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Numerical Modeling of DC Busbar Contacts
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Abstract: The paper presents two electro-thermal numerical models which can be
used for the modeling and optimization of high currents busbar contacts for DC. The
models are obtained by coupling of the electric model with the thermal field problem.
The coupling is carried out by the source term of the differential equation which de-
scribes the thermal field. The models allows the calculationof the space distribution
of the electric quantities (electric potential, the gradient of potential and the current
density) and of the thermal quantities (the temperature, the temperature gradient, the
Joule losses and heat flow). A heating larger than that of the busbar appears in the
contact zone, caused by the contact resistance. The additional heating, caused by
the contact resistance is simulated by an additional sourceinjected on the surface of
contact. The 2D model has been solved by the finite volumes method while the 3D
model, by the finite elements method. Both models were experimentally validated.
Using the models, one can determine the optimal geometry of dismountable contact
for an imposed limit value of the temperature.

Keywords: Numerical modeling; Coupled problems; 3D Finite elements;2D Finite
Volumes; Busbar contacts.

1 Introduction

THE OPTIMIZATION of the busbar contacts (Figure 1) for high currents (1000
- 4000 A), used in the design of electrical equipment in metal envelope, is

possible by solving a coupled electrical and thermal problem. The dismountable
contact of a system of busbars has a non-uniform distribution of current density
on the cross-section of the current leads in the contact region. The non-uniform
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distribution of the current density implies a non-uniform distribution of source term
in the thermal conduction equation.

Fig. 1. Typical Busbar Contact.

The distribution of the electric quantities can be obtained by solving of Laplace
equation for electric potential. The solution of this equation depends on the temper-
ature through electric conductivity. In its turn the electric conductivity influences
the source term in the thermal conduction equation and thus the value and the dis-
tribution of the temperature of contact region.

It is possible to obtain the correct distributions for the electric quantities (po-
tential, intensity of the electric field, current density and losses by Joule effect) and
thermal quantities (temperature, gradient of temperature, density of the heat flow,
convection flow on the contact surface etc.) by coupling of the two problems, elec-
tric and thermal. The numerical model allows the calculation of the constriction
resistance (caused by the variation of the cross section of the current leads).

2 Numerical Model

The mathematical model used for obtaining the 2D numerical model has two com-
ponents, the electrical model and the thermal model, coupled by the electric con-
ductivity, which varies according to the temperature, and the source term.

2.1 Electrical model

The electrical model is governed by a 2D model described by the Laplace equation
for electric potential:
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where electric conductivity, and thus the electrical resistance, vary according to the
temperature as:

ρ(T) = ρ20(1+αR(T −20)) (2)

Knowing the electric potential, one can obtain the intensity of the electric field
~E = −gradV and the current density from law of electric conduction~J = σ~E.

The Joule losses (by the unit of volume) which represents the source termin
the thermal conduction equation are calculated by the following relation:

S(T) = ~J ·~E = ρ(T)J2 = σ(T)E2
. (3)

2.2 Thermal Model

The thermal model is governed by the thermal conduction equation in steady state:
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whereλ - the thermal conductivity which is considered constant in the temperature
range of the current leads (bellow 200◦).

3 Domain of Analysis And Boundary Conditions

One considers a simplified analysis domain which is presented in Figure 2 and
Figure 3 where one neglects the existence of the fastening bolts.

The boundary conditions of the electrical model are presented in Figure 2. In
the general case, one knows the currentI carrying the current lead which determines
a voltage dropV1 −V2. In this model, one initializes the voltage drop for which
one calculates the current which corresponds to it (at each iteration) and then in
another iteration loop one modifies the voltage drop to obtain the desired value of
the current.

The current which passes by the section of the current lead is calculatedby the
following relation:

I =
∫

S
(~J ·~n)dS (5)

where~n - the normal atSwhich is the cross-section of the current lead.
The two assembled bars are considered sufficiently long to set, on the bound-

ariesAB andAC, (Figure 3) the boundary conditions of Neumann homogeneous
type. Because the length of segmentsAE andFD (375 mm) of Figure 3 is long
enough the temperature distribution is uniform and consequently the temperature
gradient is almost zero and the axial thermal flow is also zero.



212 I. Popa and A. Dolan:

On the other borders, one sets boundary conditions of the convection type,
with a global heat exchange coefficienth (by convection and radiation,h = 14.5
Wm−2K−1, increased by a coefficient that takes into acount the heat transfer through
the side surfaces) to the environment having the temperatureT∞ [1].

Fig. 2. Analysis Domain and Boundary Conditions for Electrical Model.

Fig. 3. Analysis Domain and Boundary Conditions for Thermal Model (AE =
FD = 0.375 m,EF = 0.1 m).

4 Numerical Algorithm

The numerical model is obtained by the discretization of the differential equations
(1) and (4) using the finite volumes method [2]. The coupled model is of alter-
nate type [3] where the equations are solved separately and coupling is realized
by the transfer of the data of one problem to the other. The two problems (elec-
tric and thermal) are integrated in the same source code and thus use the same
mesh. The numerical algorithm is shown in Figure 4. The criterion of convergence
of the coupled model was selected the value of the current, through the current
lead, calculated using the relation (5). One used a mesh having 3787 nodes(with
∆x= ∆y= 1.66 mm). The imposed percent relative error, for electrical and thermal
models, was 10−7 and for coupled model was 10−5. The convergence of the cou-
pled model is very fast (4÷6 iterations). If the error is reduced then the number
of iterations increases but this is not necessary. The desired value of the current in
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contact is adjusted by varying the voltage drop on contact. The number of itera-
tions for the electrical and thermal models decreases sharply with the stabilization
of current.

The numerical validation of the model was made using a simplified analysis do-
main with a current lead with variable cross-section [1,4]. The numerical validation
of the results of this simplified model was made by using the software QuickField
Professional for the electrical and thermal models. There is a very goodagreement
between our results and the results obtained using the QuickField software.

5 Numerical Results and Experimental Validation

The Figures 5, 6, 7, 8 and 9 present some numerical results. The dimensions of the
analysis domain are those of Figure 3. The principal difficulty, in modelling the
temperature distribution of a dismountable contact, is to take into account the resis-
tance of contact (especially disturbance resistance). The contact resistance model
is presented in the next paragraph. The optimization of the contact design means
calculation of the dimensionlc such that the maximum temperature, in the contact
region, remains lower than the acceptable limiting value allowed by standards.

Fig. 4. Simplified Diagram of Numerical Algorithm.

For the case presented (lc = 100 mm andI = 620 A) the calculated losses by
Joule effect with constriction resistance are 28.89 W, while calculated Joulelosses
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without constriction resistance are 24.91 W. Varying overlapping length ofthe bars
lc (see Figure 1) the maximum contact temperature has a linear dependence with
lc [1].

Fig. 5. Potential Distribution in the Contact Re-
gion (in mV). Fig. 6. Electrical Field Distribution in the Con-

tact Region (in V/m ).

Fig. 7. Current Density Distribution in the Con-
tact Region (in A/mm2).

Fig. 8. Temperature Distribution in the Contact
Region (in◦C).

Fig. 9. Gradient of Temperature in the Contact Region (in◦C).

6 3D Numerical Model

The 3D model was obtained using the software Flux 3D by coupling the AC Mag-
netics problem at zero frequency with the transient thermal problem [5].The mesh
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were realised using first order tetrahedral elements (Figure 10). The injected cur-
rent in busbar was modeled by a current source connected to a solid conductor
using the module Electric Flux (Figure 11).

Fig. 10. 3D Mesh (269137 elements). Fig. 11. Electric circuit of busbar contact.

Fig. 12. Time evolution of temperature in fixed points.

Fig. 13. Time evolution of voltage drop on busbar contact.

The numerical 3D results are shown in Figures 12 - 15 and the spatial distri-
butions of magnetic flux density and thermal field in steady state in Figures 16
and 17.
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Fig. 14. Temperature distribution on cross section in steady state.

Fig. 15. Temperature distribution along of busbar in steady state.

Fig. 16. Magnetic flux density distribution on
busbar.

Fig. 17. Temperature distribution on busbar in
steady state.

For the validation of the numerical model an experimental model was built with
the measuring points presented in Figure 18 (the measuring points are placedin the
center of surface). The values measured in these points, using a digital thermometer
with contact (Fluke 54 II) are shown in Table 1.

Table 1. : Experimental Results

Point T1 T2 T3 T4 T5 T6 T7

T[◦C] 29.3 29.3 29.4 29.8 29.4 29.3 29.3

The 2D numerical results for the thermal field, ilustrated in Figure 8, compared
with the experimental results (see Table 1) show a good agreement. For exemple
the error in the measurement point T4 (in the center of the contact) for 2D model



Numerical Modeling of DC Busbar Contacts 217

is 2.13 % and for 3D model is 0.51 %. The experimental data of Table 1 were
measured for a tightening force of screws of 100 N.

Fig. 18. Points of Temperature Measurement.

Fig. 19. Thermal Image of the Contact Region.

For the considered contact geometry and the current ofI = 620 A, the voltage
drop measured between the limitsAB andAC (see Figure 4) was 11.98 mW, while
the voltage drop controled to get the current imposed in the numerical model 2D
was 11.2 mV . The experimental results of Table 1 were obtained for the ambient
temperature of 20.5◦C.

Figure 19 shows the thermal image of the contact zone obtained with the ther-
mal camera. One can observe the scews areas which is colder. The scews help to
cool the contact region by enlarging the surface of thermal eschange with surroud-
ing environment.

7 Contact Resistance Model

The source term determined by the contact resistance is calculated by the following
relation:

Sc =
RcI2

(nc−1)∆x∆yH
(6)

where∆x and∆y - the dimensions of the control volume,nc - the number of mesh
points in the contact region (see Figure 20),H - the bus bar width (see Figure 1).

The contact resistanceR)c is calculated with the following relation [6]:

Rc =
ρ

πan
arctan

√
d2−a2

a
−1.2

ρ
√

d2−a2

Aa
+

Rss

nπa2 (7)

whereρ - the electric resistivity,n - the number of contact points,Aa - the total area
of contact (see Figure 14) andRss - the specific resistance of oxide film of contact
point (in Ωm2).
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The radius of contact surfacea is calculated from Holm’s relation:

a =

√

F
πnξHd

(8)

whereF - the tightening force,ξ - Prandtl coefficient,H - material durity.

Fig. 20. The Mesh in Contact Region.

Fig. 21. Physical Model of Contact Region.

The relation (7) does not take into account the variation of contact resistance
with temperature. To take it into account one can use the relation [6]:

Rc(T) = Rc(20)
(

1+
2
3

αR(T −20)
)

(9)

whereαR - the variation coefficient of electric resistivity with temperature,Rc(20)
- the contact resistance at 20◦C. The contact resistance model was implemented
in numerical model of dismountable contact. For a constant value of the current
(I = 620 A), varying the tightening force of the screws one can get the variation of
the maximum temperature versus tightening force.

8 Conclusions

The presented model can be used for the optimization of the current leads of high
currents with variable cross-section, such as the dismountable contacts ofbusbar.
The model allows the calculation of the constriction resistance of current lead, the



Numerical Modeling of DC Busbar Contacts 219

constriction resistance of contact region and takes into account the specific resis-
tance of oxide film of contact point which is an important component of the contact
resistance.

Numerical model created allows evaluation of the maximum temperature in the
contact area as a function of the tightening force of the dismountable contact.

An improvement of the model is possible taking into account the presence of
the tightening screws and usage of the model of contact resistance moore precise as
example the model given by Greenwood [7, 8]. The model is valid only for dc. In
alternating current Equation (1) must be replaced by a magneto-dynamic equation.
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