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GPU Accelerated Computation of Fast Spectral
Transforms

DuSan B. Gajic and Radomir S. Stankovt

Abstract: This paper discusses techniques for accelerated congutdtseveral fast
spectral transforms on graphics processing units (GPUsy tise Open Computing
Language (OpenCL). We present a reformulation of fast @lgos which takes into
account peculiar properties of transforms to make thenaisigitfor the GPU imple-
mentation. A special attention is paid to the organizatibnamputations, memory
transfer reductions, impact of integer and Boolean aritiandifferent structure of
algorithms, etc. Performance of the GPU implementatiogsispared with the clas-
sical C/C++ implementations for the central processing (@#U). Experiments con-
firm that, even though the spectral transforms considenremie only simple arith-

metic, significant speedups are achieved by implementiagftporithms in OpenCL
and performing them on the GPU.

Keywords: Spectral transforms; Fast Fourier Transform (FFT); GPGBhENCL.

1 Introduction

In traditional computer systems, graphics processing units (GPUs) keaveused

as fixed-function hardware for rendering graphics. The receslugon of their

architecture towards support of general algorithmic tasks has lead tactirégee

of general purpose computing on GPUs (GPGPU) which offers inedeesmpu-

tational power and memory bandwidth for many practical applications [1-4].
Switching theory and logic design often require computations with large vec-

tors. In particular, this is the case when spectral transforms are usaddtysis
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of logic functions and design of corresponding networks [5, 6]. d?aring spec-
tral transforms of large functions is a computationally intensive task in spiteeof
existence of fast algorithms [5, 6].

In this paper, we investigate GPU implementations of several spectral trans-
forms, often used in switching theory and logic design, and perform alysia
of their efficiency. The motivation for the research comes from the follgweion-
siderations. In [7, 8], it is shown that the Fast Fourier TransformT{HB], is
extremely well suited for processing on GPUs because it involves intensglex
number arithmetic and transcendental operations. The Walsh transfadintfat
is the Fourier transform on finite dyadic groups, reduces to perfornmddgians
and subtractions. We show that in spite of the simplicity of the arithmetic opera-
tions involved in the Walsh transform, a considerable speedup can beediig
a simple adaptation of algorithms to the GPU architecture.

We also consider the Reed-Muller transform and the arithmetic transfofj [5
that are based on the basis vectors of the same form, however involviggriated
Boolean operations, respectively. The idea behind the selection oftthaséorms
is to compare the performance of their implementations since GPUs do notyative
support Boolean vectors and on the hardware level interpret thentegeia [9—
11].

The Walsh, the Reed-Muller, and the arithmetic transforms have the same time
complexity of O(Nlog,N), whereN = 2" is the size of the vector andl is the
number of variables in the function. These spectral transforms havedranma-
trices that are Kronecker product representable. Therefore)sedéraplemented
and analyzed the Haar transform [5, 6, 12], that is not a Kronedmesentable
transform, but has a layered-Kronecker structure [12] and is cteaized by the
time complexity ofO(N). Although this transform offers less data parallelism and
is computationally less demanding than the Walsh transform, and consideisbly le
than the FFT, the experimental results confirm that even in this case sighifica
speedups can be achieved.

For the Walsh and the Haar transforms, we also compared GPU implementa-
tions based on two different classes of algorithms, the in-place fastthigsrof the
Cooley-Tukey type and the so-called fast algorithms with constant geofbe@ly
This comparison was done in order to explore various approaches in imgieme
these families of different algorithms for the GPU and develop techniques to im-
prove performance. For the implementation, functions and spectra aeseated
by vectors, stored in memory as arrays, which are a data structure et $or
the underlying GPU hardware. Computations in the FFT-like algorithms disduss
are performed componentwise over elements of arrays.
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2 Related Work

Implementation of various FFT algorithms on different technological platfasras
widely considered subject, see for instance [5,6,8] and referénersn. In partic-
ular, the GPU-accelerated calculation of FFT algorithms using CUDA is itbestr

in [7,13]. NVIDIA provides an FFT library called CUFFT, as well as CAD
SDK [14] examples of the Walsh and the Haar transforms on single-predisat-

ing point numbers, which all use CUDA platform for improving programfqer
mance. A GPU-based CUDA implementation of low-density parity-check codes
(LDPC) that uses the Walsh transform and the inverse Walsh transfoaccai-
erating the decoding process is presented in [2]. The method in [2] esdbe
LDPC decoding time from 9 days on the CPU to less than 6 minutes on an array of
high-performance GPUs.

OpenCL is a more recent development in GPGPU than CUDA. AMD Ac-
celerated Parallel Processing SDK [15] has examples of the Walsh amthtre
transforms on single-precision floating point numbers, but these implemerstatio
are very limited and could not be used for comparison (e.g., the Haardramsf
from [15] offers GPU processing only for vectors with< 512). To the best of our
knowledge, except for the earlier version of this paper [16], thexaampublished
discussions of OpenCL GPU implementations of the spectral transform&lcons
ered here.

3 GPU Computing Model with OpenCL

The GPU computing model follows the GPU architecture which is based on a par
allel array of many programmable processors. The architecture of pmrycPUs

is quite different from multi-core CPUs [17]. GPUs are designed fociefiit exe-
cution of thousands of threads in parallel on as many processorssisSlp@g each
moment. Thus, the computational processes in the GPU computing are divided
into many simple tasks that can be performed at the same time. This intensive
multi-threading allows execution of various tasks on GPU processors whiisis
fetched from and/or stored to the GPU global memory. It also ensuresdhe s
bility of the GPU computing model, since processors are abstracted asshaedd
provides support for fine-grained parallel programming models [9,7,1,8].

3.1 GPU Architecture

Figure 1 gives the details of the GPU architecture and an overview of thetaig
processing flow on GPUs.
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Fig. 1. Details of the GPU architecture and the GPGPU processing flow.

The fundamental building block of the GPU is a single instruction, multiple
data (SIMD) streaming multiprocessor (SM). Each SM consists of sesteam-
ing processors (SPs) but only one instruction fetch/decode unit. This sripéeall
processors in an SM must execute the same instruction simultaneously. i-strea
ing processor is typically arranged as a four or five-way very longungon word
(VLIW) processor [9, 11], allowing execution of several scalarrafiens simulta-
neously. Processing elements can execute either integer operationglerasid
double precision floating point operations. One processing elementlirs#acan
perform transcendental operations such as sine, logarithm, etc. Eaammg
multiprocessor has registers and a small on-chip shared memory. Maigestsra
located in a high-latency off-chip GPU global memory. Each access to the GP
global memory is relatively slow and takes from 400 to 800 clock cycles [itl]
contrast, computations on the GPU are performed very fast (up to 32ibstsicc-
tions per clock cycle per SM [9, 11]). Therefore, for optimal perfonoeg GPUs
use many active threads to fully utilize streaming multiprocessors while data is
transferred from/to the global memory.

3.2 GPU Computing Model

In stream processing, a single data parallel function, called a kerneledsited

over a stream of data by many threads in parallel. A thread (also calledka wor
item in OpenCL) is the smallest execution entity and represents a single instance
of the kernel. Threads are organized into blocks, which are sets aithitbat can
communicate and synchronize their execution. Each block is executedityl@ s
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SM, but due to an existence of specific GPU hardware, an SM cantexacitiple
blocks simultaneously [9]. To support programs involving data depérmamn
trol flow, GPUs use a variant of SIMD called a single instruction, multiple thsea
(SIMT) model [9,11,17]. A SIMT multiprocessor is capable of executirdjvid-

ual threads independently, in contrast to traditional SIMD vector arc¢hies(e.qg.,
x86 SSE) in which all threads are always executed in synchronoupgréVhen
programming for SIMD systems, data parallelism must be expressed explicitly o
the software level for each vector instruction. With the GPU SIMT architectu
data parallelism between independent threads is discovered automaticatg on
hardware level. Differences between SIMT and SIMD models are edsdubin
more detail in[11,17, 18].

3.3 OpenCL Framework

For the development of GPU implementations, we had a choice between wliffere
application programming interfaces (APIs), like NVIDIA CUDA [14] or a reor
recent standard Open Computing Language - OpenCL [10]. CUDA imdove
specific technology and supports only NVIDIA GPU hardware. Theefadvan-
tage was given to the OpenCL since it is a hardware agnostic and opdarstamat

is strongly supported by many key industry players such as Apple, Googgd,
AMD, NVIDIA, ARM, Nokia, etc. Furthermore, the OpenCL C programminga
guage, included in the OpenCL framework [10], allows development dé ¢bat

is both accelerated and portable across various hardware platfornus(@eld
programmable gate arrays - FPGAs, digital signal processors - D8P&deed
processors). This language represents a subset of the ISO Ce@dmngith cer-
tain restrictions (e.g., recursion is not allowed) and special extensiopsafallel
programming. It is in many aspects similar to CUDA C and the transition from one
language to the other is almost straightforward.

OpenCL offers a computing model that is an abstraction of the underlyitgy GP
architecture. OpenCL abstractions for GPU streaming multiprocessofsares-
sors are called compute units (CUs) and stream cores (SCs), resheft®, 18].
The OpenCL program execution model is defined by the way the kerreefsrar
cessed [10]. An OpenCL program consists of two parts:

1. Host (CPU) code that creates the context and, among else, makesrbé k
calls, and

2. Device (GPU) code that implements the kernel.

A context for the execution of the kernels is defined by the host. The xtonte
includes resources like devices, kernels, and program and memogtobjehe
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host creates a data structure called a command-queue to coordinatedhtoexe

of the kernels on the devices. The host then places commands into the command
gueue which are afterwards scheduled onto the devices that exist wittdarkext.
When a kernel is submitted for execution by the host, an index space isdiefin
single instance of the kernel, called a work-item or a thread, is executehéh

point in the index space [10, 18]. A number representing the global idemaifi

a work-item is assigned to it based on the corresponding point in the ipdee s

to distinguish the data to be processed by each work-item. Every time a kernel
is launched, many work-items (a number specified by the programmer) exre cr
ated. Each work-item executes the same code, but the specific pathhthhemug
code and the data operated upon can vary for each of the work-itemi-itdms

are grouped into work-groups to provide communication and cooperatitwvebn
them.

4 Fast Spectral Transforms

Spectral transforms are an efficient tool in solving many tasks in switchaayryh
and logic design [11, 20]. The spectra are usually computed by FFTHjkeithms
with the time complexity oD(Nlog, N).

In this paper, we discuss two different kinds of spectral transforms:

1. Kronecker transforms [5], represented by the Walsh, the arithmaticthe
Reed-Muller transforms.

2. Layered-Kronecker transforms [12], represented by the Haasfiorm.

In matrix notation, Kronecker transforms can be defined in a unified way as

n
a b
= & T, Tm-| 3 g] @
i=1
wheren is the number of variables in the function and paramedghsc, andd are
specified in Table 1 for transforms discussed in this paper.
The Haar transform is defined as:

wo = | Dottt re— @

wheren is the number of variables in the function to be processed atahds for
the identity matrix.
Notice that this is the definition of the non-normalized Haar transform that is
usually used in spectral logic, however, the same method can be directhyegte
to the normalized Haar transform [5, 6].
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Table 1. Entries in basic transform matrices for Kronecker transforms

Transform Entry value

a b c d
Walsh 1 1 1 -1
Reed-Muller 1 0 1 1
Arithmetic 1 0 -1 1

Different ways of factorization of transform matric€sn) andH (n) yield dif-
ferent fast algorithms [5, 6]. In this paper, we consider the Cooldgeifalgo-
rithms and the so-called algorithms with constant geometry (see Figuresng{b) a
2() [5, 6]. This selection was made in order to compare the efficienay-pface
implementations (Cooley-Tukey algorithms) and out-of-place implementations (al-
gorithms with constant geometry) on the GPU. Figure 2 shows the fast algerith
for the considered transforms fodk= 8. The solid and the dotted lines carry pos-
itive (+1) and negative (-1) coefficients, respectively. ComputationdHe fast
Walsh transform (FWT), the fast arithmetic transform (FAT) and theHastr trans-
form (FHT) are over integers, while for the fast Reed-Muller tramsf(FRMT) we
use Boolean operations. It should be noted that the spectral codfiaidrigures
2(a), 2(c), and 2(d) are in the natural (Hadamard) order, while irr ditheres they
are in the sequency order [5, 6].

(a) Cooley-Tukey FWT

(c) Cooley-Tukey FRMT

(e) Cooley-Tukey FHT
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Fig. 2. Spectral transform flow graphs fidr= 8.
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5 Mapping of Algorithms

Mapping of an algorithm to a targeted hardware technology is hardly éestig
possible. A careful tailoring of algorithms for the implementation on a concrete
technology permits to fully exploit all the favorable properties of both thedhs
gorithms and the hardware. In the case considered, this particularlgrrsnihe
organization of the computations, memory transfer reductions, impact otdgein
and the Boolean arithmetic, structure of algorithms and other related issues.

5.1 Kernel Design and Optimization

Figure 3 presents a general overview of the computing model that weedéeis
mapping of the spectral transforms to the GPU architecture.

N/2* threads are created 4 @ Each of the threads represents a single instance of the kernel |
for each step of the algo,/ | performing the following operations:
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Fig. 3. Mapping of fast spectral transforms to the GPU architectureamguting model.

As in all FFT-like algorithms, the algorithm steps are executed sequentially
and parallelism is exploited only within the steps. In every step of the Krareck
transforms we perform the elementary butterfly operations over pairgrobers,
thereforeN /2 threads are created and executed in parallel. For the Haar transform,
the number of active threads /2 for the first step, but halves after each step.

In all of the OpenCL fast algorithm implementations presented in this paper, a
single thread performs the following tasks: first, it fetches two numbers fhe

GPU memory, then it performs the elementary butterfly operation according to th
respective transform, and, finally, stores the results back to the GPal ghemory.
Computation of the spectrum is divided into many active threads in order o kee
the GPU compute units active while the data is being fetched from and stored to

the GPU global memory.
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Before the device code execution starts and after the computations are com-
plete, data also needs to be transferred between the main memory of thadhost a
the global GPU memory. These memory operations take from 25% to 75% of the
total GPU running times, as reported in Section 6. An important conclusiontis tha
the GPU processing makes sense only for problem sizes large enougkedheaa
price of buffer creation and transfers acceptable (in the case adgastral trans-
forms the experiments show that this is approximatelynfor18).

Since speed of memory transfers can be considered as a bottleneck in GPU
computing, memory coalescing is an important optimization technique [9,14]. The
application of this technique to the GPU implementations results in simultaneous
memory accesses to the GPU global memory by multiple threads in a single mem-
ory transaction. Achieving efficient coalescing on the GPU requiresigobs that
are completely opposite to the methods of parallel programming for the CPU [9].
In the case of AMD GPUs and OpenCL, coalescing has less impact oorperf
mance than for NVIDIA GPUs and CUDA, but still significantly affects it.[8r
this reason, we organize the computations so that threads with conseylabed
identifiers access consecutive memory locations.

Optimization of the kernel code in the reported research includes a teehniqu
of replacing integer divide and modulo operations, involved in Eq.(3), wigh th
corresponding bitwise operations. ilis an integer that is a power of two and
J is any integer, the integer division ¢fwith i is equivalent toj >> log,i and
the modulo operatiofij modi) can be replaced with the bitwise AND operation
(j&(i—1)) [19]. Integer divide and modulo operations are costly since they are
implemented in hardware through tens of basic GPU instructions, while subtrac
tion, logical operations, and base-2 logarithm are all included in the besiaf s
GPU hardware instructions and have a throughput of up to 32 opergkorcdock
cycle per SM [11,17].

5.2 Cooley-Tukey Fast Algorithms for the Kronecker Transforms

Algorithm 1 presents the general outline of the FFT-like algorithms for the Kro
necker transforms.

Each thread in the OpenCL implementation of the Cooley-Tukey algorithms for
the Kronecker transforms reads two elements from the input GPU blrftkces of
the elements to be fetchealpl andop2, for all three spectral transforms discussed,
are calculated as follows:

opl < thread.id modstep+ 2-step (thread.id /step, 3)
op2 — opl+step (4)
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Parametershreadid andstepare the global identifier of the thread in the index
space and the current algorithm step, respectively. All threads exdmielemen-
tary butterfly operation defined by the corresponding transformil)) and then
store the results back in the same locations in the GPU global memory.

Algorithm 1 Cooley-Tukey Fast Algorithm for the Kronecker Transforms
1: Allocate a buffebuff in the global memory of the GPU device.
2: Transfer the input vectanput from the main memory to the bufféuff.
3: For each step of the transform frastep= (log,N) — 1 to step= 0, with decrement
of 1:
a. Call the OpenCL kernel for the appropriate transform (FWTT & FRMT) with
input parameters being the GPU buffeiff and the value of the current stefi®2
b. The kernel is executed bY/2 threads in parallel on the GPU. Each of the threads
reads two elements, determined by (3) and (4), from the bbfif, performs the
defined operations and stores back the results in the saripI0s.

4: Transfer the contents of the GPU buffarff, holding the resulting spectral coefficients,
back to the main memory.

The FRMT kernel operates on Boolean values, while the kernels for twtie
transforms operate on integers. The Reed-Miller transform kernal doehave
better performance on the GPU than the kernels working with integer numbers
because contemporary GPUs, on the hardware level, interpret Bordéses as
integers [9, 10]. Boolean buffers are not even officially supporiethb OpenCL
standard specification [10] and, therefore, it is recommended to trede&ovec-
tors as integers in the OpenCL application code. As a consequence gtaupg
for the Reed-Muller transform, which are still acquired through GPU gssing,
are not as large as for the other transforms performed. Since thefglalresearch
presented in this paper was to develop a unified approach to the GPU implemen-
tations of fast spectral transforms, we did not consider potential optimizatio
the bit-level implementation of the Reed-Miller transform. Bitwise techniques [19]
may provide additional gains for the FRMT, however, that would requicera-
pletely different implementation approach. This approach should take iotmat
that the minimal size of data transactions on the GPU that allows optimal perfor-
mance is 32 bits [9]. This imposes development of additional proceduosking
on the bit level, for efficient execution of operations and packing apacking of
data.

5.3 Fast Algorithms with Constant Geometry for the Kronecker Trandorms

Algorithms with constant geometry for Kronecker transforms [5](seergi@b))
read from one pair of vector elements and write the results into anotherrghir a
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therefore, cannot be implemented in-place. We describe the mapping @ord re
experimental results for the FWT (Algorithm 2) since for the FRMT and th€ FA
the difference is just in the butterfly operations.

For this class of algorithms, we need two separate buffers, one fanget
input vector and the other for writing the output. The correspondingeteimve
three arguments: the input buffer, the output buffer, and the custept The values
of indicesoplandop2of the elements fetched from the input buffer depends only
on the value of the global thread identifier:

opl — 2-thread.d, (5)
op2 — 2-thread.id + 1. (6)

The indices of the locatiordstlanddst2in the output buffer, where the results
of the butterfly operation performed by the kernel are stored, arelatddiby the
same equations as in the case of the in-place algorithm (Egs. (3) and (4)).

Algorithm 2 Constant Geometry Fast Algorithm for the Kronecker Transforms
1: Allocate two buffersbufflandbuff2on the GPU device.

2: Transfer the input vectanput from the main memory to buffeisuffl andbuff2

3: For each step of the transform frastep=(log, N) — 1 to step= 0, with decrement of 1:

a. If stepmod 2 = 0, then call the OpenCL kernel for the appropriatesfiam (FWT,
FAT or FRMT) with input parameters in the ordebuffl, buff2 and the value of
current step 2°P. The kernel is executed Y /2 threads in parallel on the GPU.
Each thread reads two elements determined by (5) and (6)4udfhy performs the
operations defined by the kernel and stores the results ilotiagions, determined
by (3) and (4), irbuff2

b. Else ifstepmod 2+# 0, call the OpenCL kernel for the appropriate transform (FWT,
FAT or FRMT) with the order of the first two input arguments gwad:buff2 buffl
and the value of current step'®. The kernel is then executed in the same way as in
the casa, except for theouffland thebuff2exchanging roles.

4: If (log,N) —1 mod 2 = 0, transfer the contentshmfff1to the vector output in the main
memory, else transfer the contentsoff2

For the Walsh transform, there is also a difference between the operpéons
formed by threads with even and odd global identifier numbers in all tremsfo
steps except the last one (see Figure 2(b)). This is done to avoid tfitnghof
elements. Threads with even global identifiers perform operatiang andu — v,
while the odd numbered threads perform the operatiohy andv — u, whereu
andv are operands fetched from the input buffer. In the last step, all dhtieads
perform theu+ v andu — v operations.
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The problem here is that not only memory space requirements have dpubled
but buffer transfers occupy the bandwidth and thus are very exegguerformance-
wise. However, if we add a simple check of the pass order number, wexeante
the kernel with arguments for the input and the output swapped with evepy o
pass. After completing the transform, we just check whether the last pads is
or even numbered and then copy only the appropriate buffer back tm#telm-
plementing the algorithm with constant geometry on the GPU now requires adding
just two condition checks in the host code and one extra buffer in deviogonye
and no extra bandwidth occupation.

5.4 Fast Algorithms for the Haar Transform

The operations in the in-place Cooley-Tukey algorithm for the Haar toamsfsee
Figure 2(e) and Algorithm 3) [5,6,12], are the same as in the FWT, éxicapafter
the first step the number of butterflies is halved in each step. Thereferkethel
for the FWT can be used in FHT, however, the number of active thredddved
with each step of the transform, starting frMi2 active threads and ending with
only one thread for the final step.

Algorithm 3 Cooley-Tukey Fast Algorithm for the Haar Transform

1: Allocate a buffebuff in the global memory of the GPU device.

2: Transfer the input vectanput from the main memory to the bufféuff.

3: For each step of the transform frastep=(log, N) — 1 to step=0, with decrement of 1:

a. Call the OpenCL kernel for the FHT with input parameters gdime GPU buffer
buff and the value of current step'%.

b. The kernel is then executed in parallel on the GPU. The numbeactive threads is
N/2 for the first step, but halves in each next step. Each of tfeatls reads two
elements, determined by (3) and (4), from the buffer, pengthe defined operations
and stores back the results in the same locations.

4: Transfer the contents of the GPU buffauff, holding the resulting Haar coefficients,
back to the main memory.

Formulas for fetching the operands and writing the results in the algorithm with
constant geometry (see Figure 2(f) and Algorithm 4) are the same afBWT.
This algorithm needs to be implemented out-of-place and therefore the taehniq
of argument swapping is used again. Both buffar§1 andbuff2 contain different
parts of the spectrum, since the number of elements modified in each step @ halve
A simple algorithm can be devised for reading the resulting spectrum frose the
two buffers. Alternative we used is to add a third GPU buffer and writegkalts
of each step of the algorithm both in that buffer and in the buffer currsetias the
output. This third buffer will finally contain the whole resulting spectrum. When
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the computation is completed, we copy the contents of this buffer back to the hos

Algorithm 4 Constant Geometry Fast Algorithm for the Haar Transform

1: Allocate three bufferduffl, buff2andbuff3on the GPU device.

2: Transfer the input vectanput from the main memory to buffeitsuffl andbuff2

3: For each step of the transform frastep=(log, N) — 1 to step=0, with decrement of 1:

a. If stepmod 2 = 0, then call the OpenCL kernel for the FHT with inputgmaeters
in the order:buffl, buff2, buff3and the value of current step'??. The kernel is then
executed on the GPU. The number of active threads$/@ for the first step, but
halves in each next step. Each of the threads reads two efgendetermined by (5)
and (6), frombuffl, performs the operations and stores the results in theidosat
determined by (3) and (4), iouff2andbuff3

b. Else ifstepmod 2+ 0, call the OpenCL kernel for the FHT with arguments list that
has the first two elements swappéuff2, buffl, buff3and the value of current step
25P The kernel is then executed in the same way as in the a;asecept for the
buffland thebuff2exchanging roles.

4: Transfer the contents of the GPU bufferff3 holding the resulting Haar coefficients, to
theoutputin the main memory.

6 Experiments

The experiments were performed using an AMD Phenom Il N830 triple-CéU

with 4 GBs of DDR3 RAM and an ATI Mobility Radeon 5650 GPU with 1GB of
DDR3 RAM. This GPU is composed of 5 compute units, has 400 processing ele
ments in total, and belongs to the lower-middle performance class. The OpenCL
kernels were developed using MS Visual Studio 2010 Ultimate and ATI Accele
ated Parallel Processing SDK 2.3 [15]. The graphics card driver IsMbil-

ity Catalyst 10.12. ATI Stream Profiler 2.1 was used for performanchsinaf
OpenCL kernels, in accordance with instructions provided in [9]. Then@h host

code and the C/C++ referent implementations were compiled for the x64 phatfor
and optimized during the compilation for the maximum level of performance.

In order to conduct the experiments, a C/C++ test environment was gedklo
As in all FFT implementations over vectors the algorithm time complexity is inde-
pendent of the function values. Therefore, we perform experimaentammdomly
generated binary vectors, in the same way as in [7, 13]. No architedtyrendent
GPU code optimizations are applied in order to preserve code portability.

The sequential C/C++ implementations of Kronecker transforms for the CPU
require a careful handling of the memory access patterns. For examitie,dlas-
sical radix-2 FFT, swapping of the inner loops which control the ordeompu-
tations within the algorithm steps, reduces the number of trigonometric operation
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which in certain situations improves the overall performance [20]. Unliké&iE

the spectral transforms considered in this paper do not involve trashescih com-
putations. As a consequence, the loop order that can improve the Fiéfnpance
brings no benefit here and results only in a highly non-local memory aqis
terns. This poor spatial locality leads to an inefficient use of the cache mgemor
(cache thrashing) [13, 20, 21]. This effect is invisible when computiiily small
vectors that fit in the cache. However, swapping of the inner loops #fatedthe
order of the butterfly operations within a step, followed by a slight modification
of the entire code results in speedups ok36r more, as it can be clearly seen
from the experiments. We decided to address this issue here, and incasge th
two different CPU implementations in the experiments, after coming acrossabeve
fast spectral transform implementations that neglected the importancetiof &pa
cality. Even the AMD APP SDK [15] has a C/C++ implementation of the FWT
included as a referent example that violates this principle and as a resuleha
poor performance.

6.1 Experimental Results

The first set of experiments is designed in order to explore the techriiguies-
plementing the fast Walsh transform on the GPU (Figure 4(a)).

It is clear that the memory access pattern and implementation design have a
huge impact on the performance of the C/C++ implementations. The CPU imple-
mentation labeled CPU B in Figure 4(a) is up tolfaster than the referent imple-
mentation provided in [15]. But, the OpenCL implementation of the Cooley-Tukey
algorithm performed on a commodity GPU clearly outperforms both the slower
CPU implementation (labeled CPU A in Figure 4(a)), by a factor ofx,0dnd
the faster CPU implementation (labeled CPU B in Figure 4(a)), by a factoxof 5
when the calculation time is compared. These factors areat®l 37x, respec-
tively, when the total time, including memory transfers to/from the GPU, is taken
into account. Further, the application of the technique of argument swagfiqrin
the implementation of the algorithm with constant geometry results in performance
that is equal to the in-place algorithm in terms of calculation times and only 16%
to 19% slower when we add memory times. After applying this simple technique,
the algorithm with constant geometry can be implemented on the GPU by adding
one more buffer and with no extra bandwidth occupation.

The performance for the fast Reed-Muller and the fast arithmetic transfo
are presented in Figures 4(b) and 4(c), respectively. The conotufio the two
different CPU implementations of the FWT case are also valid here, withspsed
going up to 26& for the arithmetic transform, and up to 88or the Reed-Muller
transform. The OpenCL implementations of both transforms again clearlyreutpe
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(a) Fast Walsh Transform (FWT) (c) Fast Arithmetic Transform (FAT)
1800 1400
CPUA CPUB
1600 ’, T o 1200 crua| cruB
£ 1400 g
= | / 5 1000
] 1200 ’ / E
= 1000 = 800
5 GPU Cooley-Tukey ’ / £
5 800 S 600 —
£ 60 . 3 !
g 400 GPU Constant geometry \/ \/ g 400 /
=]
S © A
200 / o 200 GPU
0 h‘*“?“M 0 ..‘_—4_4
10 12 14 16 18 20 22 24 10 12 14 16 18 20 22 24
Number of input variables (7 =log,N) Number of input variables (n =log, V)
(b) Fast Reed-Muller Transform (FRMT) (d) Fast Haar Transform (FHT)
1400 250
z 1200 ’ z CPU /
E ceua | 5 200
2 1000 E
= ;’ 150
8 800 -% GPU Cooley-Tukey /
2 600 £ 100
é. g GPU Constant geometry )&
S 400 S 50 A
’ aszd
200 0

10 12 14 16 18 20 22 24

10 12 14 16 18 20 22 24
Number of input variables (» =log, N) Number of input variables (n =1og,N)

Fig. 4. Computation times for: (a) FWT, (b) FRMT, (c) FAT, (d) FHT.

form their CPU counterparts, although the speedup factors are a bit sidhe
case of the Reed-Muller transform, because the GPU on the hardwaleéniey-
prets Boolean values as integers [10]. For the FRMT, speedups &el0fx and
77x, against the slower CPU code (labeled CPU A in Figure 4(b)), a®d and

2x, against the faster CPU code (labeled CPU B in Figure 4(b)). For theraxiit
transform, speedups in terms of the calculation time and the total time, respgctive
are up to 13k and 93«, against the slower CPU code (labeled CPU A in Figure
4(c)), and 5 and 35x, against the faster CPU code (labeled CPU B in Figure
4(c)).

The final set of experiments considers the Cooley-Tukey algorithm analth
gorithm with constant geometry for the fast Haar transform (Figure 4{de Haar
transform offers a smaller amount of computational parallelism than thegi€ken
transforms and the number of active parallel threads in the respecte®GDgm-
plementation is halved in every step of the algorithm. Because of the linear time
complexity of the Haar transform, the sequential C/C++ code on the CPOrpesf
much better here than in the case of the Kronecker transforms, whichtiave
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O(Nlog, N) complexity. However, speedups of up te 3n the calculation time
and 14x in the total time for the Cooley-Tukey and up te 5n the calculation
time and 12x in the total time for the algorithm with constant geometry are still
achieved. Times for memory transfers to/from GPU dominate over the GPU-calc
lation times for the FHT, especially for the algorithm with constant geometry.

7 Conclusions

We considered the efficient implementation of the fast algorithms for spéetnat
forms on GPUs using OpenCL and presented a comparative analysis wigfiehe

ent C/C++ implementations on the CPU. The acceleration is obtained by an appro
priate modification of the fast algorithms for the GPU processing throughivefss
parallel execution of the OpenCL kernels. Experimental results showetret, in

the case of transforms not involving floating point and complex number atiibyme

a computational speedup ranging from 8p to 131x, depending on the referent
implementation, is obtained on a lower-middle performance class GPU. Fragess
of the same kernels on a more powerful GPU (with more streaming multiproces-
sors and a higher memory bandwidth) would directly lead to much larger spged
due to the inherent scalability of the GPU parallel programming model. We believe
that the methods presented here could, therefore, widen the aredioatpps of
spectral transforms in switching theory and logic design.
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