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Weak Attractors and Invariant Sets in Lorenz Model

Ilhem Djellit and Amel Hachemi-Kara

Abstract: A two-dimensional model is analyzed. It reflects the dynanaiccurring
in discrete Lorenz model. Invariant sets are analyticafiiedted and the parameter
space is investigated in order to classify completely negjiof existence of stable 2-
cycles, and regions associated with chaotic behaviorss gdper describes complex
dynamics of invariant sets and weak attractors accordirifsydulin and Yudovich
idea. These sets are displayed by numerical simulations.
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1 Introduction

E present and explain numerical results illustrating the mechanism of a type
W of bifurcation of a chaotic set that occurs in a typical dynamical systéam re
tive to discrete Lorenz mapping. Because the non-unique dynamicsatesiogith
extremely complex structures of the basin boundaries, the Lorenz medelints a
real interest and a large richness of the bifurcations situations, anteagdting set
of dynamical phenomena is uncovered, due in essence to the pre$émeaiant
sets [1, 2]. This can have a profound effect on our understanditige@ynamical
behavior.

We also provide numerical evidence of such a bifurcation for the appeaiof
invariant sets in this model.

Consider this dynamical system generated by a family of two-dimensional con
tinuous noninvertible mapg, defined by
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.| X' =(1+ab)x—bxy
Tb'{ Y = (1- by +bx @

wherea, b are real parameters, the functiong, y) = (14 ab)x— bxyandg(x,y) =
(1—b)y+bx? continuous and differentiable afig of typeZ; < Zz in sense of Mira
[for more detalils, see 2,3].

This map already studied by Lorenz. He predicted chaotic behavior Wwhen
is excessively large. His paper cited therein [3] is a milestone in the studg-of d
terministic nonlinear dynamical systems. This fact has fundamental andnknow
consequences. He illustrates the pertinence of the concept of compaitatians.

In two papers [1, 2], we have accomplished the task to illustrate the fractal
basins and to consider the inverses with vanishing denominators and we stud
ied the properties of such mappings in our examination of developed cldios.
these behaviors displayed homaoclinic structure associated with the basitaebifu
tion bounded-nonbounded. We know that chaos exists in any system dtima-
clinic tangency, it follows that it can be found in the space of parameteasf
chaotic dynamical model in absence of uniform hyperbolicity, in particulauah
popular examples aséthon map, Chua circuit, Lorenz model, etc. Therefore, the
problem of understanding the nature of the orbit structure for systemsifivari-
ant regions is quite challenging. In these papers our investigation ¢élitg@s a
measure of chaos consisted to analyze the fractalization and parameiedeepe
of basins by using the technique of critical curves.

The description of the dynamics of such systems requires an infinite set of in
variants which means that any attempt to give a complete description of thedyna
ics and bifurcations will fail. Therefore, we have to restrict the analysisotae
particular details or to some most general features only.

Tsybullin and Yudovich [4] considered quadratic mappings as a finiteréifice
approximation of an ordinary differential system and determined interestrag-
ant manifold and sets, and pointed out the invariant measure on the invdisan
The notion of invariant curves, introduced in [4], constitutes an analyitis&ru-
ment particularly suitable to study the dynamical behavior and bifurcationsomn tw
dimensional maps with nonunique inverse. Its task is to provide reasonatle a
rigorous explanations for our investigation.

The main topic of this paper is motivated by our desire to apply and use ideas
and methods of Tsybullin & Yudovich to illustrate complex patterns of Lorenz
model proposed in [3]. It was mainly focused on one research ardatéot weak
attractors and invariant sets, and to identify and verify some propertasattors
on such maps. For the needs of bifurcation theory, it is very importantrémtge
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the persistence of attractors under perturbations by higer order teshashy.

Countless papers have been published in the past on the existenceeof hyp
surface of a mapping of some manifold, in which it is proved that the existience
rare and very degenerate situation. Arnold in [5] considered that thenab of
such invariant hypersurfaces as one of the definitions of strong tegmability and
conjured this phenomena as the case of some open problem in the spagesof ma

This paper is organized as follows. The section 2 recalls some peculi@r pro
erties of the Lorenz map, their dependence on the parameters is codsiaede
stability of a pecular fixed point 'the origin’ is analyzed. The qualitativeasédr
and bifurcations of this map are examined. In section 3, We investigate @fcles
order 2, and we examine the special casb ef2. We discuss some cases where
bifurcation can lead to creation of holes in basins of attraction, and cawsie g
tative changes in the structure of the domain as some parameters are Varied.
section 4, we consider conditions for the existence of invariant setsn&higkind
of invariant set is of mixed type in the sense that it is made up of curvesamtar
by T andT? which constitute weak attractors. And finally, we give the conclusion.

2 Fixed points and Critical curves

The fixed point and basic bifurcations ®fof the eq. (1) were analyzed, they are
solutions obtained by a trivial manipulation of (1) with= x andy’ = y: Besides

the solution(0; 0), we can observe that further fixed points exisa it 0. There

have been many important and interesting results about this system, suh as th
global stability, attractors, basins and so on.

In this section we focus our attention on bifurcations playing an important role
in the dynamics, those happening #®r> 0 andb > 0. We can easily state the
following proposition.

Proposition 1 If a < 0then Q0;0) is the unique fixed point of the map defined
by (1). If a> Othen two further fixed points, P and,fxist, symmetric with respect
to the y-axis, with x= ++/a; y = a.

We consider the qualitative behaviors of the map (1). As usual, the loeal dy
namics of map (1) in a neighborhood of a fixed point is dependant on tiobida
matrix. The Jacobian matrix of map (1) is given by

_ [1+ab—by —bx

J 2bx 1-b
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We consider now the conditions of local stability of the fixed p&®0;0), in
terms of the parameters of the eq. (1).
With
Jo l+ab O
©0~=1 o0 1-b

is Jacobian matrix oTy, in O(0;0) which has two eigenvalues+lab and 1— b.

We can conclude fob > 0 with consideringa > 0 and the casa = 0 that there
are only two different topological types @¥(0;0) for all permissible parameter
values. The fixed poinD(0;0) is a saddle ib € [0;2]. Whena > 0, O(0;0) is a
source ifb € [2;0) and whera > 0, O(0; 0) is non hyperbolic ifa= 0. We can see
that whenb = 2, fora > 0, one of the eigenvalues @f(0;0) is —1 and the other

is not one with module. Thus the flip bifurcation occurs with a birth of a pair of
saddle-cycles of order 2. Local stability of fixed po®¢0; 0) in Table 1 is given.

Table 1. Local stability of the fixed poif®(0; 0).

ba>0) | [0;2) | [2;00)
A=1-b | “1<A1<1 | A< —1

Ay =1+ab | Ar>1 | Ar>1

0(0;0) | saddle \ unstable node

b (a=0) | 0;2 | [2;00)
Az=1+ab | A2=1 | Ap=1

0(0;0) | saddle— Unstable node| unstable node— saddle

We can obtain that there are only two different topological type3(6f 0) for
all permissible parameter values.

Proposition 2 The point @0;0) is a saddle if b< 2, a> 0; O(0;0) is a unstable
nodeifb> 2, a> 0.

Proposition 3 If a =0, the map (1) undergoes a pitchfork bifurcation ai00).
Proof: By simple computation, we can prove this proposition.

Proposition 4 For a > 0 and b= 2, the map (1) undergoes a basin bifurcation
bounded-nonbounded.

This implies that bifurcations of such systems are extremely involved and rich.
Thus, the question arises: Can we estimate in exact terms how rich thesabifur
tions are?
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3 Continuous family of 2-cycles order

For b = 2, examining the properties of cycles , we remark that cycles of order 2
are detectable on the whoje- axis excepting the fixed point at the origin= 0.
These cycle€;:{(0,y),(0,—y)},y # 0 are transversally stable and according to
known results in Tsybullin [4] on stability of continuous families, imply that if
their transversal multipliep, | > 1 thenC; are unstable. Longitudinal multiplier
P is equal to 1.

Sincep, = (1+2a)?—4y?, stable cycle€,:{(0,y), (0, —y)} belong to this pair
of intervalls{y: 2a\/1+1/a<y< 1/(1+2a)*+1}

Forb=2.002(a=0.1), Fig. 1 shows that we are close to the bifurcation value
atb = 2 that leads to basin transformation from a bounded basin to an unbounded
basin forb < 2. The saddle fixed point a@(0,0) has become an unstable node,
with the birth of a pair of 2-cycles of the saddle type, symmetric with respeceto th
y-axis.

Fig. 1. Basin bifurcation and the origin is a node.

If we increase the parametare= 0.437 forb = 2, we observe interesting situa-
tion and we obtain characteristic behaviors of riddled basins. Theseslaggiear
because symmetries of dynamical systems force the presence of ingabamani-
folds; the attractors within invariant manifolds may be only weakly attractingtran
verse to the invariant manifold and this leads to a basin structure that i$)lyoug
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speaking, full of holes. By examining this peculiar valuép§reater understand-
ing can be gained as to how such basins arise.

It is known that basins generated by two-dimensional noninvertible maps may
be either simply connected, or multiply connected, or non connected, diagen
on the situation of their boundary with respect to the criticalL§&t In particular,
in Mira [3], the concept of minimal invariant absorbing area is defined deior
to give a global characterization of the different dynamical scenaglzged to
riddling bifurcation.

The minimal invariant absorbing area is the smallest absorbing area that in-
cludes the Milnor attractor [6] on which the chaotic dynamics occurs. Its delim-
itation is important in order to characterize the global properties which irfkien
the qualitative effects of riddling bifurcation. The period-1 saddle emégdd
the absorbing area which contains the attractor becomes transverdelylenta a
supercritical period doubling bifurcation, leading to the birth of two newagake?
saddles situated on the tops or extremities belonging-taxis In addition, Fig.

2 displays basin in yellow color and weak attractor( in red color) made alan
Whenever the origin of saddle type changes in an unstable node for ticse af

b producing the desired result: holes in the basin and offers the informédtram o
dled basin and 2-cycles are generically born which with the symmetric agopesar
will gives two 2-cycles of saddle type far> 2.

Fig. 2. Weak Attractor and Riddled basin.
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4 T-Invariant sets and T2-invariant sets

In this part, Invariant sets generated by two-dimensional endomorphirenssual-

ied. These invariant sets are obtained by iterating invariant lines in the immediate
bounded basin. This new kind of invariant set is of mixed type in the seasd th

is made up of curves invariant ByandT? which constitute weak attractors.

Attractors constitute an interesting object of study by themselves. The strong
dependence on the parameters generates a rich variety of complexgattehe
plane and gives rise to different types of basin fractalization as a qoasee, for
instance, of basins bifurcations with holes [1, 2]. Taking into accountdhsplex-
ity of the matter and its nature, the study of these phenomena can be catried ou
only via the association of numerical investigations guided by fundamemtaid:o
erations that can be found in [4].

The casd = 2 is very interesting , because we can put in evidence the existence
of weak attractors. The special character of this kind of sets has besuya
observed in coupled maps. To illustrate the idea, consider first invatigetric
curves of the first order (invariant lines), of second order (invéugaosses) in sense
of Tsybullin [4].

Definition 1 (from [4]): LetT : R — R2, be amap oR? into itself. The invariant
cross is a uniot; UL, of two subsets oR? such thafl (L;) € L, andT (L) C Lj.
We denote itL;L,, andL1 andL; invariant with respect td 2 so thatTZ(Ll) clLy
andT?(Lp) C Lo.

The mapping (1) has several invariant crosses.We start by determiréng th
straight crosses, so thiat andL, are the lines:

PutLi:y=ax+p ; Ly:y=yx+90
In vertue of the propert¥ (L1) C Lo andT(L2) C Ly,we get:
(1—Db)(ax+ B) +bx® = y(1+ ab)x— yox(ax+B) + &
(1—b)(yx+6) +b¥ = a(1+ab)x— abx(yx+5) +
From these two inequalities, we have:= —1/y, § = —B anda? = 1+2a—
2B Then forb = 2,we have two crossds{ L] andL; L, such that:
Li:y=aix+B and a’=1+2a—2;
Lf:y=y:x+6 and yY*=1+2a—25

The restriction of the mappin@? to each line so that?(L;) C L; gives: (1+
2a)2 — 412 =1.
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In the other hand, if we seardit-invariant lines by considering equatige= ¢
andT2-mapping which acts to the rul@? : (x,y) — (X;y) with

X = (1+ ab)[(14 ab)x— bxy — b[(1+ ab)x— bxyl((1 - b)y+ bx®)
and
y = (1-Db)[(1—b)y+bxX*] +b[(1+ ab)x— bxy}?

we obtain
c=(1-b)((1-b)c+bx¥) +bx¥((1+ab) —bc)?>, ¥xeR

Then:c= (1—b)%c ; b(1—b)+b((1+ab) —bc)>=0
If b=2, T?-invariantlines ar&, :y= (1+2a+1)/2, whose preimages under
ierationT areT? invariant parabolas, and theses lisare transversally unstable

such thaB; corresponds to the line=1+a, andS_ : y = a. Fig. 3 shows invariant
curved crosselsfz, parabolas an8. fora= 0.42 andb = 2.

Fig. 3. Invariant sets parabolas and lines.

These segments are also evoked in detail in [2], for instance, the exdsténc
the curve-liney = 1+ a mapped into the origin makes the iteration propertie$ of
(for b = 1) very different with respect to the behavior of the maps with a unique
inverse. Any arc crossing this line is mapped into an arc with a loop in the origin
like seenin [5]. Since the origin is a saddle, This requires that this cufeadeto
the stable manifold of this point. Its role is important to understand the homoclinic
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bifurcation ofO(0, 0), giving rise to a unique chaotic attractor which intersects the
line y =1+ ain infinitely many arcs with self-similar structure and loops issuing
from the origin (see Fig. 4 fob = 0.4,a= 2).

Fig. 4. Homoclinc Bifurcation and Loops B .

Consider the Jacobian matrix 6T

[(1+ab) —by] —b(1+ ab)x
x[(1+ab) — by(1— b) — 30%?] '—b(l+ ab)(1—b) +2b(1— b)yx+ b33
2(1— b)bx+ 2bx[(1+ ab) — byi? (1—b)2— 262x2[(1+ ab) — by]

We remark thapr = (1 — b)? — 2b?x?[(1 + ab) — by, and if we consider the
2-cycles(0,+y) for b =2 we obtainp+ = 1. Further,p, = [(1+ ab) —by|[(1+
ab) — by(1 — b) — 30?%?], in these 2-cycleg0,+y) for b = 2, is equal top, =
(14 2a)% — 4y2.

These results may be interesting, since the delimitation of the invariant sets and
basins permits to understand and clarify the concept of weak attractengrode
numerical evidence of such a bifurcation for chaotic sets of the Loremizmo

5 Conclusion

In this paper we investigate invariance property of the discrete Lorenzimad
contrast to existing studies of such models, which primarily focus on thentigna
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complexities in the models or the identification of parameter regions, our work
gives another perspective of the global dynamical behavior by a sftudyariant

sets and their bifurcations. We also give an explanation for the structuveak
attractors by use of the invariant set. These chaotic sets are related todeé mo
itself, and the main qualitative changes of the global structure can be addlyz

the contact between the domain boundaries and the singular set for treedatgd

map. This allows us to learn more about the dynamical behavior of the systems
under study than by just focusing on the local dynamics, since we cam Gtz
specific to coupled maps.
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