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Abstract: Probabilistic AND/EXOR networks have been defined, in thstpas a
class of Reed-Muller circuits, which operate on random aign In contemporary
logic network design, it is classified dsehavioral notation of probabilistic logic
gates and networks. In this paper, we introduce additiontdtions of probabilis-
tic AND/EXOR networks:belief propagation stochasti¢ decision diagramneuro-
morphicmodels, andMarkov random fieldnodel. Probabilistic logic networks, and,
in particular, probabilistic AND/EXOR networks, known agtio-decoders (used in
cell phones and iPhone) are in demand in the coding theorgth®n example is in-
telligent decision support in banking and security appiace. We argue that there
are two types of probabilistic networks: traditional logietworks assuming random
signals, andelief propagatiometworks. We propose the taxonomy for this design,
and provide the results of experimental study. In additiwg, show that in forth-
coming technologies, in particular, molecular electrengrobabilistic computing is
the platform for developing the devices and systems for power low-precise data
processing.

Keywords: AND-EXOR networks; probabilistic computation; belief pagation
network; decision diagram; neuromorphic network; Markandom field.

1 Introduction

The elementary Boolean function EXOR (Fig. 1) is notable in logic designiseca
it is a basic operation of Reed-Muller techniques (an arbitrary Booleaztiin can
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be implemented using EXOR and AND operations, and constant “1”) [2&]also

the most often operation used in testing, coding techniques, and encriggion
Various fault-tolerant techniques for Reed-Muller have been prapesntly,

in particular, [21]. However they cannot solve the problems, related rie ra

dom intrinsic noise, which is observed in ultra deep submicron and preldictab

nanoscale devices. Moreover, there are various physical and digghenomena

in nanospace, which can be directly encoded as EXOR function [22]. reeth

dimensional implementation of EXOR functions has been proposed in [23].

Two-input EXOR gate (Nonequivalence)
Truth table Denotation Implementation

x|t .

0 0|0 X, f X2 f
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Two-input XNOR gate (Equivalence)
Truth table Denotation Implementation

f 8

X1 X2_ X

0 01 “ ¢ 2 f
0 11/0 lei}
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Fig. 1. Specification of two input EXOR gate= x; & x2, and XNOR gatef = X; & xp, given
deterministic inputs: the truth table, graphical denotation, and AND/OR impitatien.

The deterministic model of EXOR gate (Fig. 1) operates on noise-freelsigna
Focus of this paper is the behavior of EXOR function in probabilistic enviremt,
which is defined by replacing deterministic signals whith random signals.ifSpec
ically, when noise is allowed, input signals are applied to EXOR gate with some
level of probability. Probabilistic models assume, that correct output Isigme
calculated with some level of probability. Behavior of EXOR gate in probabilistic
environment is completely described by probability distribution functionsutinp
probabilities are derived from these functions in the form of probabiligtii tra-
ble (Fig. 2). For simplification, it is also often assumed that the input signals ar
uncorrelated and independent. This problem in more general meaningvis ks
probabilistic computation

There are various fields, where probabilistic computing is the key technique
For example, in communication, the best error correcting technique, kagtunbo
coding, is based on probabilistic data processing [1]. The devicesyatehss,
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Probabilistic truth table Probabilistic environment
p(x1) p(x2) | p(f) B Probability
p(0) p(0) | p(0) (Correlation > \_distributions

p(1) )

pO)  p(1) y ¢

pL)  PO) | P(Y p0a) =0

P p(D) | p(O) POe)
Fig. 2. Specification of two input EXOR gate in probabilistic environmentbahilistic truth table,
probability distributions (inputs and output signals), and correlation behivgeit signals.

known asbelief networksare widely used in decision-making, medical diagnosis,
image and voice processing, robotics, and control systems [15]. timctoming
technologies, in particular, molecular electronics, probabilistic computing+rep
sent a platform for developing the devices and systems for stochastiprdatss-
ing [11]. It should be noted that:

1. Multiple meaning of the term “probabilistic computing” have been applied
in various area-specific approaches [6, 14, 16, 17, 28].

2. Different methodologies are used in designing the devices and systems f
probabilistic computing [1, 4, 10, 12].

This paper contributes in probabilistic computing paradigm as follows: (a) we
systematize various libraries of probabilistic gates, which can be usediimaesl
modeling of both logic and belief networks, and (b) introduce experimeesalts
for elementary probabilistic gates. However, there are some novelties papar,
such as rules for combining neuromorphic models of logic gates and exiesfsio
Markov model for multivalued logic gates.

Since our study relates to various fields and design methodologies, walicérod
basic terminology and definitions.

Terminology

Probabilistic logicis a classical approach to reasoning under uncer-
tainty.

Probabilistic gateis defined as logic gate, which operates on (a) random
binary signals or (b) probabilities of these signals [10, 12, 20].

Belief propagatiometwork is defined as a directed acyclic graph derived
from causal graphs [15].

Stochastic computinig a method to design low-precision digital devices;
this method is based on encoding signals by Bernoulli sequences and
their statistical properties [4, 8, 14].

In this paper, we introduce the following models of probabilistic logic gates,
while focusing on AND and EXOR gates:
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Model 1:Behavioral model of a logic gate, assuming random input signals.
Model 2: Belief propagation model, in which input and outputs signals are prob-
abilities (real numbers) of the corresponding binary signals; it is repted by
belief propagation networks.
Model 3: Stochastic model, in which probabilities are represented by binary
stochastic pulse streams; the information in a pulse stream is contained imttse for
of primary statistics.
Model 4: Decision diagrammodel using noise injection techniques.
Model 5: Neuromorphic model, which is a typical Hopfield associative memory,
utilizing the Boltzmann updating algorithm, and
Model 6: Markov random field model, which is similar to a Bayesian network,
while it can describe cyclic dependencies, which Bayesian networlotann

The common feature of these models is that they utilize probabilistic measures
of uncertainty. However, they are different with respect to input angwt data,
algorithms, implementation, and applications, in particular:
(a) Stochastic model is useful for operations in presence of noide asuaddition,
subtraction, multiplication, and division; that is, this model can be used in other
probabilistic models as operational unit.
(b) Bayesian models require causal representations of data; in domfiakov
random field model is based on noncausal data description;
(c) Hopfield model (implemented as neural network of a particular coraigum)
can be converted to Markov random field (implemented as operational anit),
vice versa.

2 Behavioral model

Behavioral model is based on probabilistic logic, which is a classical apprto
reasoning under uncertainty, as devised by George Boole. BeHaAAEXOR
model under assumption of random signals is defined as follows:

AND/ EXOR expr essi on 2ea Logi ¢ network

Phenomenon Behavioral form

In this design paradigm, traditional taxonomy of AND/EXOR network design
is extended by probabilistic descriptions of logic gates in behavioral form.

Theorem 1. Given a2-input logic gate fxy, x2), its behavioral model is derived by
(a) transforming logic function (i, x2) into an arithmetic form, and (b) replacing
signals X and » with their probabilities p and , respectively, assuming that x
and % are independent.
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Note that in behavioral modeb; andp; are the probabilities of signaks and
X2 being logic “1”, respectively. Proof of this theorem follows from thegedies
of probabilities for independent random events and the propertiesitbimatic
forms of Boolean functions.

Example 1. Let the inputs xand % of the 2-input EXOR gate be mutually inde-
pendent with probabilities of being “1” pand p, respectively. The behavioral
model represents the probability of the output being logic “1” and is detifrem
the truth table of EXOR function:

p= (1-p)p2 + pu(l—p2) =p1+pP2—2p1P2.
Forx; =0, =1 Forxlzvl,xzzo

or by transforming the EXOR function into the arithmetic form&x, = x; +
X2 + 2X1%2 and replacing xwith @, i = 1,2, thatis, p + p2 — 2p1p2. Supposing
p1 = 0.8, p» = 0.9, the logic “1” at the output is produced with probability £
0.84+0.9-2x0.8-0.9=0.26.

3 Belief propagation model

In the belief propagation model, any phenomenon must first be descrilsadsal
form, and then, using probabilistic relationships, transformed into a beliglapr
gation network:

Causal Design Bel i ef
Phenonenon — —

nodel net wor k
N—_———— —_— ——
Propositions Computing

Causal modeling attempts to resolve question about possible causes so as to
provide explanation of phenomena (effects) as the result of previoeisgmena
(causes). Causal knowledge is modeled using the causal networkgjah the
nodes represent propositions (or variables), the arcs signify diegggndencies
between the linked propositions, and the strengths of these dependaecipsn-
tified by conditional probabilities. A Bayesian network is a type of belief nekwo
that captures the way the propositions relate to each other probabilistically.

The simplest form of the belief propagation model is as followsk #vents
B1,By,..., Bk constitute a partition of the sample spa&esuch thaP(B;) # O for
i=1,2,...,k, then, for any event8, andA of Ssuch thaP(A) # 0,
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Prior
P(B
PEIA) = PAB) x—o)
Post eri or Li kel i hood S~~~
Evi dence

wherer =1,2,...k; P(B;|A) is arevisedor aposteriorprobability; P(A|By) is the
likelihood of B, with respect toA; P(A) is theevidence factoand can be viewed
as merely a scale factor, that guarantees that the posterior probabilitigs sae,
as all good probabilities must.

This belief propagation form, or Bayesian principle, advises on how tatepd
probabilities, once such a conditional probability structure has beeneatj@iven
appropriate prior probabilities.

Let the nodes of a graph represent random variafles{xs,...,xn}, and the
links between the nodes represent direct causal dependenciBayesian belief
networksis based on #actoredrepresentation of joint probability distribution.

3.1 Probabilistic logic gates for belief propagation model

Belief propagation model is implemented using probabilistic logic gates, which
operate on probabilities (real numbers). The general design taxonbiinese
gates is as follows:

Probabilistic logic gate for belief propagation model

A two-input probabilistic logic gate with random inputs, x; € {0,1}, xp €
{0,1}, and random output, y € {0,1}, is defined as a computational unit,
that performs computations as follows:

Py) =ay > p(x1)p(x2) f(x1,X2,y) 1)

X1 X2

where p(x1), p(x2), and p(y) are the probability distributions of binary
inputs X3, X2, and output y € {0,1}, respectively;

f(x1,X%2,Y) € {0,1} is the binary function called compatibility truth table,
that indicates the truth of logic function y, i.e. f(x1,X2,y) =1if yis true,
and f(x1,%2,y) = 0 otherwise; and

a € {0,1} is an appropriate scale factor.

Equation 1 shows how the probability distribution of the output random Viariab
Y is derived from probability distributions of input random variab}sand Xs.
Using the parametrization property of the functifix;, x2,y) € {0,1}, a library of
probabilistic logic gates is defined.
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Example 2. Using Equation (1), probabilistiEXOR gate is defined as follows:

{ P(0) =3y Yx, P(Xa)p(X2) f(X1,%2,y = 0)
P(1) =3 Yx POX)p(X2) f(x1, %2,y =1)

To calculate §0) and (1), we sum over all possible (binary) values of xand y. The
constraint within fxz,Xo,y) serves to include some probability terms and exclude
others. Function €xy,xp,y) is calculated using the truth table d&XCR gate as
follows:

Compatibility Graphical denotation
truth table of probabilistic EXOR gate
X1 X Y f
0 0O 0 TRUE |1
0 0 1 0 p (o) )
0 1 0 0 1
0 11 Teee|d p“j@_wgg
1 0 0 0 R, (0) py
1 0 1 TRUE|1
1 1 0 TRUE|1
1 1 1 0

The probabilisticEXOR gate is given

py(o) _ le (O) sz (0) + pX1 (1) sz (1)
{ ]_{ Px (0) P (1) + Pxy (1) P, (0) } @

Example 3. The probabilistic model oAND gate is a vector form

|: p)’(o) } — |: pX1 (0) sz (O) + le (O) pxz(l) + pxl(l) sz(O) ] (3)
Py(1) P (1) P, (1)

Implementation of Reed-Muller polynomigll= x1xo & X3 & X4 using both be-
havioral and reasoning models is given in Fig. 3.

3.2 Logarithm operational domain for probabilistic logic gates

Due to the high hardware complexity of sum-of-product form of probatuilggates,
operations can be implemented in logarithm domain where probabilities are con-
sidered a$og-likelihood ratio[1, 12].

Let X be a binary random variable, and 0- and 1-value of this variable can be
observed with probabilitp(x = 0) and p(x = 1), respectively. The log-likelihood
ratio of X is as follows:

p(x=1)
p(x=0)

L= @)
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Table 1. The sum-of-product and log-likelihood forms of AND and BX@robabilistic logic gate
models.

Sum-of -product mo del

Probabilistic AND Probabilistic EXOR
R, (0) p © )
[P “J [MO)J Pn(l) :)B_ YO)
N0 pyL) p (0) py(l)
[ri(l)}
X1 X yl|f x X y|f
0 0O 0|1 0 0O 0|1
0 0O 1|0 0 0O 1|0
0 1 0|1 0 1 0|0
0 1 1|0 0 1 1)1
1 0 0|1 1 0O 0|0
1 o 1|0 1 0o 1|1
1 1 0|0 1 1 0]1
1 1 1|1 1 1 1|0

Probabilistic model: see equation (2 Probabilistic model: see equation (3

Log-1ikelihood mo del
Probabilistic AND Probabilistic EXOR
L[xl]@l__[y] L[xd] L[yl
L[x] L%

L[y] = L[x1 & x
Lyl = L v =thal

= SGN(L[x])SGN(L[x2])

- Al IEbel) AMIN (L] L))

The probabilityp(x = 0) can be recovered from Equation 4:

M
p(x=0) = Trai
Operations in the logarithm domain are specified by properties of log-likedihoo
ratio model of probabilistic logic gate (Equation 4), in particular, multiplication of
real numbers is translating into additions.
The AND and EXOR probabilistic logic gates based on log-likelihood ratio
model (Equation 4) are used to design belief propagation networks.

Example 4. The design goal of decoder of turbo error correcting codes is toprop
agate the belief efficiently. Specifically, the sign and magnitugle)f (belief) are
estimated, and then improving these estimates using the local redundiatiey o
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Design example: Reed-Muller
network design using
behavioral model

Given:

(a) aswitching function y = x1Xo ®X3® X4,
(b) the binary input signals x1,X2,X3, and
X4 are independent,
(c) the probabilities of 1's in the input
streams,
P(X1) = p(X2) = P(X3) = P(x4) = 0.8
Design a probabilistic logic network us-
ing behavioral model, and calculate p(y).

Step 1: Design Type | probabilistic logic
network:

X P(xw) Vi
Xp P2 PO | P(Y:)
p(y2) Y3
X3
X4 P(xa)
Random binary output "l
~Jl Random binary inputs

Step 2: Using behavioral models

P(y1) =p(x1)p(xz) = 0.8 x 0.8 =

P(y2) =p(X3) + P(Xa) — 2p(X3) p(Xa)

—0840.8-2x0.8x08=

p(ys) =p(y1) + P(y2) — 2p(y1) P(y2)
=0.64+0.32—2x 0.64x 0.32

- (o504

Design example: Reed-Muller
network design using

reasoning model

(a) a switching function y = x1Xp ® X3 ® X4,

(b) the input binary signals xj,x2,X3, and x4
are independent,

(c) the probabilities of the input signals,
Pxi(0) = --- = px(0) = 0.2and py, (1) =
o=y, (1) =0.8.

Design a probabilistic logic network to imple-

ment function y using reasoning model, and

calculate p(y).

Solution: Step 1: Design Type Il probabilistic

logic network:

Output probability I
“H_Input probabilities

Step2: Using Equations 2 and 3
r 1 r 02:02+0.2-0.8+0.8-0.2=0.36
P (0) | _
L (D) 0.8x08=
- 0.2x0.2+0.8x0.8=0.68
P (0) |_
P(1) || 02x08+08x02=
by, (0) r 0.36-0.68+40.64-0.32= 0.4496
3 —
Py;(1) || 0.36-0.32+0.64-0.68= |0.5504 }

Fig. 3. Reed-Muller probabilistic network de

sign using behavioral (left)r@asoning (right) models.

code. The result of this belief propagation can be written as iterative psce

Lera X = Le[x]+ p(

X), t=212,....m,

where gx) is the probabilistic quantity, oextrinsicinformation about x.

In Table 1, the log-likelihood ratio model is given for two-input AND and

EXOR gates assuming that binary variablesindx, are statistically independent.
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Figure 4 provides a graphical representation of the log-likelihood raticehafd
probabilistic EXOR logic gate and approximation of this model. We can observe
that the EXOR model has a lot of deviation from the original model and itsosppr
imation.

Probabilistic EXOR gate Approximation

LLRix1 XOR x2)
S S N
LLR( XOR x2Japp

.-

LLR(2) LRE

Fig. 4. Graphical representation of log-likelihood ratio model of prdlsdic logic gates.

3.3 Belief trees and networks

Belief trees are predecessors of the belief networks, and can beausedstruct
belief networks, when complete data is not available. In the below example (Fig
5), we consider a belief network that investigates how to include possitalies af
distance measurements of temperature in determining the probability of flu in the
presence of temperature [30].

Let high temperaturf in a pre-screened individual be detected. The prior
statistics include the following parameters:
(a) The prior probability of a fluF is P(F) = 0.05;
(b)] The conditional probability of a flu not causing high temperatut%rfg =0.2;
(c) The probability of a flu causing high temperaturéjg = 0.9.
The temperaturd@ is evaluated by means of an infrared image with the following
errors (@) 5% FRR, and 15% FAR.

Computing using the Bayesian belief network is based on the following com-
putational aspects:
Local computing is the key principle of belief network.
Updating beliefsis the main principle in scheduling of computational tasks.
Decision profileis a specification of a computing task.
Data transmission consists of transmission of the probability values (from local
memories or computed) and additional messages for activation of nodasl-acc
ingly to a decision profile.
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Reasoning with Bayesian networks is done by updating beliefs, that isutemp
ing the posterior probability distributions, given new information, cadfeidlence
The basic idea is that new evidence has to be propagated to the otherfgihés o
network.

Fundamental expansion for belief networks

A Bayesian belief networks is a graphical representation of a chain rule;
that is, a factored representation of joint probability distribution in the form

P(X1,X2,..., %) =

Factored form

=P(x1) x P(Xz[x1) % ..., P(Xn|X1, ..., Xn—1)

= |"| P(Xi|X1, X2, ..., Xi—1) < ﬁP(xﬂPar (%)

— —
Chain rule Graphi cal representation

where Par (X;) denotes a set of parent nodes of the random variable x;. The
nodes outside Par (X;) are conditionally independent of x;.

Infrared
& s, camera

.y
=/ > Image
‘/‘,,//' ‘ processing

Prior
Pr =0.05

High
temperature

P r k=08 Prr =09

Layer 3 Measure

Posterior (belief) probabilities

Fig. 5. Probabilistic network as belief tree.

4 Stochastic model

Stochastic model is a typical computational paradigm, which utilizes statistical av-
eraging in data representation and manipulation, such as addition, sulotrautie
tiplication, and division. Because of data averaging, these operatiersigily
immune to noise.
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A binary stochastic pulse stream is defined as a sequence of binary digits,
bits. The information in a pulse stream is contained in the primary statistics of
the bit stream, or the probability of any given bit in the stream being a logic 1.
Hence, the output of a gate is generally in the form of a nonstationaryoBH#irn
sequence (random process of repeated trials with two possible outciisgs;o-
cess is characterized by the binomial distribution) [8, 4, 10]. Such eesegLcan
be considered in probabilistic terms asleterministic signal with superimposed
noise Suppose that the statistical characteristics of these streams are kmalvn, a
can be measured. These streams carry a signal by statistical chatiastéxisingle
event carries very little information, which is not enough for decision mgking

Example 5. Let the binary variablesxand % correspond to the stochastic pulse
signals with the means (k&;) and E(xp). Suppose that these pulse streams are
independent. It is possible to find some logic operations that corresjocthé sum
E(x1) + E(x2) and the product Ex;) x E(x2).

If the input stochastic streams are independent (technically, this means that
independent generators of random pulses are used with some additioisafior
decorrelation of signals), and are representedbx;) andE(xp), the output of
gate is described by the equatiénf) = E(x1) x E(x2). The values are normalized
into the rang€0, 1].

Pulse stream

E(x1)
/—/%

| L 1 1 Pulse strean

j ) A

LI 1 —
| E(f)

Pulse stream
E(x2)

Fig. 6. Stochastic pulse stream model of computing.

The stochastic computer introduces its own errors in the formmdom vari-
ance If we observe a sequence Nflogic levels andk of them are 1, then the
estimated probability ip = k/N. The sampling distribution of the value bfs bi-
nomial, and, hence, the standard deviation of the estimated probabftitynthe
true probabilitypis o(p) = [p(1— p)/N]Y/2. Therefore, the accuracy in estimation
of the generated probability increases as the square root of the lengjtmeo of
computation.

Let p; = E(x1) andp = E(X2), then:

(a) The AND gatef = x;x is modeled byE(f) = p1po, if input pulse streams are
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independent, and bl (f) = p1p2 + Ky, x, Otherwise;

(d) The EXOR gatef = x3 @ Xz is modeled byE(f) = p1+ p2 — 2p1p2, if the input
pulse streams are independent, andEby) = p1 + p2 — 2p1p2 — 2Ky, x, Otherwise.
(e) The XNOR gatef = x; © X, is modeled bye(f) =1— p; — p2+ 2p1p2 if the
input pulse streams are independent. HEggy, is correlation function.

The precision of computing depends on the size of the stochastic sequence
This effect can be evaluated by standard statistical techniqueX et binomial
random variable; then the limiting form of the distribution is the normal distribu-
tion. Given a precision of computatian the result of computing must satisfy the
equationk/n— p(x)| < . The confidence interval is

e n___ k—np(x) e n

pP(X)a(x) ~ /np(x)q(x) p(x)a(x)

The size of Bernoulli stream is = (zq pg/€)?. In practice, the size varies
from hundreds to thousands, depending on the required precisiemgfiutations.

The most reasonable stochastic pulse encoding modetsarbit addersand
one-bit multipliers A simple rule for describing the model is used, such that it
replaces the Boolean variabtein an arithmetic equation by the meki] of the
stochastic sequence [8, 14, 17, 28].

5 Decision diagram model

A decision diagram is a graphical data structure in the form of a rootedtéite
acyclic graph, consisting of the root node, a set of non-terminal naxi@és set of
terminal (constant) nodes connected via directed edges (links). Thiegypaf a
decision diagram is characterized by the parameters such as size, mfmber
terminal nodes, number of links, and shape. The computing paradignnlyinde
decision diagrams is based on the hierarchical decomposition of a logitdfunc
(each level corresponds to a single variable). Each path from thenoolat to a
terminal node represents a term in the algebraic description of the function.

An arbitrary logic function can be implemented using decision diagrams, in
which nodes are multiplexers, or switches. The library of multiplexer-biasple-
mentations is given in Fig. 7. This model is a good candidate for implementation
using molecular switches [11].

5.1 Experiments

The goal of this experiment is to model some unreliable gates with the introduction
of noise of various scales and observe the deviation of the output valnethie



464 S. N. Yanushkevich et al.:

AND gate EXOR gate
f
f (%)
S(x) A TR
XliDi yA IR % ¢ 110%)
X2 = 0 12(%2) . :)D —
2
f =0x3VI)xs=x1X f=|1><§\/|_1><S:X1€5X2
f
SN

Fig. 7. Switch based AND/EXOR library.

actual one. We consider line noise (any line connecting nodes of theadiagr
and node noise (any node within diagram) models. The no)de €ither additive
(modeled via OR gate) or multiplicative (modeled via AND gate). The latter noise
model is shown in the form of AND gates, added to the lines and to the selected
input of multiplexers in Fig. 8a.

(@) (b)

Fig. 8. Complete (a) and one-line (b) noise-injected AND gate model.

Fig. 9 shows the results of simulation of the output probability (axis Z) for
AND (a) and EXOR (b) while varying multiplicative noise on one line only. The
line between terminal node 1 and the lower MUX was chosen for for AND gate
model, and the line between terminal node 1 and the lower right MUX for EXOR
gate model, whilg(x; = 1) = 1 (inputx; is constant 1), and the probabilitipéx)
andp(r) vary between 0 and 1 on axes X and Y.
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o
@

output prokiability
o o
output probability

¥2 probability oo + probability K2 prabability Y probability
(@) (b)

Fig. 9. Graphical representation of the probabilistic AND (a) and EXORnadel based on noise-
injected decision diagram.

6 Neuromorphic model

Neuromorphic networks are hardware implementation of artificial neutaiankes,
they resemble cooperative phenomena, and can process probabitistyc,an in-
consistent information [13].

The Hopfield computing paradigm is based on the concephefgy minimiza-
tion in a stochastic system [9]. Control over the type of logic function is exeticis
by the threshol® and the weightsy; € {1, —1} in the arithmetic sum representing
the output valuef =wy X X3 +Ws X X — 0.

Hopfield networks are capable of reliable computing, despite imperfecbmeu
cells and degradation of their performance. This is because the ddgradeon
cells store information (in weights, thresholds, and topology) disé&ributed (or
redundant) manner. A single “portion” of information is not encoded in glsin
neuron cell but is rather spread over many. Boolean function is compideal
process called “simulated annealing”. A value of a Boolean functionngare
assignment of its Boolean variables, is computed through relaxation of tiheme
cells in the network, while the initial “temperature” of the network is given.

A set of fundamental two-input logic functions can be implemented as a three-
node Hopfield network. The logic functions AND and EXOR are shown bid2.
The logic function AND can be implemented using a three-node Hopfield nietwor
and EXOR requires a four-node Hopfield network. The Boolean funaioa
logic gate is encoded in the energy function, using connection weightseamdm
threshold. The energy function of the network is defined as follows:
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1 n n n
E=—32 > xxGj+ XN
T ] i

wherex, is the state of cek, Gj is the connection weight between the cebsdj,
N; is the neuron’s threshold value, ands the total number of cells, excludiigjas
cell; and the factor 1/2 ensures that we do not count each connectian(iwig).

All the global minima of the energy function correspond to the correct Boole
output, while the 'False’ is encoded as having an energy value greatethba
global minimum. In the process of relaxation, the Hopfield networks try to eehie
the global minimum and, therefore, the correct output.

Table 2. Hopfield models of AND and EXOR gates.

Energy function Model Compatibility
truth table

Gate

AND
f= X1 X2

X
1
X2

E=—vi—Vvo+2v3
+V1Vo — 2V1V3
—2V2V3

Vi Q +2 V;
1 '

o\

V2

-1
1
1
-1
-1
1
1

1

-1 -3

1

-1 -3

1
-1

1 -3

Vi Vo V3 E| f
-1 -1 -3

9 | Fal se

1| Fal se

1| Fal se
1| Fal se

EXOR
f=x1Dx

. ™

E=vi+Vvo+V3

—2i +V1Vo +VqV3
+Vov3 — 2ivy — 2ivp
—2iV3

V2

vy |

-1
-1
-1
-1

-1 -1
-1 1
1 -1
1 1
-1 -1
-1 1
1 -1
11
-1 -1
-1 1
1-1
11
-1 -1
-1 1
1 -1
1 1

6.1 Network design using Hopfield gates

To obtain a Hopfield network, capable of implementing large truth table, a tech-
nique to map the logic networks directly into Hopfield networks has been peapo
in [7].
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Rule I: Hopfield gate merging

Connecting an output of one Hopfield gate to the input of another (cas-
cading the gates) is performed by merging the corresponding “output”
cell of the first gate with the “input” cell of the second one. The threshold
value of the new cell is the cumulative threshold of the merged cells.

Rule 1l Hopfield gate merging

Connecting an output of one Hopfield gate to the input of another (cas-
cading the gates), while the second input of the other gate is also the
input of the first one, is performed by merging the corresponding “out-
put” cell of the first gate with the “input” cell of the second one, as well
as the both "input” cells. The threshold value of the two new cells is the
cumulative threshold of the merged cells.

Example 6. Rule I: While connecting AND and EXOR gate, both cells G1 are
merged in a new cell, which threshold value is 2+1=3, obtained by adding the
threshold values of the merged cells (Fig. 10, upper plane).

Application of merging Rule |
- mMm

X1 @v\z

-1

Xi

B’
X2
X3é

Fig. 10. Taxonomy of neuromorphic AND/EXOR network design: apgilicaof merging rules in
implementation of functiorf = x1x @ Xa.

Example 7. Rule II: Input % is common for both AND and EXOR gates, so their
cascading involves merging gate2 dnd GL, and their threshold are cumulative
values, -1+1=0 and 2+1=3, respectively (Fig. 10, lower plane).

6.2 Noise Model for the Hopfield networks

In this paper, to investigate fault tolerance of the Hopfield networks, aedésc
noise is added in the form of noise probability. Noise probability is defineel &g
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Application of merging Rule 1l

Fig. 10. (Continue) Taxonomy of neuromorphic AND/EXOR networkigiesapplication of merging
rules in implementation of functioh = x1 x> & X3.

the probability that a neuron cell is affected by noise resulting in a bit flifeata

“a state flip” in terms of Hopfield networks. In other words, change of thtes

is modelled by the uniformly distributed discrete random signal. For example,
noise level 0.1 (10%) means that the probability of changing the curreatatine
neuron cellis 0.1.

There are two updating rules that applies to the Hopfield network: (a) the Ho
field deterministic rule, and (b) stochastic Boltzmann rule, or simulated annealing
For example, the Boltzmann updating rule is based on assumption of an umtgerta
of state of a particular cell during the updating process. Instead of sHttrgiate
of cell k deterministically, the process uses the probabiitk) that cellk takes
state 1. It implies the following steps: (a) Select temperaiyré) Randomly se-
lect a cellk, (c) CalculateAE (k) = S{'xicik — Nk. If AE(K) > 0, then calculate the
probability that cellk takes state 1p(k) = m Else set the state of cedl
to -1; (d) Repeat steps (b) through (d) until the state of cell does rastgehfor a
certain interval (this is also called stable state condition), for example, 20dtesa

6.3 Experimental Results

In this study, we have compared the robustness of the Hopfield modelX@RE
gate using the 4-node Hopfield EXOR gate= x&y), and the alternative imple-
mentations of EXOR: one in the form df = XyV xy using the network of one
2-node Hopfield NOT gate, two 3-node AND gates and one 3-node ORayade
another in the fornf = X=XyV xy-V.

Example 8. Given the node noise probability ranging between 0 @idthe num-
ber of iteration to reach the stable state vary for the EXOR Hopfield gate itself
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(Figure 11, A), and for the implementation of EXOR on a network of NO) AN
and OR gates (B), as well as a network of NAND, AND and OR gates. Tthe la
two seem to need less iteration, while the noise level increases beyonc@.2, a
is significantly different for noise level 0.5. The EXOR gate itself (whichiresju
four neurons) required much more iterations to achieve the correctubutghile

the networks of NOT, AND, OR or NAND gates, each consisting of two (NOT

or three neurons), connected in the network with total 10 (B) and 15omsu(C),
respectively, are mush faster to reach the stable state.

x10°

16 T . !
14! —8—A- xXORy /
—&—B - ((NOT x) AND y) OR ((NOT y) AND x)

12t |—*—C - ((x NAND x) AND y) OR ((y NAND y) AND x) | -

Average number of iterations

0 0.1 0.2 0.3 0.4 0.5
Node Noise

Fig. 11. Behavioral characteristics of neuromorphic model: X and & aorrespond the level of
noise and number of required iterations to reach stable state conditipactiesly; the curves A, B
and C correspond to EXOR gate, and the network of NOT, AND, OR, ahdy AND and OR,
implementing the same EXOR function, respectively.

On the other hand, even if the EXOR Hopfield gate is much slower in achieving
the stable condition, it is more robust than the network of AND, OR or NAND
gates, implementing the same function EXOR.

Example 9. Given the node noise probability ranging between 0 @iithe prob-
ability of achieving the correct output is better for the EXOR Hopfield gate itself
(Figure 12, A), and for the implementation of EXOR on a network of NANNI) A
and OR gates (C), while the probability of achieveing the correct outputhfer
network of NOT, AND and OR gates (B) is only around 0.6.

Another experimental study of performance on the Hopfield networks, imple
menting simple AND-EXOR expressions, have been performed using thetsirc
X1X2 @ X3X4. This experiment compares the probability of achieving the correct
output of the benchmark, for both logic network and Hopfield network wiilsan

Fig. 13 shows the probability of correct output with respect to the noisie-pr
ability ranging from 0 to (5. The stable state condition for the Hopfield network
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FEEEE R a S =
dw
091 3

—&—A-xXORy
0.8[| —o—B - ((NOT x) AND y) OR ((NOT y) AND x)
——C - ((x NAND x) AND y) OR ((y NAND y) AND x)

Probability of achieved correct output

0 0.1 0.2 0.3 0.4 0.5
Node Noise

Fig. 12. Behavioral characteristics of neuromorphic model: X and & aorrespond the level of
node noise and the probability of achieveing the correct output, regplgctihree curves correspond
to EXOR Hopfield gate (A), the network of NOT, AND and OR gates (B), tnachetwork of NAND,
AND and OR gates (C) to implement EXOR, respectively.

is set to 15, 10, and 5 iterations. The results show that probability of anbiev
the correct output is higher for the Hopfield network compared agaiesiotiic
network, as the noise probability increases.

Example 10. Given the noise probabilit®.2, the Hopfield network converges to
stable state condition if0iterations, thus achieving the correct output with prob-
ability 0.96, while the logic network is only able to achieve the correct output with
probability 0.81 (the difference i45%). It is also observed that by increasing the
the number of iterations (for stable state condition) frethand 15, the Hopfield
network is able to achieved probability of correct outpu99%

This shows that Hopfield implementation is capable of operating with high ac-
curacy in the noisy environment.

Example 11. Given the extremely high noise probabilityp, the Hopfield network

is capable of achieving the correct output with probabilit®e8and0.97, for stable
state conditiorlO and 15 iterations, respectively. On the other hand, the network
is only able to achieve the correct output with probabibt5. Therefore, for the
logic gate implementation, the solution breaks down to a random signal atghe h
noise probability 00.50. However, the Hopfield network implementation achieves
the correct output value with probabili§.97.

These results confirms that the behavior of Hopfield networks and its madific
tion such as Boltzmann machine demonstrates high fault tolerance in theqeesen
of critical noise in a part or in all neurons of the network.



The EXOR Gate Under Uncertainty: A Case Study 471

B A AR LA AN BB A AN I DA DA A A n ]
5 A
5

0.9r
[¢
0.81

0.7r

—8— A - Logic Network
—©—B - Hopfield Network (5)

0.6-| —%— B - Hopfield Network (10) 1
—A— B - Hopfield Network (15)

0 0.1 0.2 0.3 0.4 0.5
Node Noise

Probability of achieved correct output

Fig. 13. Behavioral characteristics of neuromorphic model: X andeé&orrespond to the level of
noise and relative frequency of reaching the correct solution, c&gply; four curves correspond to
logic network, and Hopfield network with stable conditions at 5, 10, and t&titas, respectively.

Fig. 14 shows the average number of iterations required to reach the stable
state condition.

Example 12. Given the noise probability 0.2, the Hopfield network is able to
reach stable state condition in less tha@0iterations. For the high noise proba-
bility 0.5, the network requires less thd®0iterations to achieve the probability of
obtaining the correct output greater th&m. In this particular case, the Hopfield
implementation require®600iterations to achieve the greater th&07 probabil-
ity of obtaining the correct output.

7 Markov random field model

The basic definitions for MRF models of logic gates are introduced beloadbas
on [3, 5].

7.1 Basic definitions

Let X = {X1,...,Xm} be a set of random variables. This set is calledralom field

if a variablex; takes valugi. The jointevenX =y = {yx,...,ym} is called aconfig-
uration of X, corresponding to a realization of the field. A Xeis called aMarkov
network or Markov random fieldif (a) the probability that a random variale
takes the valug; is defined,p(x;) > 0, and (b) the local characteristics Xfare
specified. The joint probability ok can be formulated in terms of the associated
cliqueof the graph structure. Clique is defined as a set of nodes where edelim
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—8— A - 15 lterations
-E-B - 10 Iterations

N
a
o
o

@ [|—©—C - 5 lterations
R=l
T
o 2000
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@ 15001
Qo
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o 1000t
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£ 500
< _.-m
_---8
& —=--g- " 5 —
0 0.1 0.2 0.3 0.4 0.5

Connection and Functional Noise

Fig. 14. Behavioral characteristics of neuromorphic model: X and & aorrespond the level of
noise and number of required iterations to reach stable state conditipectiesly; three curves
correspond to 5, 10, and 15 iterations, respectively.

the set connects to other nodes in the graph. The conditional probabiéitpade
only depends on its neighborhood. This model considers the effectsisd and
other uncertainty factors on a node by considering the conditional pildles of
energy values with respect to its clique.

7.2 Concept of energy of a logic function

In MRF model, computing the simplest logic operations in the presence of noise,
such as NOT, AND, NAND, OR, is performed using notation of energye "&n-
ergy” of a logic function is accumulated by “potentials” of cliques. This terfino
ogy comes from statistical physics.

Given a cliquec € C, aclique potential V;(x), is a non-negative real-valued
function of this particular clique. It follows from this definition that a logic étion
must be represented in a particular form, such that arithmetic operationsete
instead of logic ones.

Example 13. A complete graph with three nodegw and 5 is a clique, because
all distinct pairs of nodes,vv», v1,V3, and \, v3 are neighbors.

A sum of clique potentiald/.(x), over all possible cliquesS is called theenergy
function and is denoted as

EX) = ECVC(X) (5)

The energy function is a quantitative measure of the global quality of the solu
tion; the correct solution corresponds to the maximum of energy functiarie N
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that in this paper, we consider logic primitivééx, X2), which are represented by
complete graph (a single clique model); that is, endfgy) is equal to a clique
potential:E(X) = Ve=1(X) =V (X).

Gibbs joint probability distributionor Gibbs random fieldis defined in the

form
p(x =)= 7 e 57 ©

whereZ is ascalingfactor (to normalize the total probability to 1) akd is the
temperature factor (in physics view, is “temperature”, and is Boltzmann con-
stant).

Given a joint probability distributiorp(x, ..., %), the marginal distribution
is defined as follows:

P, %)= P(Xa,-... %), ST

Marginal distribution can be viewed as a projection of the joint distribution on a
smaller set of variables.

Hence, Gibbs random fields is defined by a joint probability. On the cgntrar
the MRF is based on a conditional probability. The equivalence betwedviRtre
and the Gibbs random field can be established by the following theorem.

Hammersley-Clifford theorem states that a set of random variakles
{X1,...,%s} is @ MRF, if and only ifX is Gibbs distributed. That is, the global
probabilistic characteristics can be computed using local interactions wiaifac
tion. Specifically, the joint probability of an MRF can be constructed fromdbal
conditional probabilities.

Logic function is incorporated into a Markov network usingaaithmeticforms
[24, 23].

7.3 Algorithm for synthesis of MRF models of logic gates

Given the compatibility truth vectdd of a Boolean functiorf of n variables, the
vector of coefficientA = (aj,ap,...,a,) is calculated using the arithmetic trans-
form [23]:

A = Ax-U (7)

where matrixA,» is formed as follows

Axn = éAZJa Ag = { —]i (1)}
=1
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Arithmetic formof r-input, X1, X2, ..., %, logic gatef, given by spectral coeffi-
cients,aj,ay, ..., an is defined by the polynomial:

2-1 : .
f = ai.(x'll...xlr)’ (8)
2, f
wherei; is the j-th bit 1,2,...,r, in the binary representation of the index
igip...ir; X =1ifi; =0, andx} =x; if ij = 1.

Example 14. Arithmetic representation of a 3-input logic gate-n3) is defined
by Equation (8) as follows: # ag+ aiXs + axx + az(XeX3) + auxq + as(X1X3) +
as(X1X2) + a7 (X1X2X3).

Consider a 2-input logic gate of a functian The algorithm for designing the
MRF model of this gate is as follows.

The MRF model design for a 2-input logic gate

Input data: (a) Graph nodel {vi,vo,v3} (conpl ete graph) and
(b) function L.

Step 1: Formthe conpatibility truth table.

Step 2: Cal cul ate the energy function, E(v), using
Fourier-like transform in particular, arithnetic
transform (7).

Step 3: Specify G bbs distribution (6) by substituting
the energy function, E(v), into it.

Step 4: Cal cul ate the margi nal probability distribution
of the output node.

Output: An MRF nodel of L gate.

Designing the MRF model for the AND gate is illustrated by the following
example (Fig. 15).

Table 3 provides design results for two-input OR and EXOR gate. It i&sho
in Table 3, that the valid input/output states have higher clique energies ttzdiad in
states to maximize the probability of a valid energy state at the nédegof valid
states is 1, and for any invalid state, this value is 0. The logic margin in this case
is the difference between the probabilities of occurrence of a logic lovadadic
high, which, if high, leads to a higher probability of correct computation.

Further applying the belief propagation algorithm, the energy distributiots an
entropy at different nodes of the network can be calculated [24].

These MRF models show that maximization of logic state probability can be
viewed as a process of energy maximization. Note that energy minimization pro-
cess can be achieved by sign manipulation in compatibility truth table and Gibbs
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Design example:
MRF model for logic 2-input AND gate

(a) Complete noncausal graph, {vi,v2,v3}
(b) Logic function of gate L

Design an MRF model of L gate.
Solution:
Step 1: Form the compatibility truth table:

vi Vo v3 U Comment
0 O 0 1

0 O 1 0 | Undesirabl e
0 1 0 1

0 1 1 0 | Undesirabl e
1 0 0 1

1 0 1 0 | Undesirabl e
1 1 0 0 | Undesirabl e
1 1 1 1

Step 2: Calculate the energy function, U (v):
(a) Calculate a clique potential using arithmetic transform (7):

1
-1
-1

1
-1

1

1
-1

NP OOOORER

P ORFROoOFrOFrOo

A=Ay U=

| |
rPFPOOFPFRLROO
P Ooolrooo

|
PRPPPOOOO
P ORFPr O OOOoOOo
Ll NeNolloNoNeNe)
P oooocoooo
POORFRPRORFR,OPR

|

(b) Convert the vector of coefficients A into algebraic form using equation (8):
E(v) =1—v3—ViVo+ 2v1Vov3
Step 3: Specify Gibbs distribution:

1 1—v3—ViVo + 2v1Vov3
V1,V2,V3) = - eX
P(V1,V2,V3) = > p( T

Step 4: (a) Calculate marginal distribution by summing over all possible states of v;:

1 1—v3—ViVo+ 2ViVovs
P(v2,V3) = -~ Z; 1exp( T )

1V]_E,

o 1 1—v3 1—Vv3—Vo+2wv3
“alol) e )|

Fig. 15. MRF-based model for AND gate.
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(b) Calculate marginal distribution of v3 by summing over all possible states of vs:

1 1—v3 1—-v3—Vo+2wv3
p(v3) == {exp( ) +exp<7>]
Z ; 1 kT kT

2 vy€n,

- 1 1—v3 V3
4 () o)

e
3

I
IS

o
w
T

Probability, p(Va)
I
N

0.1r

0 0.2 0.4 0.6 0.8 1
Output, V3

Fig. 15. (Continue) MRF-based model for AND gate.

distribution. Therefore, a bistable storage element with feedback is aom@jaie
hardware architecture for binary logic [19, 31].

8 Conclusion and discussion

An extended vision of probabilistic network design, including probabilistidAN
EXOR networks, is introduced. This interdisciplinary view includes the fidld o
coding for error correction based on statistical techniques, and belebrks for
decision making. In these fields, data processing is based on probabitidtic a
statistic techniques, using both discrete and analog technology for implementatio
of computing networks over the libraries of probabilistic logic gates.

There exists a diversity in terminology related to probabilistic computing. For
example, the term “probabilistic EXOR gate” addresses the following meanings

(a) traditional EXOR gate assuming random input and output signals (@ve pr
posed to distinguish this meaning as “behavioral model”), and

(b) computing device which operates with probabilities (real numbers) with re
spect to EXOR switching function (in our systematization, it is a “ belief
model”).



Table 3. Components of the MRF model of binary gates.

Gate Graph model | Compatibility Clique potential Probabilistic
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Thus, the main goal of our study was to systematize the known approaches
to probabilistic logic gate design. We compared six models of probabilistic logic
gates: behavioral, belief network, decision diagram, stochastic, netpbiopand
Markov random field. In traditional logic network design, the behaviorehddm-
inates. However, there are other forms of probabilistic description of fagie be-
havior in the presence of noise, for example [6]. These models arevedyatiew,
and have been introduced in the context of computational models for deegl
submicron and nano technologies.

Different design taxonomies are required to construct logic networikgj lis
braries of probabilistic gates. Theoretical platform of these technigueslisonal
logic design, extended by probabilistic and statistical methods.

We mentioned only two hardware-centered belief networks: Bayesiamrietw
for security applications, such as real time decision-support assisgfjtsahd
stochastic decoder for turbo code [1, 2, 12]. The requirements to tFapance,
power consumption, and size of these devices, especially for mobile sy&telins
phones, iPODs, hand players, personal computers, etc.) are \ety ldbwever,
these are low-precision computations which can be considered as agkeyeant
for analog implementation of these devices. Note that new technologiesasuch
molecular electronics, are based on inherently analog phenomena. itomdd
random physical and chemical phenomena explain why probabilistic cotigputa
is a natural way in the era of nano technology [10, 11].

One of the feasible candidates for future technologies is neuromorptic ne
works [13]. The neuromorphic model, based on Hopfield network with Batm
updating rule [27], is robust to noise, as shown in this paper via expetairstndy.

The latter confirm that the behavior of Hopfield networks and its modificatin,
Boltzmann machine, demonstrates high fault tolerance in the presence dlcritic
noise in a part or in all nodes and interconnects of the network.

However, multivalued extension of Hopfield-based logic networks is eny-
plicated. In contrast, the MRF model can be easy generalized for multil/gie.
Example is given in Table 4. We used 0-polarity arithmetic transforms for the 3-
valued NOT gate [23]. Extension for an arbitrary library of multivaluetegas
straightforward.

Other models of fault-tolerant logic gates exist, for exampbdymorphicgates
for sensor-based systems [26]. Polymorphic gate is a multi-functional degice
that performs logic functiorfj, j = 1,2,...,m, if its control input is activated by
valuel; of the signal. In particular, 2-function polymorphic gate is defined as fol-
lows:

f1, if 11 control value;

2-function gate :{ fo, if 1, control value.
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Table 4. Markov random field model for ternamp & 3) NOT gate.

Ternary gate Graph Energy function

—o- @Vl_@/z u=0o101010(¢

A=[0-22-222-122-12¢"
E(v) =1/4(—2v2+ 23 — 2v1 + 22V
— 1231 + 2§ — 12V, + 6V3v3)

N~ O X
O~ N X

Table 4. (Continue) Markov random field model for ternary=€ 3) NOT gate.

Probabilistic behavior

—kT=0.1
—o—kT=0.25
---kT=0.5
——kT=1

Probability, p(VZ)

Polymorphic Reed-Muller networks are designed using 3-functionahparty
phic AND/OR/EXOR gates (Fig. 16). Such gates perform the two-inputs AND
(I =0), OR ( = 1), and EXOR [ = 2) function with probabilitiesp(l = 0),

p(l = 1), andp(l = 1), respectively. The probabilities of inputs (“1"s) of all gates
are the same, that ip(x;) andp(xz). For the best of our knowledge, behavior of
polymorphic gates under these conditions has not been studied yet.

Finally, there are equivalents between three basic probabilistic modeld whic
can be established using Gibbs distribution or Gibbs sampling method [18]:

Bel i ef - Hopfi el d - VRF
nodel nodel nmodel

G bbs sanpling G bbs sanpling G bbs sanpling

It follows from this similarity that we can expect similar numerical results while
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p(l)
control (Ix )’—ﬂ
X P(X1) |AND @f

p(X2) OR
X2 EXOR

X p(x1) fao X pg:l; for Xy pgl; foron

Xo M Xo PLX2 Xo PiX2
Fig. 16. Two-input 3-functional polymorphic AND/OR/EXOR gate andiegient logic AND ( =
0), OR ( = 1), and EXOR [ = 2) gates.

using various models. However, the techniques for achieving thesksrethie
algorithms, behavioral characteristics, and hardware implementation e dif
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