
FACTA UNIVERSITATIS (NIŠ)

SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 451-482

The EXOR Gate Under Uncertainty: A Case Study

Svetlana N. Yanushkevich, An Hong Tran, Golam Tangim,
Vladimir P. Shmerko, Elena N. Zaitseva and Vitaly Levashenko

Abstract: Probabilistic AND/EXOR networks have been defined, in the past, as a
class of Reed-Muller circuits, which operate on random signals. In contemporary
logic network design, it is classified asbehavioral notation of probabilistic logic
gates and networks. In this paper, we introduce additional notations of probabilis-
tic AND/EXOR networks:belief propagation, stochastic, decision diagram, neuro-
morphicmodels, andMarkov random fieldmodel. Probabilistic logic networks, and,
in particular, probabilistic AND/EXOR networks, known as turbo-decoders (used in
cell phones and iPhone) are in demand in the coding theory. Another example is in-
telligent decision support in banking and security applications. We argue that there
are two types of probabilistic networks: traditional logicnetworks assuming random
signals, andbelief propagationnetworks. We propose the taxonomy for this design,
and provide the results of experimental study. In addition,we show that in forth-
coming technologies, in particular, molecular electronics, probabilistic computing is
the platform for developing the devices and systems for low-power low-precise data
processing.

Keywords: AND-EXOR networks; probabilistic computation; belief propagation
network; decision diagram; neuromorphic network; Markov random field.

1 Introduction

The elementary Boolean function EXOR (Fig. 1) is notable in logic design because
it is a basic operation of Reed-Muller techniques (an arbitrary Boolean function can

Manuscript received July 3, 2011. An earlier version of this paper was presented at the Reed
Muller 2011 Workshop, May 25-26, 2011, Gustavelund Conference Centre, Tuusula, Finland.

S. N. Yanushkevich, A. H. Tran, G. Tangim, and V. P. Shmerko are with the De-
partment of Electrical and Computer Engineering, University of Calgary, Canada, (e-mail:
syanshk@ucalgary.ca). E. N. Zaitseva and V. Levashenko are with the Department of In-
formatics, University of Zilina, Slovakia, (e-mail:Elena.Zaitseva@fri.uniza.sk).

Digital Object Identifier: 10.2298/FUEE1103451Y

451

452 S. N. Yanushkevich et al.:

be implemented using EXOR and AND operations, and constant “1”) [29]. It is also
the most often operation used in testing, coding techniques, and encryption[25].

Various fault-tolerant techniques for Reed-Muller have been proposed recently,
in particular, [21]. However they cannot solve the problems, related to ran-
dom intrinsic noise, which is observed in ultra deep submicron and predictable
nanoscale devices. Moreover, there are various physical and chemical phenomena
in nanospace, which can be directly encoded as EXOR function [22]. A three-
dimensional implementation of EXOR functions has been proposed in [23].

Two-input EXOR gate (Nonequivalence)

Truth table Denotation Implementation
x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 0

x1

x2

f

 x1

x2 f

Two-input XNOR gate (Equivalence)

Truth table Denotation Implementation

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 1

x1
x2

f

 x1

x2 f

Fig. 1. Specification of two input EXOR gatef = x1⊕ x2, and XNOR gatef = x1⊕x2, given
deterministic inputs: the truth table, graphical denotation, and AND/OR implementation.

The deterministic model of EXOR gate (Fig. 1) operates on noise-free signals.
Focus of this paper is the behavior of EXOR function in probabilistic environment,
which is defined by replacing deterministic signals whith random signals. Specif-
ically, when noise is allowed, input signals are applied to EXOR gate with some
level of probability. Probabilistic models assume, that correct output signals are
calculated with some level of probability. Behavior of EXOR gate in probabilistic
environment is completely described by probability distribution functions. Input
probabilities are derived from these functions in the form of probabilistic truth ta-
ble (Fig. 2). For simplification, it is also often assumed that the input signals are
uncorrelated and independent. This problem in more general meaning is known as
probabilistic computation.

There are various fields, where probabilistic computing is the key technique.
For example, in communication, the best error correcting technique, knownas turbo
coding, is based on probabilistic data processing [1]. The devices and systems,

The EXOR Gate Under Uncertainty: A Case Study 453

Probabilistic truth table Probabilistic environment
p(x1) p(x2) p(f)
p(0) p(0) p(0)
p(0) p(1) p(1)
p(1) p(0) p(1)
p(1) p(1) p(0)

p(x1)
p(x2)

p(f)

Correlation
Probability

distributions

Fig. 2. Specification of two input EXOR gate in probabilistic environment: probabilistic truth table,
probability distributions (inputs and output signals), and correlation between input signals.

known asbelief networks, are widely used in decision-making, medical diagnosis,
image and voice processing, robotics, and control systems [15]. In forthcoming
technologies, in particular, molecular electronics, probabilistic computing repre-
sent a platform for developing the devices and systems for stochastic dataprocess-
ing [11]. It should be noted that:

1. Multiple meaning of the term “probabilistic computing” have been applied
in various area-specific approaches [6, 14, 16, 17, 28].

2. Different methodologies are used in designing the devices and systems for
probabilistic computing [1, 4, 10, 12].

This paper contributes in probabilistic computing paradigm as follows: (a) we
systematize various libraries of probabilistic gates, which can be used in design and
modeling of both logic and belief networks, and (b) introduce experimental results
for elementary probabilistic gates. However, there are some novelties in ourpaper,
such as rules for combining neuromorphic models of logic gates and extension of
Markov model for multivalued logic gates.

Since our study relates to various fields and design methodologies, we introduce
basic terminology and definitions.

Terminology

Probabilistic logic is a classical approach to reasoning under uncer-
tainty.
Probabilistic gateis defined as logic gate, which operates on (a) random
binary signals or (b) probabilities of these signals [10, 12, 20].
Belief propagationnetwork is defined as a directed acyclic graph derived
from causal graphs [15].
Stochastic computingis a method to design low-precision digital devices;
this method is based on encoding signals by Bernoulli sequences and
their statistical properties [4, 8, 14].

In this paper, we introduce the following models of probabilistic logic gates,
while focusing on AND and EXOR gates:

454 S. N. Yanushkevich et al.:

Model 1:Behavioral model of a logic gate, assuming random input signals.
Model 2:Belief propagation model, in which input and outputs signals are prob-
abilities (real numbers) of the corresponding binary signals; it is represented by
belief propagation networks.
Model 3: Stochastic model, in which probabilities are represented by binary
stochastic pulse streams; the information in a pulse stream is contained in the forms
of primary statistics.
Model 4:Decision diagrammodel using noise injection techniques.
Model 5:Neuromorphic model, which is a typical Hopfield associative memory,
utilizing the Boltzmann updating algorithm, and
Model 6: Markov random field model, which is similar to a Bayesian network,
while it can describe cyclic dependencies, which Bayesian network cannot.

The common feature of these models is that they utilize probabilistic measures
of uncertainty. However, they are different with respect to input and output data,
algorithms, implementation, and applications, in particular:
(a) Stochastic model is useful for operations in presence of noise, such as addition,
subtraction, multiplication, and division; that is, this model can be used in other
probabilistic models as operational unit.
(b) Bayesian models require causal representations of data; in contrast, Markov
random field model is based on noncausal data description;
(c) Hopfield model (implemented as neural network of a particular configuration)
can be converted to Markov random field (implemented as operational unit),and
vice versa.

2 Behavioral model

Behavioral model is based on probabilistic logic, which is a classical approach to
reasoning under uncertainty, as devised by George Boole. Behavioral AND/EXOR
model under assumption of random signals is defined as follows:

AND/EXOR expression
︸ ︷︷ ︸

Phenomenon

Design
−→ Logic network

︸ ︷︷ ︸

Behavioral f orm

In this design paradigm, traditional taxonomy of AND/EXOR network design
is extended by probabilistic descriptions of logic gates in behavioral form.

Theorem 1. Given a2-input logic gate f(x1,x2), its behavioral model is derived by
(a) transforming logic function f(x1,x2) into an arithmetic form, and (b) replacing
signals x1 and x2 with their probabilities p1 and p2, respectively, assuming that x1

and x2 are independent.

The EXOR Gate Under Uncertainty: A Case Study 455

Note that in behavioral model,p1 andp2 are the probabilities of signalsx1 and
x2 being logic “1”, respectively. Proof of this theorem follows from the properties
of probabilities for independent random events and the properties of arithmetic
forms of Boolean functions.

Example 1. Let the inputs x1 and x2 of the 2-input EXOR gate be mutually inde-
pendent with probabilities of being “1” p1 and p2, respectively. The behavioral
model represents the probability of the output being logic “1” and is derived from
the truth table of EXOR function:

p = (1− p1)p2
︸ ︷︷ ︸

For x1 = 0,x2 = 1

+ p1(1− p2)
︸ ︷︷ ︸

For x1 = 1,x2 = 0

= p1 + p2−2p1p2.

or by transforming the EXOR function into the arithmetic form, x1⊕ x2 = x1 +
x2 + 2x1x2 and replacing xi with pi , i = 1,2, that is, p1 + p2−2p1p2. Supposing
p1 = 0.8, p2 = 0.9, the logic “1” at the output is produced with probability p=
0.8+0.9−2×0.8·0.9 = 0.26.

3 Belief propagation model

In the belief propagation model, any phenomenon must first be described incausal
form, and then, using probabilistic relationships, transformed into a belief propa-
gation network:

Phenomenon −→
Causal
model

︸ ︷︷ ︸

Propositions

Design
−→

Belief
network

︸ ︷︷ ︸

Computing

Causal modeling attempts to resolve question about possible causes so as to
provide explanation of phenomena (effects) as the result of previous phenomena
(causes). Causal knowledge is modeled using the causal networks, in which the
nodes represent propositions (or variables), the arcs signify directdependencies
between the linked propositions, and the strengths of these dependenciesare quan-
tified by conditional probabilities. A Bayesian network is a type of belief network
that captures the way the propositions relate to each other probabilistically.

The simplest form of the belief propagation model is as follows. Ifk events
B1,B2, . . . ,Bk constitute a partition of the sample spaceS, such thatP(Bi) 6= 0 for
i = 1,2, . . . ,k, then, for any eventsBr andA of Ssuch thatP(A) 6= 0,

456 S. N. Yanushkevich et al.:

P(Br |A)
︸ ︷︷ ︸

Posterior

= P(A|Br)
︸ ︷︷ ︸

Likelihood

×

Prior
︷ ︸︸ ︷

P(Br)

P(A)
︸︷︷︸

Evidence

wherer = 1,2, . . .k; P(Br |A) is a revisedor aposteriorprobability;P(A|Br) is the
likelihood of Br with respect toA; P(A) is theevidence factorand can be viewed
as merely a scale factor, that guarantees that the posterior probabilities sum to one,
as all good probabilities must.

This belief propagation form, or Bayesian principle, advises on how to update
probabilities, once such a conditional probability structure has been adapted, given
appropriate prior probabilities.

Let the nodes of a graph represent random variablesX = {x1, . . . ,xm}, and the
links between the nodes represent direct causal dependencies. ABayesian belief
networksis based on afactoredrepresentation of joint probability distribution.

3.1 Probabilistic logic gates for belief propagation model

Belief propagation model is implemented using probabilistic logic gates, which
operate on probabilities (real numbers). The general design taxonomy of these
gates is as follows:

Probabilistic logic gate for belief propagation model

A two-input probabilistic logic gate with random inputs, x1 ∈ {0,1}, x2 ∈
{0,1}, and random output, y∈ {0,1}, is defined as a computational unit,
that performs computations as follows:

p(y) = α ∑
x1

∑
x2

p(x1)p(x2) f (x1,x2,y) (1)

where p(x1), p(x2), and p(y) are the probability distributions of binary
inputs x1, x2, and output y∈ {0,1}, respectively;
f (x1,x2,y) ∈ {0,1} is the binary function called compatibility truth table,
that indicates the truth of logic function y, i.e. f (x1,x2,y) = 1 if y is true,
and f (x1,x2,y) = 0 otherwise; and
α ∈ {0,1} is an appropriate scale factor.

Equation 1 shows how the probability distribution of the output random variable
Y is derived from probability distributions of input random variablesX1 andX2.
Using the parametrization property of the functionf (x1,x2,y) ∈ {0,1}, a library of
probabilistic logic gates is defined.

The EXOR Gate Under Uncertainty: A Case Study 457

Example 2. Using Equation (1), probabilisticEXOR gate is defined as follows:
{

p(0) = ∑x1 ∑x2
p(x1)p(x2) f (x1,x2,y = 0)

p(1) = ∑x1 ∑x2
p(x1)p(x2) f (x1,x2,y = 1)

To calculate p(0) and p(1), we sum over all possible (binary) values of x and y. The
constraint within f(x1,x2,y) serves to include some probability terms and exclude
others. Function f(x1,x2,y) is calculated using the truth table ofEXOR gate as
follows:

Compatibility Graphical denotation

truth table of probabilistic EXOR gate
x1 x2 y f
0 0 0 TRUE 1
0 0 1 0
0 1 0 0
0 1 1 TRUE 1
1 0 0 0
1 0 1 TRUE 1
1 1 0 TRUE 1
1 1 1 0

 py(0)
py(1)

x1
p (0)
 x1
p (1)

x2
p (0)
 x2
p (1)

P

The probabilisticEXOR gate is given

[
py(0)
py(1)

]

=

[
px1(0)px2(0)+ px1(1)px2(1)
px1(0)px2(1)+ px1(1)px2(0)

]

(2)

Example 3. The probabilistic model ofAND gate is a vector form
[

py(0)
py(1)

]

=

[
px1(0)px2(0)+ px1(0)px2(1)+ px1(1)px2(0)

px1(1)px2(1)

]

(3)

Implementation of Reed-Muller polynomialy = x1x2⊕ x3⊕ x4 using both be-
havioral and reasoning models is given in Fig. 3.

3.2 Logarithm operational domain for probabilistic logic gates

Due to the high hardware complexity of sum-of-product form of probabilistic gates,
operations can be implemented in logarithm domain where probabilities are con-
sidered aslog-likelihood ratio[1, 12].

Let X be a binary random variable, and 0- and 1-value of this variable can be
observed with probabilityp(x = 0) andp(x = 1), respectively. The log-likelihood
ratio ofX is as follows:

L[x] = ln
p(x = 1)

p(x = 0)
(4)

458 S. N. Yanushkevich et al.:

Table 1. The sum-of-product and log-likelihood forms of AND and EXOR probabilistic logic gate
models.

S u m - o f - p r o d u c t m o d e l

Probabilistic AND Probabilistic EXOR

py(0)
py(1)

x1
p (0)
 x1
p (1)

x2
p (0)
 x2
p (1)

P
 py(0)

py(1)

x1
p (0)
 x1
p (1)

x2
p (0)
 x2
p (1)

P

x1 x2 y f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

x1 x2 y f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Probabilistic model: see equation (2) Probabilistic model: see equation (3

L o g - l i k e l i h o o d m o d e l

Probabilistic AND Probabilistic EXOR

 L[x1]
P L[x2]

L[y]

L[x1]
L[x2]

L[y]
P

L[y] = L[x1x2]

= MAX (|L[x1]|, |L[x2]|)

L[y] = L[x1⊕x2]

= SGN(L[x1])SGN(L[x2])

×MIN (|L[x1]|, |L[x2]|)

The probabilityp(x = 0) can be recovered from Equation 4:

p(x = 0) =
eL[x]

1+eL[x]

Operations in the logarithm domain are specified by properties of log-likelihood
ratio model of probabilistic logic gate (Equation 4), in particular, multiplication of
real numbers is translating into additions.

The AND and EXOR probabilistic logic gates based on log-likelihood ratio
model (Equation 4) are used to design belief propagation networks.

Example 4. The design goal of decoder of turbo error correcting codes is to prop-
agate the belief efficiently. Specifically, the sign and magnitude of|L[x]| (belief) are
estimated, and then improving these estimates using the local redundancy of the

The EXOR Gate Under Uncertainty: A Case Study 459

Design example: Reed-Muller Design example: Reed-Muller
network design using network design using

behavioral model reasoning model
Given:

(a) a switching function y= x1x2⊕x3⊕x4,
(b) the binary input signals x1,x2,x3, and

x4 are independent,
(c) the probabilities of 1’s in the input

streams,
p(x1) = p(x2) = p(x3) = p(x4) = 0.8

Design a probabilistic logic network us-
ing behavioral model, and calculate p(y).

Given:

(a) a switching function y = x1x2⊕x3⊕x4,
(b) the input binary signals x1,x2,x3, and x4

are independent,
(c) the probabilities of the input signals,

px1(0) = · · ·= px4(0) = 0.2 and px1(1) =
· · ·= px4(1) = 0.8.

Design a probabilistic logic network to imple-
ment function y using reasoning model, and
calculate p(y).

Solution:
Step 1: Design Type I probabilistic logic
network:

x3
x4

y2

x1
x2

y1

y3

Random binary inputs

p(x1)

p(x2)

p(x3)

p(x4)

p(y1)
p(y2)

p(y3)

Random binary output

Solution: Step 1: Design Type II probabilistic
logic network:

Input probabilities

Output probability

P

P

y3
p (0)

y3

p (1)

y2
p (0)
 p (1)
 y2

y1
p (0)
 p (1)
 y1

x1
p (0)
 x1
p (1)

x2

p (0)

x2
p (1)

x3

p (0)
 x3
p (1)

x4

p (0)

x4

p (1)

P

Step 2: Using behavioral models

p(y1) =p(x1)p(x2) = 0.8×0.8 = 0.64

p(y2) =p(x3)+ p(x4)−2p(x3)p(x4)

=0.8+0.8−2×0.8×0.8 = 0.32

p(y3) =p(y1)+ p(y2)−2p(y1)p(y2)

=0.64+0.32−2×0.64×0.32

= 0.5504

Step 2: Using Equations 2 and 3
[

py1(0)
py1(1)

]

=

[0.2·0.2+0.2·0.8+0.8·0.2 = 0.36

0.8×0.8 = 0.64

]

[
py2(0)
py2(1)

]

=

[0.2×0.2+0.8×0.8 = 0.68

0.2×0.8+0.8×0.2 = 0.32

]

[
py3(0)
py3(1)

]

=

[0.36·0.68+0.64·0.32= 0.4496

0.36·0.32+0.64·0.68= 0.5504

]

Fig. 3. Reed-Muller probabilistic network design using behavioral (left) and reasoning (right) models.

code. The result of this belief propagation can be written as iterative process:

Lt+1[x] = Lt [x]+ p(x), t = 1,2, . . . ,m,

where p(x) is the probabilistic quantity, orextrinsicinformation about x.

In Table 1, the log-likelihood ratio model is given for two-input AND and
EXOR gates assuming that binary variablesx1 andx2 are statistically independent.

460 S. N. Yanushkevich et al.:

Figure 4 provides a graphical representation of the log-likelihood ratio model of
probabilistic EXOR logic gate and approximation of this model. We can observe
that the EXOR model has a lot of deviation from the original model and its approx-
imation.

Probabilistic EXOR gate Approximation

Fig. 4. Graphical representation of log-likelihood ratio model of probabilistic logic gates.

3.3 Belief trees and networks

Belief trees are predecessors of the belief networks, and can be usedto construct
belief networks, when complete data is not available. In the below example (Fig.
5), we consider a belief network that investigates how to include possible errors of
distance measurements of temperature in determining the probability of flu in the
presence of temperature [30].

Let high temperatureT in a pre-screened individual be detected. The prior
statistics include the following parameters:
(a) The prior probability of a fluF is P(F) = 0.05;
(b)] The conditional probability of a flu not causing high temperature isPT|F = 0.2;
(c) The probability of a flu causing high temperature isPT|F = 0.9.
The temperatureT is evaluated by means of an infrared image with the following
errors (a) 5% FRR, and 15% FAR.

Computing using the Bayesian belief network is based on the following com-
putational aspects:
Local computing is the key principle of belief network.
Updating beliefs is the main principle in scheduling of computational tasks.
Decision profile is a specification of a computing task.
Data transmissionconsists of transmission of the probability values (from local
memories or computed) and additional messages for activation of nodes accord-
ingly to a decision profile.

The EXOR Gate Under Uncertainty: A Case Study 461

Reasoning with Bayesian networks is done by updating beliefs, that is, comput-
ing the posterior probability distributions, given new information, calledevidence.
The basic idea is that new evidence has to be propagated to the other parts of the
network.

Fundamental expansion for belief networks

A Bayesian belief networks is a graphical representation of a chain rule;
that is, a factored representation of joint probability distribution in the form

P(x1,x2, . . . ,xn) =

=

Factored form
︷ ︸︸ ︷

P(x1)×P(x2|x1)× . . . ,P(xn|x1, . . . ,xn−1)

= ∏
i

P(xi |x1,x2, . . . ,xi−1)

︸ ︷︷ ︸

Chain rule

⇔
m

∏
i=1

P(xi |Par(Xi)

︸ ︷︷ ︸

Graphical representation

where Par(Xi) denotes a set of parent nodes of the random variable xi . The
nodes outside Par(Xi) are conditionally independent of xi .

Prior

PT |F =0.8 PT |F =0.2 PT |F =0.1 PT |F =0.9

PF =0.05 PF =0.95

000 001 010 011

PM |T PM |T =0.15
PM |T

PM |T =0.95
M M

PM |T
PM |T =0.15

PM |T
PM |T =0.95

M M

T T

100 101 110 111

Posterior (belief) probabilities

High
temperature

Measure

Layer 1

Layer 2

Layer 3

F

Infrared
camera

Image
processing

Fig. 5. Probabilistic network as belief tree.

4 Stochastic model

Stochastic model is a typical computational paradigm, which utilizes statistical av-
eraging in data representation and manipulation, such as addition, subtraction, mul-
tiplication, and division. Because of data averaging, these operations are highly
immune to noise.

462 S. N. Yanushkevich et al.:

A binary stochastic pulse stream is defined as a sequence of binary digits,or
bits. The information in a pulse stream is contained in the primary statistics of
the bit stream, or the probability of any given bit in the stream being a logic 1.
Hence, the output of a gate is generally in the form of a nonstationary Bernoulli
sequence (random process of repeated trials with two possible outcomes;this pro-
cess is characterized by the binomial distribution) [8, 4, 10]. Such a sequence can
be considered in probabilistic terms as adeterministic signal with superimposed
noise. Suppose that the statistical characteristics of these streams are known, and
can be measured. These streams carry a signal by statistical characteristics (a single
event carries very little information, which is not enough for decision making).

Example 5. Let the binary variables x1 and x2 correspond to the stochastic pulse
signals with the means E(x1) and E(x2). Suppose that these pulse streams are
independent. It is possible to find some logic operations that correspondto the sum
E(x1)+E(x2) and the product E(x1)×E(x2).

If the input stochastic streams are independent (technically, this means that
independent generators of random pulses are used with some additionaltools for
decorrelation of signals), and are represented byE(x1) andE(x2), the output of
gate is described by the equationE(f) = E(x1)×E(x2). The values are normalized
into the range[0,1].

Pulse stream

E(x1)

Pulse stream
E(x2)

E(f)

Pulse stream

Fig. 6. Stochastic pulse stream model of computing.

The stochastic computer introduces its own errors in the form ofrandom vari-
ance. If we observe a sequence ofN logic levels andk of them are 1, then the
estimated probability is ˆp = k/N. The sampling distribution of the value ofk is bi-
nomial, and, hence, the standard deviation of the estimated probability ˆp from the
true probabilityp is σ(p̂) = [p(1− p)/N]1/2. Therefore, the accuracy in estimation
of the generated probability increases as the square root of the length, or time, of
computation.

Let p1 = E(x1) andp2 = E(x2), then:
(a) The AND gatef = x1x2 is modeled byE(f) = p1p2, if input pulse streams are

The EXOR Gate Under Uncertainty: A Case Study 463

independent, and byE(f) = p1p2 +Kx1,x2 otherwise;
(d) The EXOR gatef = x1⊕x2 is modeled byE(f) = p1+ p2−2p1p2, if the input
pulse streams are independent, and byE(f) = p1+ p2−2p1p2−2Kx1,x2 otherwise.
(e) The XNOR gatef = x1⊕x2 is modeled byE(f) = 1− p1− p2 +2p1p2 if the
input pulse streams are independent. Here,Kx1,x2 is correlation function.

The precision of computing depends on the size of the stochastic sequence.
This effect can be evaluated by standard statistical techniques. LetX be a binomial
random variable; then the limiting form of the distribution is the normal distribu-
tion. Given a precision of computationε, the result of computing must satisfy the
equation|k/n− p(x)| ≤ ε. The confidence interval is

−ε
√

n
p(x)q(x)

≤
k−np(x)

√

np(x)q(x)
≤ ε

√
n

p(x)q(x)

The size of Bernoulli stream isn = (zα
2

pq/ε)2. In practice, the sizen varies
from hundreds to thousands, depending on the required precision of computations.

The most reasonable stochastic pulse encoding models areone-bit addersand
one-bit multipliers. A simple rule for describing the model is used, such that it
replaces the Boolean variablexi in an arithmetic equation by the meanE[xi] of the
stochastic sequence [8, 14, 17, 28].

5 Decision diagram model

A decision diagram is a graphical data structure in the form of a rooted directed
acyclic graph, consisting of the root node, a set of non-terminal nodesand a set of
terminal (constant) nodes connected via directed edges (links). The topology of a
decision diagram is characterized by the parameters such as size, numberof non-
terminal nodes, number of links, and shape. The computing paradigm underlying
decision diagrams is based on the hierarchical decomposition of a logic function
(each level corresponds to a single variable). Each path from the rootnode to a
terminal node represents a term in the algebraic description of the function.

An arbitrary logic function can be implemented using decision diagrams, in
which nodes are multiplexers, or switches. The library of multiplexer-basedimple-
mentations is given in Fig. 7. This model is a good candidate for implementation
using molecular switches [11].

5.1 Experiments

The goal of this experiment is to model some unreliable gates with the introduction
of noise of various scales and observe the deviation of the output value from the

464 S. N. Yanushkevich et al.:

AND gate EXOR gate

x1

x2

f
⇒

f

0 1
s(x1)

f

0 I2(x2)

x1

x2

f

⇒

 f

0 1
s(x1)

f

I1(x2)

f = 0×s∨ I2×s= x1x2 f = I1×s∨ I1×s= x1⊕x2

x1

1

0

x2

f

0 1

0 1
x1

1

f

0 1

x2
0 1 0 1

x2

0 0

Fig. 7. Switch based AND/EXOR library.

actual one. We consider line noise (any line connecting nodes of the diagram)
and node noise (any node within diagram) models. The noise (r) is either additive
(modeled via OR gate) or multiplicative (modeled via AND gate). The latter noise
model is shown in the form of AND gates, added to the lines and to the selected
input of multiplexers in Fig. 8a.

1

0 1

f

0 1
x1

r

x2

0

r r
r

1

x1

x2

r

0 1

f

0 1

0

(a) (b)

Fig. 8. Complete (a) and one-line (b) noise-injected AND gate model.

Fig. 9 shows the results of simulation of the output probability (axis Z) for
AND (a) and EXOR (b) while varying multiplicative noise on one line only. The
line between terminal node 1 and the lower MUX was chosen for for AND gate
model, and the line between terminal node 1 and the lower right MUX for EXOR
gate model, whilep(x1 = 1) = 1 (inputx1 is constant 1), and the probabilitiesp(x2)
andp(r) vary between 0 and 1 on axes X and Y.

The EXOR Gate Under Uncertainty: A Case Study 465

(a) (b)

Fig. 9. Graphical representation of the probabilistic AND (a) and EXOR (b) model based on noise-
injected decision diagram.

6 Neuromorphic model

Neuromorphic networks are hardware implementation of artificial neural networks,
they resemble cooperative phenomena, and can process probabilistic, noisy, or in-
consistent information [13].

The Hopfield computing paradigm is based on the concept ofenergy minimiza-
tion in a stochastic system [9]. Control over the type of logic function is exercised
by the thresholdθ and the weightswi ∈ {1,−1} in the arithmetic sum representing
the output value,f = w1×x1 +w2×x2−θ .

Hopfield networks are capable of reliable computing, despite imperfect neuron
cells and degradation of their performance. This is because the degraded neuron
cells store information (in weights, thresholds, and topology) in adistributed(or
redundant) manner. A single “portion” of information is not encoded in a single
neuron cell but is rather spread over many. Boolean function is computedvia a
process called “simulated annealing”. A value of a Boolean function, given an
assignment of its Boolean variables, is computed through relaxation of the neuron
cells in the network, while the initial “temperature” of the network is given.

A set of fundamental two-input logic functions can be implemented as a three-
node Hopfield network. The logic functions AND and EXOR are shown in Table 2.
The logic function AND can be implemented using a three-node Hopfield network,
and EXOR requires a four-node Hopfield network. The Boolean function of a
logic gate is encoded in the energy function, using connection weights and neuron
threshold. The energy function of the network is defined as follows:

466 S. N. Yanushkevich et al.:

E =−
1
2

n

∑
i

n

∑
j

xix jCi j +
n

∑
i

xiNi ,

wherexk is the state of cellk, Ci j is the connection weight between the cellsi and j,
Ni is the neuron’s threshold value, andn is the total number of cells, excludingBias
cell; and the factor 1/2 ensures that we do not count each connection twice (i 6= j).

All the global minima of the energy function correspond to the correct Boolean
output, while the ’False’ is encoded as having an energy value greater than the
global minimum. In the process of relaxation, the Hopfield networks try to achieve
the global minimum and, therefore, the correct output.

Table 2. Hopfield models of AND and EXOR gates.

Gate Energy function Model Compatibility
truth table

AND
f = x1x2

 x1

x2

f HG

E =−v1−v2 +2v3

+v1v2−2v1v3

−2v2v3

v1 v2 v3 E f
−1 -1 −1 −3 −1
−1 −1 1 9 False
−1 1 −1 −3 −1
−1 1 1 1 False

1 −1 −1 −3 −1
1 −1 1 1 False
1 1 −1 1 False
1 1 1 −3 1

EXOR
f = x1⊕x2

 x1

x2

f
HG

E =v1 +v2 +v3

−2i +v1v2 +v1v3

+v2v3−2iv1−2iv2

−2iv3

v1 v2 v3 I E f
−1 −1 −1 −1 −4 −1
−1 −1 −1 1 4 False
−1 −1 1 −1 −2 False
−1 −1 1 1 −2 False
−1 1 −1 −1 −2 False
−1 1 −1 1 −2 False
−1 1 1 −1 4 False
−1 1 1 1 −4 1

1 −1 −1 −1 −2 False
1 −1 −1 1 −2 False
1 −1 1 −1 4 False
1 −1 1 1 −4 1
1 1 −1 −1 4 False
1 1 −1 1 −4 −1
1 1 1 −1 14 False
1 1 1 1 −2 False

6.1 Network design using Hopfield gates

To obtain a Hopfield network, capable of implementing large truth table, a tech-
nique to map the logic networks directly into Hopfield networks has been proposed
in [7].

The EXOR Gate Under Uncertainty: A Case Study 467

Rule I: Hopfield gate merging

Connecting an output of one Hopfield gate to the input of another (cas-
cading the gates) is performed by merging the corresponding “output”
cell of the first gate with the “input” cell of the second one. The threshold
value of the new cell is the cumulative threshold of the merged cells.

Rule II: Hopfield gate merging

Connecting an output of one Hopfield gate to the input of another (cas-
cading the gates), while the second input of the other gate is also the
input of the first one, is performed by merging the corresponding “out-
put” cell of the first gate with the “input” cell of the second one, as well
as the both ”input” cells. The threshold value of the two new cells is the
cumulative threshold of the merged cells.

Example 6. Rule I: While connecting AND and EXOR gate, both cells G1 are
merged in a new cell, which threshold value is 2+1=3, obtained by adding the
threshold values of the merged cells (Fig. 10, upper plane).

A p p l i c a t i o n o f m e r g i n g R u l e I

−−−−1

−−−−1

2

2

2

−−−−1

X1

X2

G1G1G1G1

ANDANDANDAND

+

1

1

1

−−−−1

−−−−1

−−−−1

G1G1G1G1

X3

G2

XXXXOROROROR

−−−−2
2

2

2

=

=

Fig. 10. Taxonomy of neuromorphic AND/EXOR network design: application of merging rules in
implementation of functionf = x1x2⊕x3.

Example 7. Rule II: Input x2 is common for both AND and EXOR gates, so their
cascading involves merging gates X2 and G1, and their threshold are cumulative
values, -1+1=0 and 2+1=3, respectively (Fig. 10, lower plane).

6.2 Noise Model for the Hopfield networks

In this paper, to investigate fault tolerance of the Hopfield networks, a discrete
noise is added in the form of noise probability. Noise probability is defined here as

468 S. N. Yanushkevich et al.:

A p p l i c a t i o n o f m e r g i n g R u l e II

−−−−1

−−−−1

2

2

2

−−−−1

X1

XXXX2222

G1G1G1G1

ANDANDANDAND

+

1

1

1

−−−−1

−−−−1

−−−−1

G1G1G1G1

X3X3X3X3

G2

XXXXOROROROR

−−−−2
2

2

2

=

=

Fig. 10. (Continue) Taxonomy of neuromorphic AND/EXOR network design: application of merging
rules in implementation of functionf = x1x2⊕x3.

the probability that a neuron cell is affected by noise resulting in a bit flip, called
“a state flip” in terms of Hopfield networks. In other words, change of the state
is modelled by the uniformly distributed discrete random signal. For example,
noise level 0.1 (10%) means that the probability of changing the current state of the
neuron cell is 0.1.

There are two updating rules that applies to the Hopfield network: (a) the Hop-
field deterministic rule, and (b) stochastic Boltzmann rule, or simulated annealing.
For example, the Boltzmann updating rule is based on assumption of an uncertainty
of state of a particular cell during the updating process. Instead of settingthe state
of cell k deterministically, the process uses the probabilityp(k) that cellk takes
state 1. It implies the following steps: (a) Select temperatureT; (b) Randomly se-
lect a cellk, (c) Calculate∆E(k) = ∑n

i xicik−Nk. If ∆E(k) > 0, then calculate the
probability that cellk takes state 1:p(k) = 1

1+e−∆E(k)/T . Else set the state of cellk
to -1; (d) Repeat steps (b) through (d) until the state of cell does not change for a
certain interval (this is also called stable state condition), for example, 20 iterations.

6.3 Experimental Results

In this study, we have compared the robustness of the Hopfield models for EXOR
gate using the 4-node Hopfield EXOR gate (f = x⊕ y), and the alternative imple-
mentations of EXOR: one in the form off = xy∨ xy using the network of one
2-node Hopfield NOT gate, two 3-node AND gates and one 3-node OR gate, and
another in the formf = x ·xy∨xy·y.

Example 8. Given the node noise probability ranging between 0 and0.5, the num-
ber of iteration to reach the stable state vary for the EXOR Hopfield gate itself

The EXOR Gate Under Uncertainty: A Case Study 469

(Figure 11, A), and for the implementation of EXOR on a network of NOT, AND
and OR gates (B), as well as a network of NAND, AND and OR gates. The latter
two seem to need less iteration, while the noise level increases beyond 0.2, and
is significantly different for noise level 0.5. The EXOR gate itself (which requires
four neurons) required much more iterations to achieve the correct output, while
the networks of NOT, AND, OR or NAND gates, each consisting of two (NOTonly)
or three neurons), connected in the network with total 10 (B) and 15 neurons (C),
respectively, are mush faster to reach the stable state.

Fig. 11. Behavioral characteristics of neuromorphic model: X and Y axes correspond the level of
noise and number of required iterations to reach stable state condition, respectively; the curves A, B
and C correspond to EXOR gate, and the network of NOT, AND, OR, and NAND, AND and OR,
implementing the same EXOR function, respectively.

On the other hand, even if the EXOR Hopfield gate is much slower in achieving
the stable condition, it is more robust than the network of AND, OR or NAND
gates, implementing the same function EXOR.

Example 9. Given the node noise probability ranging between 0 and0.5, the prob-
ability of achieving the correct output is better for the EXOR Hopfield gate itself
(Figure 12, A), and for the implementation of EXOR on a network of NAND, AND
and OR gates (C), while the probability of achieveing the correct output forthe
network of NOT, AND and OR gates (B) is only around 0.6.

Another experimental study of performance on the Hopfield networks, imple-
menting simple AND-EXOR expressions, have been performed using the circuits
x1x2⊕ x3x4. This experiment compares the probability of achieving the correct
output of the benchmark, for both logic network and Hopfield network with noise.

Fig. 13 shows the probability of correct output with respect to the noise prob-
ability ranging from 0 to 0.5. The stable state condition for the Hopfield network

470 S. N. Yanushkevich et al.:

Fig. 12. Behavioral characteristics of neuromorphic model: X and Y axes correspond the level of
node noise and the probability of achieveing the correct output, respectively; three curves correspond
to EXOR Hopfield gate (A), the network of NOT, AND and OR gates (B), andthe network of NAND,
AND and OR gates (C) to implement EXOR, respectively.

is set to 15, 10, and 5 iterations. The results show that probability of achieving
the correct output is higher for the Hopfield network compared against the logic
network, as the noise probability increases.

Example 10. Given the noise probability0.2, the Hopfield network converges to
stable state condition in10 iterations, thus achieving the correct output with prob-
ability 0.96, while the logic network is only able to achieve the correct output with
probability 0.81 (the difference is15%). It is also observed that by increasing the
the number of iterations (for stable state condition) from10 and15, the Hopfield
network is able to achieved probability of correct output> 99%.

This shows that Hopfield implementation is capable of operating with high ac-
curacy in the noisy environment.

Example 11. Given the extremely high noise probability0.5, the Hopfield network
is capable of achieving the correct output with probabilities0.9 and0.97, for stable
state condition10 and15 iterations, respectively. On the other hand, the network
is only able to achieve the correct output with probability0.55. Therefore, for the
logic gate implementation, the solution breaks down to a random signal at the high
noise probability of0.50. However, the Hopfield network implementation achieves
the correct output value with probability0.97.

These results confirms that the behavior of Hopfield networks and its modifica-
tion such as Boltzmann machine demonstrates high fault tolerance in the presence
of critical noise in a part or in all neurons of the network.

The EXOR Gate Under Uncertainty: A Case Study 471

0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

0.9

1

Node Noise

P
ro

ba
bi

lit
y

of
 a

ch
ie

ve
d

co
rr

ec
t o

ut
pu

t

A − Logic Network
B − Hopfield Network (5)
B − Hopfield Network (10)
B − Hopfield Network (15)

Fig. 13. Behavioral characteristics of neuromorphic model: X and Y axes correspond to the level of
noise and relative frequency of reaching the correct solution, respectively; four curves correspond to
logic network, and Hopfield network with stable conditions at 5, 10, and 15 iterations, respectively.

Fig. 14 shows the average number of iterations required to reach the stable
state condition.

Example 12. Given the noise probability≤ 0.2, the Hopfield network is able to
reach stable state condition in less than200 iterations. For the high noise proba-
bility 0.5, the network requires less than400iterations to achieve the probability of
obtaining the correct output greater than0.9. In this particular case, the Hopfield
implementation requires2600iterations to achieve the greater than0.97probabil-
ity of obtaining the correct output.

7 Markov random field model

The basic definitions for MRF models of logic gates are introduced below based
on [3, 5].

7.1 Basic definitions

Let X = {x1, . . . ,xm} be a set of random variables. This set is called arandom field
if a variablexi takes valueyi . The joint eventX = y= {y1, . . . ,ym} is called aconfig-
urationof X, corresponding to a realization of the field. A setX is called aMarkov
network, or Markov random field, if (a) the probability that a random variablexi

takes the valueyi is defined,p(xi) > 0, and (b) the local characteristics ofX are
specified. The joint probability ofX can be formulated in terms of the associated
cliqueof the graph structure. Clique is defined as a set of nodes where each node in

472 S. N. Yanushkevich et al.:

0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

Connection and Functional Noise

A
ve

ra
ge

 n
um

be
r

of
 It

er
at

io
ns

A − 15 Iterations
B − 10 Iterations
C − 5 Iterations

Fig. 14. Behavioral characteristics of neuromorphic model: X and Y axes correspond the level of
noise and number of required iterations to reach stable state condition, respectively; three curves
correspond to 5, 10, and 15 iterations, respectively.

the set connects to other nodes in the graph. The conditional probability ofa node
only depends on its neighborhood. This model considers the effects of noise and
other uncertainty factors on a node by considering the conditional probabilities of
energy values with respect to its clique.

7.2 Concept of energy of a logic function

In MRF model, computing the simplest logic operations in the presence of noise,
such as NOT, AND, NAND, OR, is performed using notation of energy. The “en-
ergy” of a logic function is accumulated by “potentials” of cliques. This terminol-
ogy comes from statistical physics.

Given a cliquec ∈ C, a clique potential, Vc(x), is a non-negative real-valued
function of this particular clique. It follows from this definition that a logic function
must be represented in a particular form, such that arithmetic operations areused
instead of logic ones.

Example 13. A complete graph with three nodes v1,v2 and v3 is a clique, because
all distinct pairs of nodes, v1,v2, v1,v3, and v2,v3 are neighbors.

A sum of clique potentials,Vc(x), over all possible cliquesC is called theenergy
function, and is denoted as

E(x) = ∑
c∈C

Vc(x) (5)

The energy function is a quantitative measure of the global quality of the solu-
tion; the correct solution corresponds to the maximum of energy function. Note

The EXOR Gate Under Uncertainty: A Case Study 473

that in this paper, we consider logic primitivesf (x1,x2), which are represented by
complete graph (a single clique model); that is, energyE(x) is equal to a clique
potential:E(x) = Vc=1(x) = V(x).

Gibbs joint probability distributionor Gibbs random field, is defined in the
form

p(X = x) =
1
Z

exp

(
E(x)
kT

)

(6)

whereZ is a scaling factor (to normalize the total probability to 1) andkT is the
temperature factor (in physics view,T is “temperature”, andk is Boltzmann con-
stant).

Given a joint probability distributionp(x1, . . . ,xr), themarginal distribution
is defined as follows:

p(x1, . . . ,xs) = ∑
xs+1,...,xr

p(x1, . . . ,xr), s≤ r

Marginal distribution can be viewed as a projection of the joint distribution on a
smaller set of variables.

Hence, Gibbs random fields is defined by a joint probability. On the contrary,
the MRF is based on a conditional probability. The equivalence between theMRF
and the Gibbs random field can be established by the following theorem.

Hammersley-Clifford theorem states that a set of random variablesX =
{x1, . . . ,xs} is a MRF, if and only ifX is Gibbs distributed. That is, the global
probabilistic characteristics can be computed using local interactions via factoriza-
tion. Specifically, the joint probability of an MRF can be constructed from thelocal
conditional probabilities.

Logic function is incorporated into a Markov network using anarithmeticforms
[24, 23].

7.3 Algorithm for synthesis of MRF models of logic gates

Given the compatibility truth vectorU of a Boolean functionf of n variables, the
vector of coefficientsA = (a1,a2, . . . ,an) is calculated using the arithmetic trans-
form [23]:

A = A2n ·U (7)

where matrixA2n is formed as follows

A2n =
n⊗

j=1

A2 j , A21 =
[

1 0
−1 1

]

474 S. N. Yanushkevich et al.:

Arithmetic formof r-input,x1,x2, . . . ,xr , logic gatef , given by spectral coeffi-
cients,a1,a2, . . . ,an is defined by the polynomial:

f =
2r−1

∑
i=0

ai · (x
i1
1 · · · xir

r), (8)

where i j is the j-th bit 1,2, . . . , r, in the binary representation of the indexi =

i1i2 . . . ir ; x
i j
j = 1 if i j = 0, andx

i j
j = x j if i j = 1.

Example 14. Arithmetic representation of a 3-input logic gate (n= 3) is defined
by Equation (8) as follows: f= a0 + a1x3 + a2x2 + a3(x2x3)+ a4x1 + a5(x1x3)+
a6(x1x2)+a7(x1x2x3).

Consider a 2-input logic gate of a functionL. The algorithm for designing the
MRF model of this gate is as follows.

The MRF model design for a 2-input logic gate

Input data: (a) Graph model {v1,v2,v3} (complete graph) and
(b) function L.
Step 1: Form the compatibility truth table.
Step 2: Calculate the energy function, E(v), using
Fourier-like transform, in particular, arithmetic
transform (7).
Step 3: Specify Gibbs distribution (6) by substituting
the energy function, E(v), into it.
Step 4: Calculate the marginal probability distribution
of the output node.
Output: An MRF model of L gate.

Designing the MRF model for the AND gate is illustrated by the following
example (Fig. 15).

Table 3 provides design results for two-input OR and EXOR gate. It is shown
in Table 3, that the valid input/output states have higher clique energies than invalid
states to maximize the probability of a valid energy state at the nodes:E(v) of valid
states is 1, and for any invalid state, this value is 0. The logic margin in this case
is the difference between the probabilities of occurrence of a logic low anda logic
high, which, if high, leads to a higher probability of correct computation.

Further applying the belief propagation algorithm, the energy distributions and
entropy at different nodes of the network can be calculated [24].

These MRF models show that maximization of logic state probability can be
viewed as a process of energy maximization. Note that energy minimization pro-
cess can be achieved by sign manipulation in compatibility truth table and Gibbs

The EXOR Gate Under Uncertainty: A Case Study 475

Design example:
MRF model for logic 2-input AND gate

Given:

(a) Complete noncausal graph, {v1,v2,v3}
(b) Logic function of gate L

Design an MRF model of L gate.
Solution:
Step 1: Form the compatibility truth table:

v1 v2 v3 U Comment
0 0 0 1
0 0 1 0 Undesirable
0 1 0 1
0 1 1 0 Undesirable
1 0 0 1
1 0 1 0 Undesirable
1 1 0 0 Undesirable
1 1 1 1

Step 2: Calculate the energy function, U(v):
(a) Calculate a clique potential using arithmetic transform (7):

A = A23 ·U =

1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0

1 −1 −1 1 0 0 0 0
−1 0 0 0 1 0 0 0

1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
−1 1 1 −1 1 −1 −1 1

1
0
1
0
1
0
0
1

=

1
−1

0
0
0
0
−1

2

(b) Convert the vector of coefficients A into algebraic form using equation (8):
E(v) = 1−v3−v1v2 +2v1v2v3
Step 3: Specify Gibbs distribution:

p(v1,v2,v3) =
1
Z

exp

(
1−v3−v1v2 +2v1v2v3

kT

)

Step 4: (a) Calculate marginal distribution by summing over all possible states of v1:

p(v2,v3) =
1
Z1

∑
v1∈0,1

exp

(
1−v3−v1v2 +2v1v2v3

kT

)

=
1
Z1

[

exp

(
1−v3

kT

)

+exp

(
1−v3−v2 +2v2v3

kT

)]

Fig. 15. MRF-based model for AND gate.

476 S. N. Yanushkevich et al.:

(b) Calculate marginal distribution of v3 by summing over all possible states of v2:

p(v3) =
1
Z2

∑
v2∈0,1

[

exp

(
1−v3

kT

)

+exp

(
1−v3−v2 +2v2v3

kT

)]

=
1
Z2

[

3exp

(
1−v3

kT

)

+exp

(
v3

kT

)]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Output, V
3

P
ro

ba
bi

lit
y,

 p
(V

3)

kT=0.1
kT=0.25
kT=0.5
kT=1

Fig. 15. (Continue) MRF-based model for AND gate.

distribution. Therefore, a bistable storage element with feedback is an appropriate
hardware architecture for binary logic [19, 31].

8 Conclusion and discussion

An extended vision of probabilistic network design, including probabilistic AND-
EXOR networks, is introduced. This interdisciplinary view includes the field of
coding for error correction based on statistical techniques, and belief networks for
decision making. In these fields, data processing is based on probabilistic and
statistic techniques, using both discrete and analog technology for implementation
of computing networks over the libraries of probabilistic logic gates.

There exists a diversity in terminology related to probabilistic computing. For
example, the term “probabilistic EXOR gate” addresses the following meanings:

(a) traditional EXOR gate assuming random input and output signals (we pro-
posed to distinguish this meaning as “behavioral model”), and

(b) computing device which operates with probabilities (real numbers) with re-
spect to EXOR switching function (in our systematization, it is a “ belief
model”).

T
he

E
X

O
R

G
ate

U
nder

U
ncertainty:

A
C

ase
S

tudy
477

Table 3. Components of the MRF model of binary gates.

Gate Graph model Compatibility Clique potential Probabilistic
truth table (arithmetic form of gate) behavior

x1

x2

f

f = x1∨x2

f

x2

x1
v1

v2

v3

v1 v2 v3 U
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

U =[1 0 0 1 0 1 0 1]T

A =[1 −1 −1 2 −1 2 1−2]T

E(v) =1−v1−v2−v3 +v1v2

+2v1v3 +2v2v3−2v1v2v3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Output, V
3

P
ro

ba
bi

lit
y,

 p
(V

3)

kT=0.1
kT=0.25
kT=0.5
kT=1

x1

x2

f

f = x1⊕x2

f

x2

x1
v1

v2

v3

v1 v2 v3 U
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

U =[1 0 0 1 0 1 1 0]T

A =[1 −1 −1 2 −1 2 2−4]T

E(v) =1−v1−v2−v3 +2v1v2

+2v1v3 +2v2v3−4v1v2v3

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Output, V
3

P
ro

ba
bi

lit
y,

 p
(V

3)

kT=0.1
kT=0.25
kT=0.5
kT=1

478 S. N. Yanushkevich et al.:

Thus, the main goal of our study was to systematize the known approaches
to probabilistic logic gate design. We compared six models of probabilistic logic
gates: behavioral, belief network, decision diagram, stochastic, neuromorphic, and
Markov random field. In traditional logic network design, the behavior model dom-
inates. However, there are other forms of probabilistic description of logicgate be-
havior in the presence of noise, for example [6]. These models are relatively new,
and have been introduced in the context of computational models for noveldeep
submicron and nano technologies.

Different design taxonomies are required to construct logic networks using li-
braries of probabilistic gates. Theoretical platform of these techniques istraditional
logic design, extended by probabilistic and statistical methods.

We mentioned only two hardware-centered belief networks: Bayesian networks
for security applications, such as real time decision-support assistants [30], and
stochastic decoder for turbo code [1, 2, 12]. The requirements to the performance,
power consumption, and size of these devices, especially for mobile systems(cell
phones, iPODs, hand players, personal computers, etc.) are very strict. However,
these are low-precision computations which can be considered as a key argument
for analog implementation of these devices. Note that new technologies, suchas
molecular electronics, are based on inherently analog phenomena. In addition,
random physical and chemical phenomena explain why probabilistic computation
is a natural way in the era of nano technology [10, 11].

One of the feasible candidates for future technologies is neuromorphic net-
works [13]. The neuromorphic model, based on Hopfield network with Boltzmann
updating rule [27], is robust to noise, as shown in this paper via experimental study.
The latter confirm that the behavior of Hopfield networks and its modification,the
Boltzmann machine, demonstrates high fault tolerance in the presence of critical
noise in a part or in all nodes and interconnects of the network.

However, multivalued extension of Hopfield-based logic networks is verycom-
plicated. In contrast, the MRF model can be easy generalized for multivalued logic.
Example is given in Table 4. We used 0-polarity arithmetic transforms for the 3-
valued NOT gate [23]. Extension for an arbitrary library of multivalued gates is
straightforward.

Other models of fault-tolerant logic gates exist, for example,polymorphicgates
for sensor-based systems [26]. Polymorphic gate is a multi-functional logicdevice
that performs logic functionf j , j = 1,2, . . . ,m, if its control input is activated by
valueI j of the signal. In particular, 2-function polymorphic gate is defined as fol-
lows:

2-function gate=

{
f1, if I1 control value;
f2, if I2 control value.

The EXOR Gate Under Uncertainty: A Case Study 479

Table 4. Markov random field model for ternary (m= 3) NOT gate.

Ternary gate Graph Energy function

x x
0 2
1 1
2 0

f x

v1 v2

U =[0 0 1 0 1 0 1 0 0]T

A =[0 −2 2 −2 22 −12 2 −12 6]T

E(v) =1/4(−2v2 +2v2
2−2v1 +22v1v2

−12v2
2v1 +2v2

1−12v2
1v2 +6v2

1v2
2)

Table 4. (Continue) Markov random field model for ternary (m= 3) NOT gate.

Probabilistic behavior

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Output, V
2

P
ro

ba
bi

lit
y,

 p
(V

2)

kT=0.1
kT=0.25
kT=0.5
kT=1

Polymorphic Reed-Muller networks are designed using 3-functional polymor-
phic AND/OR/EXOR gates (Fig. 16). Such gates perform the two-inputs AND
(I = 0), OR (I = 1), and EXOR (I = 2) function with probabilitiesp(I = 0),
p(I = 1), andp(I = 1), respectively. The probabilities of inputs (“1”s) of all gates
are the same, that is,p(x1) andp(x2). For the best of our knowledge, behavior of
polymorphic gates under these conditions has not been studied yet.

Finally, there are equivalents between three basic probabilistic models, which
can be established using Gibbs distribution or Gibbs sampling method [18]:

Belief
model

︸ ︷︷ ︸

Gibbs sampling

←→
Hopfield
model

︸ ︷︷ ︸

Gibbs sampling

←→
MRF

model

︸ ︷︷ ︸

Gibbs sampling

It follows from this similarity that we can expect similar numerical results while

480 S. N. Yanushkevich et al.:

x1

x2
f

 AND

OR

I

p(f)

p(I)

p(x1)

p(x2)

control

EXOR

I = 0

 x1

x2

fAND
p(x1)
p(x2)

I = 1

 x1

x2

fOR
p(x1)
p(x2)

I = 2

 x1

x2

fEXOR
p(x1)
p(x2)

Fig. 16. Two-input 3-functional polymorphic AND/OR/EXOR gate and equivalent logic AND (I =
0), OR (I = 1), and EXOR (I = 2) gates.

using various models. However, the techniques for achieving these results, the
algorithms, behavioral characteristics, and hardware implementation are different.

Acknowledgment

This work was partially supported by Natural Sciences and Engineering Research
Council of Canada, and NATO linkage grant “Intelligent Assistance Systems: Mul-
tisensor Processing and Reliability Analysis”. G. Tangim acknowledges theInfor-
mation and Communication Technologies Recruitment Scholarship, University of
Calgary. We acknowledge also unknown reviewers for useful remarks and propos-
als for improvements of the paper.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding turbo-codes”,Proc. IEEE Int. Conf. Commun.,Geneva, pp.
1064–1070, May, 1993.

[2] C. Berrou and V. Gripon, “Coded Hopfield networks”,Proc. 6th Int. Symp. Turbo
Codes and Iterative Information Processing, 2010.

[3] J. E. Besag, “Spatial interaction and the statistical analysis of lattice systems”,J.
Roy. Stat. Soc.,series B, vol. 36, no. 3, pp. 192–236, 1974.

[4] B. D. Brown and H. C. Card, “Stochastic neural computing I: Computational ele-
ments”, IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905, 2001.

[5] H. Derin and P. A. Kelly, “Discrete-index Markov-type random process”,Proceed-
ings of the IEEE, vol. 77, no. 10, pp. 1485–1510, 1989.

[6] T. J. Dysart and P. M. Kogge, “Analysisng the Inherent Reliability of Moderately
Sized Magnetic and Electrostatic QCA Circuits Via Probabilistic Transfer Matri-
ces”, IEEE Trans. VLSI Systems, vol. 17, no. 4, pp. 507–516, 2009.

The EXOR Gate Under Uncertainty: A Case Study 481

[7] S. T. Chakradhar, V. D. Agrawal, and M. L. Bushnell, Neural Models and Algo-
rithms for Digital Testing. Kluwer, Dordrecht, 1991.

[8] B. R. Gaines, “Stochastic computing systems”, in “Advances in Information Sys-
tems Science”, J. T. Tou, Ed., Plenum, New York, vol. 2, chap.2, pp. 37–172, 1969.

[9] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities”,Proceedings of National Academy of Sciences, USA, vol.
79, pp. 2554–2558, 1982.

[10] S. E. Lyshevski, S. N. Yanushkevich, V. P. Shmerko, et al., “Computing Paradigms
for Logic Nanocells.”,J. Computational and Theoretical Nanoscience, vol. 5, pp.
2377–2395, 2008.

[11] S. E. Lyshevski, V. P. Shmerko, M. A. Lyshevski, et al., “Neuronal processing,
reconfigurable neural networks and stochastic computing”,Proc. IEEE Conf. Nan-
otechnology, Arlington, TX, 2008.

[12] H.-A. Loeliger, F. Lustenberger, M. Helfenstein, et al., “Probability propagation
and decoding in analog VLSI”,IEEE Trans. Inf. Theory,vol.47, no.2, pp.837–843,
2001.

[13] C. Mead, “Neuromorphic electronic systems”,Proc. IEEE, vol. 78, no 10, pp.
1629–1639, 1990.

[14] C. L. Janer, J. M. Quero, J. G. Ortega, et al., “Fully parallel stochastic computation
architecture”,IEEE Trans. Signal Processing, vol. 44, no. 8, pp. 2110–2117, 1996.

[15] F. V. Jensen,Bayesian Networks and Decision Graphs,Springer, 2001.

[16] A. A. Mullin, “Stochastic combinational relay switching circuits and reliability”,
IRE Trans. Circuit Theory, vol. 6, no. 1, pp. 131–133, 1959.

[17] A. F. Murray and A. V. W. Smith, “Asynchronous VLSI neural networks using
pulse-stream arithmetic”,IEEE J. of Solid, vol. 23, no. 3, pp. 688–697, 1988.

[18] P. Myllymäki, “Using Bayesian networks for incoporating probabilistic a priory
knowledge into Boltzmann machines”,Proc. SOUTH Conf., pp. 97–102, Orlando,
1994.

[19] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson, et al., “Designing Nanoscale
Logic Circuits Based on Markov Random Fields”,J. Electronic Testing: Theory
and Applications, vol. 23, pp. 255–266, 2007.

[20] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general combinational
networks”, IEEE Trans. Comput., vol. 24, no. 6, pp. 668–670, 1981.

[21] U. Kalay, D. V. Hall, and M. A. Perkowski, “A minimal universal test set for self-
test of EXOR-sum-of-products circuits”,IEEE Trans. on Comput., Vol. 49, Issue 3,
pp. 267 - 276, 2000.

[22] P. W. K. Rothemund, N. Paradakis, and E. Winfree, “Algorithmic self-assembly of
DNA Sierpinski triangles”, PloS Biology — www.plosbiology.org, vol.2, issue 12,
e424, pp. 2041–2053, 2004.

[23] V. P. Shmerko, S. N. Yanushkevich, and S. E. Lyshevski,Computer Arithmetics for
Nanoelectronics, Taylor & Francis/CRC Press, Boca Raton, FL, 2009.

[24] S. Shukla and R. I. Bahar (Eds.), “Nano, Quantum and Molecular Computing: Im-
plications to High Level Design and Validation”, Kluwer, 2004.

[25] S. Stankovíc and J. Astola, “Representation of Resilient Boolean Functions Using
Binary Decision Diagrams”,Proc. Reed-Muller 2011 Workshop, Tuusula, Finland,
pp. 93-98, May 2011.

482 S. N. Yanushkevich et al.:

[26] A. Stoica, R. Zebulum, and D. Keymeulen, “Polymorphic electronics”, Proc. 4th
Int. Conf. Evolvable systems: from biology to hardware, Tokyo, Japan, 2001, pp.
291-001.

[27] A. H. Tran, S. N. Yanushkevich, S. E. Lyshevski, et al. “Fault Tolerant Comput-
ing Paradigm for Random Molecular Phenomena: Hopfield Gatesand Logic Net-
works”, IEEE Int. Symp. Multi-Valued Logic, pp. 93 - 98, 2011.

[28] D. E. Van Den Bout and T. K. Miller III, “A digital architecture employing
stochastism for the simulation of Hopfield neural nets”,IEEE Trans. Circuits and
Syst., vol. 36, no. 5, pp. 32–738, 1989.

[29] S. N. Yanushkevich and V. P. Shmerko, “Teaching Reed-Muller techniques in intro-
ductory classes on logic design”,FACTA Universitatis., ser. Elec. Energ., vol. 20,
no. 3, pp. 331–065, 2007.

[30] S. N. Yanushkevich, A. Stoica, and V. P. Shmerko, “Experience of design and pro-
totyping of a multi-biometric early warning physical access control security system
(PASS) and a training system (T-PASS)”,Proc. 32nd Annual IEEE Industrial Elec-
tronics Society Conf.,Paris, 2006.

[31] I-C. Wey, Y-G. Chen, C-H Yu, et al., “Design and Implementation of Cost-Effective
Probabilistic-Based Noise-Tolerant VLSI Circuits”,IEEE Trans. Circuits and Syst.,
vol. 56, no. 11, pp. 2411–2424, 2009.

