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Weak Attractors and Invariant Sets in Lorenz Model

Ilhem Djellit and Amel Hachemi-Kara

Abstract: A two-dimensional model is analyzed. It reflects the dynamics occurring
in discrete Lorenz model. Invariant sets are analytically detected and the parameter
space is investigated in order to classify completely regions of existence of stable 2-
cycles, and regions associated with chaotic behaviors. This paper describes complex
dynamics of invariant sets and weak attractors according toTsybulin and Yudovich
idea. These sets are displayed by numerical simulations.
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1 Introduction

WE present and explain numerical results illustrating the mechanism of a type
of bifurcation of a chaotic set that occurs in a typical dynamical system rela-

tive to discrete Lorenz mapping. Because the non-unique dynamics associated with
extremely complex structures of the basin boundaries, the Lorenz model presents a
real interest and a large richness of the bifurcations situations, and an interesting set
of dynamical phenomena is uncovered, due in essence to the presence of invariant
sets [1, 2]. This can have a profound effect on our understanding of the dynamical
behavior.

We also provide numerical evidence of such a bifurcation for the appearance of
invariant sets in this model.

Consider this dynamical system generated by a family of two-dimensional con-
tinuous noninvertible mapsTb defined by
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Tb :

{

x′ = (1+ab)x−bxy
y′ = (1−b)y+bx2 (1)

wherea,b are real parameters, the functionsf (x,y) = (1+ab)x−bxyandg(x,y) =
(1−b)y+bx2 continuous and differentiable andTb of typeZ1 < Z3 in sense of Mira
[for more details, see 2,3].

This map already studied by Lorenz. He predicted chaotic behavior whenb
is excessively large. His paper cited therein [3] is a milestone in the study of de-
terministic nonlinear dynamical systems. This fact has fundamental and known
consequences. He illustrates the pertinence of the concept of computational chaos.

In two papers [1, 2], we have accomplished the task to illustrate the fractal
basins and to consider the inverses with vanishing denominators and we stud-
ied the properties of such mappings in our examination of developed chaos.All
these behaviors displayed homoclinic structure associated with the basin bifurca-
tion bounded-nonbounded. We know that chaos exists in any system with ahomo-
clinic tangency, it follows that it can be found in the space of parameters ofany
chaotic dynamical model in absence of uniform hyperbolicity, in particular insuch
popular examples as Hénon map, Chua circuit, Lorenz model, etc. Therefore, the
problem of understanding the nature of the orbit structure for systems from invari-
ant regions is quite challenging. In these papers our investigation of fractality as a
measure of chaos consisted to analyze the fractalization and parameter dependence
of basins by using the technique of critical curves.

The description of the dynamics of such systems requires an infinite set of in-
variants which means that any attempt to give a complete description of the dynam-
ics and bifurcations will fail. Therefore, we have to restrict the analysis tosome
particular details or to some most general features only.

Tsybullin and Yudovich [4] considered quadratic mappings as a finite-difference
approximation of an ordinary differential system and determined interestinginvari-
ant manifold and sets, and pointed out the invariant measure on the invariant disc.
The notion of invariant curves, introduced in [4], constitutes an analytical instru-
ment particularly suitable to study the dynamical behavior and bifurcations in two-
dimensional maps with nonunique inverse. Its task is to provide reasonable and
rigorous explanations for our investigation.

The main topic of this paper is motivated by our desire to apply and use ideas
and methods of Tsybullin & Yudovich to illustrate complex patterns of Lorenz
model proposed in [3]. It was mainly focused on one research area, todetect weak
attractors and invariant sets, and to identify and verify some properties ofattractors
on such maps. For the needs of bifurcation theory, it is very important to garantee
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the persistence of attractors under perturbations by higer order terms inx and y.

Countless papers have been published in the past on the existence of hyper-
surface of a mapping of some manifold, in which it is proved that the existenceis
rare and very degenerate situation. Arnold in [5] considered that the absence of
such invariant hypersurfaces as one of the definitions of strong nonintegrability and
conjured this phenomena as the case of some open problem in the space of maps.

This paper is organized as follows. The section 2 recalls some peculiar prop-
erties of the Lorenz map, their dependence on the parameters is considered, and
stability of a pecular fixed point ’the origin’ is analyzed. The qualitative behavior
and bifurcations of this map are examined. In section 3, We investigate cyclesof
order 2, and we examine the special case ofb = 2. We discuss some cases where
bifurcation can lead to creation of holes in basins of attraction, and cause quali-
tative changes in the structure of the domain as some parameters are varied.In
section 4, we consider conditions for the existence of invariant sets. Thisnew kind
of invariant set is of mixed type in the sense that it is made up of curves invariant
by T andT2 which constitute weak attractors. And finally, we give the conclusion.

2 Fixed points and Critical curves

The fixed point and basic bifurcations ofT of the eq. (1) were analyzed, they are
solutions obtained by a trivial manipulation of (1) withx′ = x andy′ = y: Besides
the solution(0;0), we can observe that further fixed points exist ifa > 0. There
have been many important and interesting results about this system, such as the
global stability, attractors, basins and so on.

In this section we focus our attention on bifurcations playing an important role
in the dynamics, those happening fora > 0 andb > 0. We can easily state the
following proposition.

Proposition 1 If a < 0 then O(0;0) is the unique fixed point of the map Tb defined
by (1). If a> 0 then two further fixed points, P and P0, exist, symmetric with respect
to the y-axis, with x= ±√

a; y = a.

We consider the qualitative behaviors of the map (1). As usual, the local dy-
namics of map (1) in a neighborhood of a fixed point is dependant on the Jacobian
matrix. The Jacobian matrix of map (1) is given by

J =

[

1+ab−by −bx
2bx 1−b

]
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We consider now the conditions of local stability of the fixed pointO(0;0), in
terms of the parameters of the eq. (1).

With

J(0,0) =

[

1+ab 0
0 1−b

]

is Jacobian matrix ofTb in O(0;0) which has two eigenvalues 1+ ab and 1− b.
We can conclude forb > 0 with consideringa > 0 and the casea = 0 that there
are only two different topological types ofO(0;0) for all permissible parameter
values. The fixed pointO(0;0) is a saddle ifb ∈ [0;2]. Whena > 0, O(0;0) is a
source ifb∈ [2;∞) and whena > 0, O(0;0) is non hyperbolic ifa = 0. We can see
that whenb = 2, for a > 0, one of the eigenvalues ofO(0;0) is −1 and the other
is not one with module. Thus the flip bifurcation occurs with a birth of a pair of
saddle-cycles of order 2. Local stability of fixed pointO(0;0) in Table 1 is given.

Table 1. Local stability of the fixed pointO(0;0).

b(a > 0) [0;2] [2;∞)

λ1 = 1−b −1 < λ1 < 1 λ1 < −1

λ2 = 1+ab λ2 > 1 λ2 > 1

O(0;0) saddle unstable node
b (a = 0) [0;2] [2;∞)

λ2 = 1+ab λ2 = 1 λ2 = 1

O(0;0) saddle−→ Unstable node unstable node−→ saddle

We can obtain that there are only two different topological types ofO(0;0) for
all permissible parameter values.

Proposition 2 The point O(0;0) is a saddle if b< 2, a > 0; O(0;0) is a unstable
node if b> 2, a> 0.

Proposition 3 If a = 0, the map (1) undergoes a pitchfork bifurcation at O(0;0).

Proof: By simple computation, we can prove this proposition.

Proposition 4 For a > 0 and b= 2, the map (1) undergoes a basin bifurcation
bounded-nonbounded.

This implies that bifurcations of such systems are extremely involved and rich.
Thus, the question arises: Can we estimate in exact terms how rich these bifurca-
tions are?
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3 Continuous family of 2-cycles order

For b = 2, examining the properties of cycles , we remark that cycles of order 2
are detectable on the wholey−axisexcepting the fixed point at the originy = 0.
These cyclesC2:{(0,y),(0,−y)},y 6= 0 are transversally stable and according to
known results in Tsybullin [4] on stability of continuous families, imply that if
their transversal multiplier|ρ⊥| > 1 thenC2 are unstable. Longitudinal multiplier
ρ⊤ is equal to 1.

Sinceρ⊥ = (1+2a)2−4y2, stable cyclesC2:{(0,y),(0,−y)} belong to this pair

of intervalls{y : 2a
√

1+1/a < y <

√

(1+2a)2 +1}
Forb = 2.002(a= 0.1), Fig. 1 shows that we are close to the bifurcation value

at b = 2 that leads to basin transformation from a bounded basin to an unbounded
basin forb < 2. The saddle fixed point atO(0,0) has become an unstable node,
with the birth of a pair of 2-cycles of the saddle type, symmetric with respect to the
y-axis.

Fig. 1. Basin bifurcation and the origin is a node.

If we increase the parametera = 0.437 forb = 2, we observe interesting situa-
tion and we obtain characteristic behaviors of riddled basins. These basins appear
because symmetries of dynamical systems force the presence of invariantsubmani-
folds; the attractors within invariant manifolds may be only weakly attracting trans-
verse to the invariant manifold and this leads to a basin structure that is, roughly
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speaking, full of holes. By examining this peculiar value ofb, greater understand-
ing can be gained as to how such basins arise.

It is known that basins generated by two-dimensional noninvertible maps may
be either simply connected, or multiply connected, or non connected, depending
on the situation of their boundary with respect to the critical setLC. In particular,
in Mira [3], the concept of minimal invariant absorbing area is defined in order
to give a global characterization of the different dynamical scenarios related to
riddling bifurcation.

The minimal invariant absorbing area is the smallest absorbing area that in-
cludes the Milnor attractor [6] on which the chaotic dynamics occurs. Its delim-
itation is important in order to characterize the global properties which influence
the qualitative effects of riddling bifurcation. The period-1 saddle embedded in
the absorbing area which contains the attractor becomes transversely unstable via a
supercritical period doubling bifurcation, leading to the birth of two new period-2
saddles situated on the tops or extremities belonging toy−axis. In addition, Fig.
2 displays basin in yellow color and weak attractor( in red color) made of bands.
Whenever the origin of saddle type changes in an unstable node for this choice of
b producing the desired result: holes in the basin and offers the information of rid-
dled basin and 2-cycles are generically born which with the symmetric appearance
will gives two 2-cycles of saddle type forb > 2.

Fig. 2. Weak Attractor and Riddled basin.
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4 T-Invariant sets and T2-invariant sets

In this part, Invariant sets generated by two-dimensional endomorphisms are stud-
ied. These invariant sets are obtained by iterating invariant lines in the immediate
bounded basin. This new kind of invariant set is of mixed type in the sense that it
is made up of curves invariant byT andT2 which constitute weak attractors.

Attractors constitute an interesting object of study by themselves. The strong
dependence on the parameters generates a rich variety of complex patterns on the
plane and gives rise to different types of basin fractalization as a consequence, for
instance, of basins bifurcations with holes [1,2]. Taking into account thecomplex-
ity of the matter and its nature, the study of these phenomena can be carried out
only via the association of numerical investigations guided by fundamental consid-
erations that can be found in [4].

The caseb= 2 is very interesting , because we can put in evidence the existence
of weak attractors. The special character of this kind of sets has been already
observed in coupled maps. To illustrate the idea, consider first invariant algebric
curves of the first order (invariant lines), of second order (invariant crosses) in sense
of Tsybullin [4].

Definition 1 (from [4]): LetT : R2 −→R2, be a map ofR2 into itself. The invariant
cross is a unionL1∪L2 of two subsets ofR2 such thatT(L1) ⊂ L2 andT(L2) ⊂ L1.
We denote itL1L2, andL1 andL2 invariant with respect toT2 so thatT2(L1) ⊂ L1

andT2(L2) ⊂ L2.

The mapping (1) has several invariant crosses.We start by determining the
straight crosses, so thatL1 andL2 are the lines:

Put L1 : y = αx+β ; L2 : y = γx+δ
In vertue of the propertyT(L1) ⊂ L2 andT(L2) ⊂ L1,we get:

(1−b)(αx+β )+bx2 = γ(1+ab)x− γbx(αx+β )+δ
(1−b)(γx+δ )+bx2 = α(1+ab)x−αbx(γx+δ )+β

From these two inequalities, we have:α = −1/γ; δ = −β andα2 = 1+2a−
2β Then forb = 2,we have two crossesL+

1 L+
2 andL−

1 L−
2 such that:

L±
1 : y = α±x+β and α2 = 1+2a−2β ;

L±
2 : y = γ±x+δ and γ2 = 1+2a−2δ

The restriction of the mappingT2 to each line so thatT2(L1) ⊂ L1 gives: (1+
2a)2−4l2 = 1.
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In the other hand, if we searchT2-invariant lines by considering equationy= c
andT2-mapping which acts to the rule:T2 : (x,y) −→ (x′;y′) with

x′ = (1+ab)[(1+ab)x−bxy]−b[(1+ab)x−bxy]((1−b)y+bx2)

and
y′ = (1−b)[(1−b)y+bx2]+b[(1+ab)x−bxy]2

we obtain

c = (1−b)((1−b)c+bx2)+bx2((1+ab)−bc)2, ∀x∈ R

Then:c = (1−b)2c ; b(1−b)+b((1+ab)−bc)2 = 0

If b= 2, T2-invariant lines areS± : y= (1+2a±1)/2 , whose preimages under
ierationT areT2 invariant parabolas, and theses linesS± are transversally unstable
such thatS+ corresponds to the liney= 1+a, andS− : y= a. Fig. 3 shows invariant
curved crossesL±

1,2, parabolas andS± for a = 0.42 andb = 2.

Fig. 3. Invariant sets parabolas and lines.

These segments are also evoked in detail in [2], for instance, the existence of
the curve-liney = 1+a mapped into the origin makes the iteration properties ofT
(for b = 1) very different with respect to the behavior of the maps with a unique
inverse. Any arc crossing this line is mapped into an arc with a loop in the origin
like seen in [5]. Since the origin is a saddle, This requires that this curve belongs to
the stable manifold of this point. Its role is important to understand the homoclinic
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bifurcation ofO(0,0), giving rise to a unique chaotic attractor which intersects the
line y = 1+ a in infinitely many arcs with self-similar structure and loops issuing
from the origin (see Fig. 4 forb = 0.4,a = 2).

Fig. 4. Homoclinc Bifurcation and Loops inS±.

Consider the Jacobian matrix ofToT
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2(1−b)bx+2bx[(1+ab)−by]2 (1−b)2−2b2x2[(1+ab)−by]





We remark thatρ⊤ = (1−b)2−2b2x2[(1+ ab)−by], and if we consider the
2-cycles(0,±y) for b = 2 we obtainρ⊤ = 1. Further,ρ⊥ = [(1+ ab)−by][(1+
ab)− by(1− b)− 3b2x2], in these 2-cycles(0,±y) for b = 2, is equal toρ⊥ =
(1+2a)2−4y2.

These results may be interesting, since the delimitation of the invariant sets and
basins permits to understand and clarify the concept of weak attractors. We provide
numerical evidence of such a bifurcation for chaotic sets of the Lorenz model.

5 Conclusion

In this paper we investigate invariance property of the discrete Lorenz model. In
contrast to existing studies of such models, which primarily focus on the dynamic
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complexities in the models or the identification of parameter regions, our work
gives another perspective of the global dynamical behavior by a studyof invariant
sets and their bifurcations. We also give an explanation for the structure of weak
attractors by use of the invariant set. These chaotic sets are related to the model
itself, and the main qualitative changes of the global structure can be analyzed by
the contact between the domain boundaries and the singular set for the degenerated
map. This allows us to learn more about the dynamical behavior of the systems
under study than by just focusing on the local dynamics, since we can obtain sets
specific to coupled maps.
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