (3)

op2← op1+step. (4)
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Parametersthread id andstepare the global identifier of the thread in the index
space and the current algorithm step, respectively. All threads execute the elemen-
tary butterfly operation defined by the corresponding transform(T i(1)) and then
store the results back in the same locations in the GPU global memory.

Algorithm 1 Cooley-Tukey Fast Algorithm for the Kronecker Transforms
1: Allocate a bufferbuff in the global memory of the GPU device.
2: Transfer the input vectorinput from the main memory to the bufferbuff.
3: For each step of the transform fromstep= (log2N)− 1 to step= 0, with decrement
of 1:

a. Call the OpenCL kernel for the appropriate transform (FWT, FAT or FRMT) with
input parameters being the GPU bufferbuff and the value of the current step 2step.

b. The kernel is executed byN/2 threads in parallel on the GPU. Each of the threads
reads two elements, determined by (3) and (4), from the buffer buff, performs the
defined operations and stores back the results in the same locations.

4: Transfer the contents of the GPU bufferbuff, holding the resulting spectral coefficients,
back to the main memory.

The FRMT kernel operates on Boolean values, while the kernels for other two
transforms operate on integers. The Reed-Miller transform kernel does not have
better performance on the GPU than the kernels working with integer numbers,
because contemporary GPUs, on the hardware level, interpret Booleanvalues as
integers [9, 10]. Boolean buffers are not even officially supported by the OpenCL
standard specification [10] and, therefore, it is recommended to treat Boolean vec-
tors as integers in the OpenCL application code. As a consequence, the speedups
for the Reed-Muller transform, which are still acquired through GPU processing,
are not as large as for the other transforms performed. Since the goal of the research
presented in this paper was to develop a unified approach to the GPU implemen-
tations of fast spectral transforms, we did not consider potential optimizations in
the bit-level implementation of the Reed-Miller transform. Bitwise techniques [19]
may provide additional gains for the FRMT, however, that would require acom-
pletely different implementation approach. This approach should take into account
that the minimal size of data transactions on the GPU that allows optimal perfor-
mance is 32 bits [9]. This imposes development of additional procedures, working
on the bit level, for efficient execution of operations and packing and unpacking of
data.

5.3 Fast Algorithms with Constant Geometry for the Kronecker Transforms

Algorithms with constant geometry for Kronecker transforms [5](see Figure 2(b))
read from one pair of vector elements and write the results into another pair and,
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therefore, cannot be implemented in-place. We describe the mapping and report
experimental results for the FWT (Algorithm 2) since for the FRMT and the FAT
the difference is just in the butterfly operations.

For this class of algorithms, we need two separate buffers, one for reading the
input vector and the other for writing the output. The corresponding kernels have
three arguments: the input buffer, the output buffer, and the currentstep. The values
of indicesop1andop2of the elements fetched from the input buffer depends only
on the value of the global thread identifier:

op1← 2· thread id, (5)

op2← 2· thread id +1. (6)

The indices of the locationsdst1anddst2in the output buffer, where the results
of the butterfly operation performed by the kernel are stored, are calculated by the
same equations as in the case of the in-place algorithm (Eqs. (3) and (4)).

Algorithm 2 Constant Geometry Fast Algorithm for the Kronecker Transforms
1: Allocate two buffersbuff1andbuff2on the GPU device.
2: Transfer the input vectorinput from the main memory to buffersbuff1andbuff2.
3: For each step of the transform fromstep=(log2N)−1 tostep= 0, with decrement of 1:

a. If stepmod 2 = 0, then call the OpenCL kernel for the appropriate transform (FWT,
FAT or FRMT) with input parameters in the order:buff1, buff2 and the value of
current step 2step. The kernel is executed byN/2 threads in parallel on the GPU.
Each thread reads two elements determined by (5) and (6) frombuff1, performs the
operations defined by the kernel and stores the results in thelocations, determined
by (3) and (4), inbuff2.

b. Else ifstepmod 2 6= 0, call the OpenCL kernel for the appropriate transform (FWT,
FAT or FRMT) with the order of the first two input arguments swapped:buff2, buff1
and the value of current step 2step. The kernel is then executed in the same way as in
the casea, except for thebuff1and thebuff2exchanging roles.

4: If (log2N)−1 mod 2 = 0, transfer the contents ofbuff1 to the vector output in the main
memory, else transfer the contents ofbuff2.

For the Walsh transform, there is also a difference between the operationsper-
formed by threads with even and odd global identifier numbers in all transform
steps except the last one (see Figure 2(b)). This is done to avoid the shuffling of
elements. Threads with even global identifiers perform operationsu+v andu−v,
while the odd numbered threads perform the operationsu+ v andv−u, whereu
andv are operands fetched from the input buffer. In the last step, all of thethreads
perform theu+v andu−v operations.
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The problem here is that not only memory space requirements have doubled,
but buffer transfers occupy the bandwidth and thus are very expensive performance-
wise. However, if we add a simple check of the pass order number, we canexecute
the kernel with arguments for the input and the output swapped with every loop
pass. After completing the transform, we just check whether the last pass isodd
or even numbered and then copy only the appropriate buffer back to the host. Im-
plementing the algorithm with constant geometry on the GPU now requires adding
just two condition checks in the host code and one extra buffer in device memory
and no extra bandwidth occupation.

5.4 Fast Algorithms for the Haar Transform

The operations in the in-place Cooley-Tukey algorithm for the Haar transform (see
Figure 2(e) and Algorithm 3) [5,6,12], are the same as in the FWT, except that after
the first step the number of butterflies is halved in each step. Therefore, the kernel
for the FWT can be used in FHT, however, the number of active threads ishalved
with each step of the transform, starting fromN/2 active threads and ending with
only one thread for the final step.

Algorithm 3 Cooley-Tukey Fast Algorithm for the Haar Transform
1: Allocate a bufferbuff in the global memory of the GPU device.
2: Transfer the input vectorinput from the main memory to the bufferbuff.
3: For each step of the transform fromstep=(log2N)−1 tostep=0, with decrement of 1:

a. Call the OpenCL kernel for the FHT with input parameters being the GPU buffer
buff and the value of current step 2step.

b. The kernel is then executed in parallel on the GPU. The numberof active threads is
N/2 for the first step, but halves in each next step. Each of the threads reads two
elements, determined by (3) and (4), from the buffer, performs the defined operations
and stores back the results in the same locations.

4: Transfer the contents of the GPU bufferbuff, holding the resulting Haar coefficients,
back to the main memory.

Formulas for fetching the operands and writing the results in the algorithm with
constant geometry (see Figure 2(f) and Algorithm 4) are the same as for the FWT.
This algorithm needs to be implemented out-of-place and therefore the technique
of argument swapping is used again. Both buffersbuff1andbuff2contain different
parts of the spectrum, since the number of elements modified in each step is halved.
A simple algorithm can be devised for reading the resulting spectrum from these
two buffers. Alternative we used is to add a third GPU buffer and write the results
of each step of the algorithm both in that buffer and in the buffer currentlyset as the
output. This third buffer will finally contain the whole resulting spectrum. When
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the computation is completed, we copy the contents of this buffer back to the host.

Algorithm 4 Constant Geometry Fast Algorithm for the Haar Transform
1: Allocate three buffersbuff1, buff2andbuff3on the GPU device.
2: Transfer the input vectorinput from the main memory to buffersbuff1andbuff2.
3: For each step of the transform fromstep=(log2N)−1 tostep=0, with decrement of 1:

a. If stepmod 2 = 0, then call the OpenCL kernel for the FHT with input parameters
in the order:buff1, buff2, buff3and the value of current step 2step. The kernel is then
executed on the GPU. The number of active threads isN/2 for the first step, but
halves in each next step. Each of the threads reads two elements, determined by (5)
and (6), frombuff1, performs the operations and stores the results in the locations,
determined by (3) and (4), inbuff2andbuff3.

b. Else ifstepmod 2 6= 0, call the OpenCL kernel for the FHT with arguments list that
has the first two elements swapped:buff2, buff1, buff3and the value of current step
2step. The kernel is then executed in the same way as in the casea, except for the
buff1and thebuff2exchanging roles.

4: Transfer the contents of the GPU bufferbuff3, holding the resulting Haar coefficients, to
theoutputin the main memory.

6 Experiments

The experiments were performed using an AMD Phenom II N830 triple-core CPU
with 4 GBs of DDR3 RAM and an ATI Mobility Radeon 5650 GPU with 1GB of
DDR3 RAM. This GPU is composed of 5 compute units, has 400 processing ele-
ments in total, and belongs to the lower-middle performance class. The OpenCL
kernels were developed using MS Visual Studio 2010 Ultimate and ATI Acceler-
ated Parallel Processing SDK 2.3 [15]. The graphics card driver is ATI Mobil-
ity Catalyst 10.12. ATI Stream Profiler 2.1 was used for performance analysis of
OpenCL kernels, in accordance with instructions provided in [9]. The OpenCL host
code and the C/C++ referent implementations were compiled for the x64 platform
and optimized during the compilation for the maximum level of performance.

In order to conduct the experiments, a C/C++ test environment was developed.
As in all FFT implementations over vectors the algorithm time complexity is inde-
pendent of the function values. Therefore, we perform experiments on randomly
generated binary vectors, in the same way as in [7,13]. No architecture-dependent
GPU code optimizations are applied in order to preserve code portability.

The sequential C/C++ implementations of Kronecker transforms for the CPU
require a careful handling of the memory access patterns. For example, inthe clas-
sical radix-2 FFT, swapping of the inner loops which control the order of compu-
tations within the algorithm steps, reduces the number of trigonometric operations
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which in certain situations improves the overall performance [20]. Unlike theFFT,
the spectral transforms considered in this paper do not involve transcendental com-
putations. As a consequence, the loop order that can improve the FFT performance
brings no benefit here and results only in a highly non-local memory access pat-
terns. This poor spatial locality leads to an inefficient use of the cache memory
(cache thrashing) [13, 20, 21]. This effect is invisible when computing with small
vectors that fit in the cache. However, swapping of the inner loops that define the
order of the butterfly operations within a step, followed by a slight modification
of the entire code results in speedups of 30× or more, as it can be clearly seen
from the experiments. We decided to address this issue here, and include these
two different CPU implementations in the experiments, after coming across several
fast spectral transform implementations that neglected the importance of spatial lo-
cality. Even the AMD APP SDK [15] has a C/C++ implementation of the FWT
included as a referent example that violates this principle and as a result has very
poor performance.

6.1 Experimental Results

The first set of experiments is designed in order to explore the techniquesfor im-
plementing the fast Walsh transform on the GPU (Figure 4(a)).

It is clear that the memory access pattern and implementation design have a
huge impact on the performance of the C/C++ implementations. The CPU imple-
mentation labeled CPU B in Figure 4(a) is up to 21× faster than the referent imple-
mentation provided in [15]. But, the OpenCL implementation of the Cooley-Tukey
algorithm performed on a commodity GPU clearly outperforms both the slower
CPU implementation (labeled CPU A in Figure 4(a)), by a factor of 104×, and
the faster CPU implementation (labeled CPU B in Figure 4(a)), by a factor of 5×,
when the calculation time is compared. These factors are 78× and 3.7×, respec-
tively, when the total time, including memory transfers to/from the GPU, is taken
into account. Further, the application of the technique of argument swapping for
the implementation of the algorithm with constant geometry results in performance
that is equal to the in-place algorithm in terms of calculation times and only 16%
to 19% slower when we add memory times. After applying this simple technique,
the algorithm with constant geometry can be implemented on the GPU by adding
one more buffer and with no extra bandwidth occupation.

The performance for the fast Reed-Muller and the fast arithmetic transforms
are presented in Figures 4(b) and 4(c), respectively. The conclusions for the two
different CPU implementations of the FWT case are also valid here, with speedups
going up to 26× for the arithmetic transform, and up to 38× for the Reed-Muller
transform. The OpenCL implementations of both transforms again clearly outper-
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form their CPU counterparts, although the speedup factors are a bit smaller in the
case of the Reed-Muller transform, because the GPU on the hardware level inter-
prets Boolean values as integers [10]. For the FRMT, speedups are upto 109× and
77×, against the slower CPU code (labeled CPU A in Figure 4(b)), and 2.8× and
2×, against the faster CPU code (labeled CPU B in Figure 4(b)). For the arithmetic
transform, speedups in terms of the calculation time and the total time, respectively,
are up to 131× and 93×, against the slower CPU code (labeled CPU A in Figure
4(c)), and 5× and 3.5×, against the faster CPU code (labeled CPU B in Figure
4(c)).

The final set of experiments considers the Cooley-Tukey algorithm and the al-
gorithm with constant geometry for the fast Haar transform (Figure 4(d)). The Haar
transform offers a smaller amount of computational parallelism than the Kronecker
transforms and the number of active parallel threads in the respective OpenCL im-
plementation is halved in every step of the algorithm. Because of the linear time
complexity of the Haar transform, the sequential C/C++ code on the CPU performs
much better here than in the case of the Kronecker transforms, which havethe
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O(N log2N) complexity. However, speedups of up to 3× in the calculation time
and 1.4× in the total time for the Cooley-Tukey and up to 5× in the calculation
time and 1.2× in the total time for the algorithm with constant geometry are still
achieved. Times for memory transfers to/from GPU dominate over the GPU calcu-
lation times for the FHT, especially for the algorithm with constant geometry.

7 Conclusions

We considered the efficient implementation of the fast algorithms for spectraltrans-
forms on GPUs using OpenCL and presented a comparative analysis with therefer-
ent C/C++ implementations on the CPU. The acceleration is obtained by an appro-
priate modification of the fast algorithms for the GPU processing through massively
parallel execution of the OpenCL kernels. Experimental results show that,even in
the case of transforms not involving floating point and complex number arithmetic,
a computational speedup ranging from 3× up to 131×, depending on the referent
implementation, is obtained on a lower-middle performance class GPU. Processing
of the same kernels on a more powerful GPU (with more streaming multiproces-
sors and a higher memory bandwidth) would directly lead to much larger speedups,
due to the inherent scalability of the GPU parallel programming model. We believe
that the methods presented here could, therefore, widen the area of applications of
spectral transforms in switching theory and logic design.
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