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Numerical Modeling of DC Busbar Contacts

Dedicated to Professor Slavoljub Alek&sin the occasion of his 60th birthday

loan Popa and Alin-lulian Dolan

Abstract: The paper presents two electro-thermal numerical modelshw¢an be
used for the modeling and optimization of high currents bnglontacts for DC. The
models are obtained by coupling of the electric model withtttermal field problem.
The coupling is carried out by the source term of the difféeéequation which de-
scribes the thermal field. The models allows the calculativtme space distribution
of the electric quantities (electric potential, the gradief potential and the current
density) and of the thermal quantities (the temperatueetemperature gradient, the
Joule losses and heat flow). A heating larger than that of tisbdr appears in the
contact zone, caused by the contact resistance. The additi@ating, caused by
the contact resistance is simulated by an additional sdojeeted on the surface of
contact. The 2D model has been solved by the finite volumehadethile the 3D
model, by the finite elements method. Both models were expially validated.
Using the models, one can determine the optimal geometrysaialntable contact
for an imposed limit value of the temperature.

Keywords: Numerical modeling; Coupled problems; 3D Finite elemeB3;Finite
Volumes; Busbar contacts.

1 Introduction

HE OPTIMIZATION of the busbar contacts (Figure 1) for high currents (1000
- 4000 A), used in the design of electrical equipment in metal envelope, is
possible by solving a coupled electrical and thermal problem. The dismdentab
contact of a system of busbars has a non-uniform distribution of mudensity
on the cross-section of the current leads in the contact region. Themfmmm
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distribution of the current density implies a non-uniform distribution of setecm
in the thermal conduction equation.
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Fig. 1. Typical Busbar Contact.

The distribution of the electric quantities can be obtained by solving of Laplace
equation for electric potential. The solution of this equation depends on thetemp
ature through electric conductivity. In its turn the electric conductivity influges
the source term in the thermal conduction equation and thus the value arid-the d
tribution of the temperature of contact region.

It is possible to obtain the correct distributions for the electric quantities (po-
tential, intensity of the electric field, current density and losses by Jowetg#nd
thermal quantities (temperature, gradient of temperature, density of thédvea
convection flow on the contact surface etc.) by coupling of the two probleles
tric and thermal. The numerical model allows the calculation of the constriction
resistance (caused by the variation of the cross section of the curaes).le

2 Numerical Model
The mathematical model used for obtaining the 2D numerical model has two com-

ponents, the electrical model and the thermal model, coupled by the elegtric co
ductivity, which varies according to the temperature, and the source term.

2.1 Electrical model

The electrical model is governed by a 2D model described by the Lapiaedien

for electric potential:
17} oV 17} ov
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where electric conductivity, and thus the electrical resistance, vaoydiog to the
temperature as:

P(T) = p2o(1+ ar(T — 20)) 2

Knowmg the electric potential, one can obtain the intensity of the electric field
E = —grad/ and the current density from law of electric conductiba oE.

The Joule losses (by the unit of volume) which represents the sourcarterm
the thermal conduction equation are calculated by the following relation:

—

S(T)=J-E=p(T)I?=0(T)E2 (3)

2.2 Thermal Mod€

The thermal model is governed by the thermal conduction equation in steddy s

%(A(T)Z—I)Jr:—}/(/\(T)Z;)JrS 0 @)

whereA - the thermal conductivity which is considered constant in the temperature
range of the current leads (bellow 200

3 Domain of Analysis And Boundary Conditions

One considers a simplified analysis domain which is presented in Figure 2 and
Figure 3 where one neglects the existence of the fastening bolts.

The boundary conditions of the electrical model are presented in Figure 2
the general case, one knows the curtararrying the current lead which determines
a voltage drop/1 —V». In this model, one initializes the voltage drop for which
one calculates the current which corresponds to it (at each iteratidnthan in
another iteration loop one modifies the voltage drop to obtain the desired falue o
the current.

The current which passes by the section of the current lead is calcbhatbd
following relation:

- /S(J 7)dS )

wheren - the normal aSwhich is the cross-section of the current lead.

The two assembled bars are considered sufficiently long to set, on thd-boun
ariesAB and AC, (Figure 3) the boundary conditions of Neumann homogeneous
type. Because the length of segmeAts andFD (375 mm) of Figure 3 is long
enough the temperature distribution is uniform and consequently the temperatu
gradient is almost zero and the axial thermal flow is also zero.
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On the other borders, one sets boundary conditions of the convectien typ
with a global heat exchange coefficign{by convection and radiatiom = 14.5
Wm—2K~1, increased by a coefficient that takes into acount the heat transfagtir
the side surfaces) to the environment having the temperaiurg.
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Fig. 3. Analysis Domain and Boundary Conditions for Thermal Modét &
FD=0.375m,EF =0.1 m).

4 Numerical Algorithm

The numerical model is obtained by the discretization of the differentialtemsa

(1) and (4) using the finite volumes method [2]. The coupled model is of alter-
nate type [3] where the equations are solved separately and couplinglizede

by the transfer of the data of one problem to the other. The two problents (ele
tric and thermal) are integrated in the same source code and thus use the same
mesh. The numerical algorithm is shown in Figure 4. The criterion of cgeviee

of the coupled model was selected the value of the current, through trentur
lead, calculated using the relation (5). One used a mesh having 3787 (mothes
Ax= Ay =1.66 mm). The imposed percent relative error, for electrical and thermal
models, was 10’ and for coupled model was 18. The convergence of the cou-
pled model is very fast (4 6 iterations). If the error is reduced then the number
of iterations increases but this is not necessary. The desired value ciditent in
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contact is adjusted by varying the voltage drop on contact. The numberaf ite
tions for the electrical and thermal models decreases sharply with the stidmiliza
of current.

The numerical validation of the model was made using a simplified analysis do-
main with a current lead with variable cross-section [1,4]. The numeridalation
of the results of this simplified model was made by using the software QuickField
Professional for the electrical and thermal models. There is a very agregment
between our results and the results obtained using the QuickField software.

5 Numerical Resultsand Experimental Validation

The Figures 5, 6, 7, 8 and 9 present some numerical results. The dimeo$ibhe
analysis domain are those of Figure 3. The principal difficulty, in modelling the
temperature distribution of a dismountable contact, is to take into account iie res
tance of contact (especially disturbance resistance). The contastaneg model

is presented in the next paragraph. The optimization of the contact desarsme
calculation of the dimensioly such that the maximum temperature, in the contact
region, remains lower than the acceptable limiting value allowed by standards.

| Set Boundary Conditinns |
[

v
ELECTRICAL aleulaty
MODEL | ey, By, Toxy, Stxy,
l Update
olx, p)

THERMAL Calculate
MODEL Tixy), Glzy). By

Chatpnit Diata
Vi), B, Iy, 30w, a(oy), L Py
Tx,g), Glx,¥), Flz,¥), ete.

Fig. 4. Simplified Diagram of Numerical Algorithm.

For the case presenteld £ 100 mm and = 620 A) the calculated losses by
Joule effect with constriction resistance are 28.89 W, while calculated [bmsles
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without constriction resistance are 24.91 W. Varying overlapping lengtmedfars
Ic (see Figure 1) the maximum contact temperature has a linear dependence with

le [1].
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Fig. 5. Potential Distribution in the Contact Re- -3 0
gion (in mV).

Fig. 6. Electrical Field Distribution in the Con-
tact Region (in V/m).
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Fig. 9. Gradient of Temperature in the Contact Regior? G

6 3D Numerical Modé€

The 3D model was obtained using the software Flux 3D by coupling the AG Mag
netics problem at zero frequency with the transient thermal problenT [&&.mesh
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were realised using first order tetrahedral elements (Figure 10). jéwad cur-
rent in busbar was modeled by a current source connected to a sotidaton
using the module Electric Flux (Figure 11).
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Fig. 10. 3D Mesh (269137 elements).

Fig. 11. Electric circuit of busbar contact.
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Fig. 12. Time evolution of temperature in fixed points.
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Fig. 13. Time evolution of voltage drop on busbar contact.

The numerical 3D results are shown in Figures 12 - 15 and the spatial distri-
butions of magnetic flux density and thermal field in steady state in Figures 16
and 17.
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Fig. 14. Temperature distribution on cross section in steady state.
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Fig. 16. Magnetic flux density distribution on Fig. 17. Temperature distribution on busbar in
busbar. steady state.

For the validation of the numerical model an experimental model was built with
the measuring points presented in Figure 18 (the measuring points are ipl#ived
center of surface). The values measured in these points, using a digitabimeter
with contact (Fluke 54 II) are shown in Table 1.

Table 1.: Experimental Results
Point ‘ T]_ ‘ T2 ‘ T3 ‘ T4 ‘ T5 ‘ TG ‘ T7
T[°C] | 29.3| 29.3| 29.4| 29.8| 29.4| 29.3| 29.3

The 2D numerical results for the thermal field, ilustrated in Figure 8, cordpare
with the experimental results (see Table 1) show a good agreement. Foplexe
the error in the measurement point T4 (in the center of the contact) for 2[2Imod
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is 2.13 % and for 3D model is 0.51 %. The experimental data of Table 1 were
measured for a tightening force of screws of 100 N.
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Fig. 18. Points of Temperature Measurement.
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Fig. 19. Thermal Image of the Contact Region.

For the considered contact geometry and the curreht0620 A, the voltage
drop measured between the limk8 andAC (see Figure 4) was 11.98 mW, while
the voltage drop controled to get the current imposed in the numerical mBdel 2
was 11.2 mV . The experimental results of Table 1 were obtained for the ambien
temperature of 20.5C.

Figure 19 shows the thermal image of the contact zone obtained with the ther-
mal camera. One can observe the scews areas which is colder. Thehsdpwio
cool the contact region by enlarging the surface of thermal eschaitlyswroud-
ing environment.

7 Contact Resistance M odel

The source term determined by the contact resistance is calculated bildinég
relation: 5
Rl

YPSERY v (6)
(nc — 1)AxAyH
whereAx andAy - the dimensions of the control volumm, - the number of mesh
points in the contact region (see Figure 28); the bus bar width (see Figure 1).

The contact resistand®c is calculated with the following relation [6]:

S =

_p d2 —a? pvd?2—aZ2  Rgs
R.= an arctan a 12 A + — (7)

wherep - the electric resistivityn - the number of contact pointa, - the total area
of contact (see Figure 14) am{s - the specific resistance of oxide film of contact
point (in Qm?).
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The radius of contact surfaeas calculated from Holm’s relation:

F

a= —qT (8)

whereF - the tightening forceé - Prandtl coefficientH - material durity.
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Fig. 20. The Mesh in Contact Region.

Fig. 21. Physical Model of Contact Region.

The relation (7) does not take into account the variation of contact nesesta
with temperature. To take it into account one can use the relation [6]:

R(T) = Re(20) (1+ 2am(T ~20)) ©)
wherear - the variation coefficient of electric resistivity with temperatuRg20)

- the contact resistance at°Zl) The contact resistance model was implemented
in numerical model of dismountable contact. For a constant value of thenturr
(I =620 A), varying the tightening force of the screws one can get the variafio
the maximum temperature versus tightening force.

8 Conclusions

The presented model can be used for the optimization of the current [ehidgho
currents with variable cross-section, such as the dismountable contdmishar.
The model allows the calculation of the constriction resistance of curreshtilea
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constriction resistance of contact region and takes into account thiicpesis-
tance of oxide film of contact point which is an important component of théacbd
resistance.

Numerical model created allows evaluation of the maximum temperature in the
contact area as a function of the tightening force of the dismountable tontac

An improvement of the model is possible taking into account the presence of
the tightening screws and usage of the model of contact resistance meose@s
example the model given by Greenwood [7, 8]. The model is valid only donrl
alternating current Equation (1) must be replaced by a magneto-dynauatiay
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