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Dynamics of Three Dimensional Maps
Asma Djerrai and Ilhem Dijellit

Abstract: Smooth 3D maps have been a focus of study in a wide range of re-
search fields. Their Properties are investigated quaigigtiand numerically. These
maps show qualitatively interesting types of bifurcatidghan those exhibited by
generic smooth planar maps. We present a theoretical frarkdar analyzing three-
dimensional smooth coupling maps by finding the stabilitiec@a for periodic orbits
and characterizing the system behaviors with the tools ofinear dynamics relative
to bifurcation in the parameter plane, invariant manifolctstical manifolds,chaotic
attractors. We also show by numerical simulation bifumrai that can occur in
such maps. By an analytical and numerical exploration we givme properties and
characteristics, since this class of three-dimensionahdycs is associated with the
properties of one-dimensional maps. There is an integegtassage from the one-
dimensional endomorphisms to the three-dimensional endamsms.
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1 Introduction

Three parameters bifurcation problem is not frequently used for anglyonlin-
ear dynamical systems. Somes pecular dynamical properties have lidemced
and observed in iterated maps I&f°>. There has been an explosion of research
activity concerned with chaotic behavior and then many books on dynaasyisal
tems to reflet the recent interest, but relatively few of the books to offarge
account of the area of three-dimensional maps. The essence of stiefitifis

is shifted to further elaboration of conceptual framework of bifurcatimal\sis, to
standardization of the new important domains of applications for the desarth8o
qualitative properties of orbits. The basic element of this analysis is the ggome
cal and numerical modification and application of the classical formalism, vidich
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giving the description of the behavior of the iteration processes neaothrelaries

of the stability domains of equilibria. Our present work attempts towards finding
suitable stability criteria of periodic orbits in three-dimensional smooth systems
with respect to certain parameters in the map, which is derived on the parts on
the parameter-scannings. Different bifurcation scenarios and eséstérchaotic
attractors are also shown by computer simulation.

2 Presentation

The starting point for us, was two-dimensional smooth maps of the form:
To : R2— R?
To: { Xn+1 = 4.a1.yn.(1— yn) + (1— b)Xn

Where aj,ap,b are real parameters. Classic bifurcations were put in evidence
for these maps related to critical curves , to chaotic attractors and badiese T
bifurcations are the following.

. Connected Basir—Multiply connected basin

. Non connected Basir— connected basin

. Contact bifurcation and disparition of an attractor
. Fractalization of the basin boundary

. Invariant Closed Curve (IC€)— Attractor Weakly Chaotic (AWC) : trans-
formation of an invariant closed curve in weakly chaotic attractor.

f. Contact bifurcations of chaotic areas.

O S o T 9o

Developing and exploring non linear maps in 3-dimension extended Tgam
a natural research topic. We consider the extended Taras follows:

T, R RS

Xn+1 = 4.a1.Yn.(1—Yn) + (1= D) X,
Ti:Q Ynr1=4a22.(1—2z)+ (1—Db).yn 1)
Zni1 =4.83.%.(1—Xn) + (1— D).z,
whereay, ap, az, b are real parameters ardy, zrepresent the space. We must notice

that the different choices of parameters give a wide variety of dynatméteviors.
The dynamics involves various transitions by bifurcations.
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Our new 3D mapTiillustrates important routes to chaos related to Neimark-
Hoph bifurcation, to doubling bifurcation. This has provided the principati-
vation for the present work . Indeed, analogous phenomena comgdatycles
produce invariant closed curves.

This paper intends to give such a study, and to consider different nijss.
structured as follows. First; Section 2, gives some general propenikbifurca-
tions are proved. Since the three-dimensional dynamids afe associated with
the properties of a one-dimensional map, there is an interesting passaythé
one-dimensional endomorphism to the three-dimensional endomorphistinesnd
some properties are automatically deduced. Next; in Section3, we introdeice th
notation used in [1, 2] to analyze these maps for a new kind of bifurcatibithw
is also a new route to chaos, and we note basic definitions and facts ailsddmth
of maps. Conclusions are given in section 4.

3 Study of the case b=1

In this section, in our study of three-dimensional maps we investigate owlaing

ities using some techniques and numerical simulations. Due to the theoretical and
practical difficulties involved in the study, computers will presumably playla ro

in such efforts. We study now the syst@mwith b =1, a1, a,az € R. We start by

the simple case and we develop this work

Xn+1=4.a1.yn.(1—Yn)
T2:% Yn1=4a2.2.(1—2z) (2)
Zo11 = 4.ag.Xn.(1—Xn)

whereas, ap, a3 are real parameters.

First, we present the diagram of bifurcations in the parameter glanes),
and we describe the dynamic behaviorTef With this scanning, a meaningful
characterization occurs and consists in the identification of its singularitiels, a
its dynamical behavior as the parameters vary. The numerical procetithe
description of such phenomena includes the bifurcation diagrams in whidii-the
furcation parameter is the equilibrium itself. On the other hand, we obtaimiafor
tions on stability region for the fixed point (blue domain), and the existergiene
for attracting cycles of order k existk € 14). The black regionsk(= 15) corre-
sponds to the existence of bounded iterated sequences. Parametdrsdiffiegent
regions give rise to different kind of bifurcations depending on theilgtabf the
existingk-cycle.
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Plan razam

a= -0,DEESEET b= 4.450C00 eycles O

Fig. 1. Bifurcation diagram fof> in the parameter plana{, az)

3.1 Simple generalization

The mapTl, can be written in the following form:

Xni1 = f(yn)
TZ* (X7 Y, Z) : Yn+1 = g(Zn) (3)
Zoi1=h(xn)

wheref :Y — X ,0:Z—Y andh: X — Z are continuous maps. With the initial
condition (Xo,Y0,20) € X x Y x Z and a trajectory{x, Y,z }, t > 0, whereT;!is

the t'Miterate of the magl,. We shall construct the analytical representation of
the general procedure of linear bifurcation analysis which descrileesiiginges in
the qualitative properties of the orbits on non-linear discrete dynamicy tinele
changes of the parameters of these dynamics. A more generalized stheyTof
system has been done on basis of the classical oligopoly model [3] atte dfvo
-dimensional cas@n1 = f(Yn),Ynr1 = 09(Xn)), see in [4] , [5] and [6]. Consider
global dynamics. Let us then define three functibrs, H such that we can assume
that :

F=fogoh, G=gohof and H=hofog 4)
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where the setX,Y andZ are assumed such that the m&p& andH are well
defined. Let’'s announce some properties of such maps. Very brieflyawe the

following:
Property 1: For any initial conditionxo, Yo, 20), these assumptions hold

T53¥(x0, Y0, 20) — (xak = F¥(x0), Y3k = GX(yo), &k = G*(20) (5)

T5 % (%0,Y0,20) = (¥ar1 = f 0 G¥(vo).
Zgk+1 = ho F¥(xo0).

T340 Y0,20) — (Xace2 = f 0goH¥ (@),
y3k+2:gOhOFk(XO>? (7)
Z3k+1 = hO f OGk(yO>

wherek = 1,2, .., F¥ G¥ HX are thek iterate ofF, G, H.
Property 2 . For eachk > 1 the mapg$-, Gand H satisfy:

foGk= fogohof o...ogohof =FKo f
goHX=gohofogo...ohofog=Grog
hoFK=hofogoho...ofogoh=H¥Xoh

Property 3 : For eachk > 1 the map$-, G andH satisfy:

fogon:fogohof ogo...ohof og:Fkofog
gohoFk:gohofogoho,,,ofogoho:Gkogoh
hofoGK=hofogohof o...ogohof =HXohof

Property 4 .

If {x1,%2....,%} is ak—cycle of F then{z1,2 ...,z} = {h(x1),h(x2),....,h(x) }
is ak— cycle ofH.

If {Y17YZ,-~-7YK} is ak—CyC|e ofG then{xlvxz,"‘vxk} = {f(yl)7 f(y2)7 ceey f(yk)}
is ak—cycle of F.

If {z1,2...,z} is ak—cycle ofH then{yi,y>....¥k} ={09(21),9(2),...,0(z)}
is ak—cycle of G
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3.2 Study of fixed points and cycles

Proposition 3.1. A fixed point(Ag, Bo,Co) of T, is constructed from a fixed point
Ap of F, a fixed point B of G and a fixed point gof H.

Proof. (Ag,Bo,Co) is a fixed point of T, = Ag a fixed point ofF,Byg andCy are
fixed points ofG andH respectively.

Ao Ao
T3 (A0,Bo,Co) = (A0,B0,Co) = T, [ Bo | = | Bo
Co Co

(Bo)) (Ao) (f(g(co))) <A0>
o) | = (B = | ath(an)) | = | Bo
(%)) \&/ \n(f(Bo)) \Go
( Ao

(

(

Ag Ao
T5 (A0,Bo,Co) = (A0,Bo,Co) = T, [ Bo | = | Bo
Co Co
f(Bo) Ao f(9(Co)) Ao
= 19(Co) | =|Bo| = [9(h(A)) | = | Bo
h(Ao) Co h(f(Bo) Co
(9(h Ao
( B
(

)
(f 9( (Ao)))> (Ao) (F( )) (Ao>
= | 9(h(f(Bo))) | = | Bo | = [ G(Bo) | = | Bo
h(f(9(Co))) Co H(Co) Co

Let Ag be a fixed point of, B a fixed point ofG andCy a fixed point of T,
then (Ao, Bo,Cp) is a fixed point ofT; :

(F(Ao)) (Ao) (f (g(h(Ao)))) (Ao) ( flg(h(Ao)] ) (Ao)
G(Bo) | = | Bo| = [9(h(f(Bo))) | =[Bo| = (9h(f(Bo))]|=|Bo
H(Go) Co h(f(9(Co))) Co h{f(9(Co))] Co

we put
cAoy cAy cAy
Bo = TZ* BO = Bo (8)
Co G G

g(h(Ao) = Bo Cf(Bo)
h(f(Bo))=Co | = | 9(Co) | =
f(9(G)) = Ao h(Ao)
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The stability of these points is naturally of fundamental importance. By lin-
earizing of the fixed poinP(A, B,C) of T,. The Jacobian matriX; atP is

0 5f(B) 0
oy
J(AB,C) = 0 0 595(?
Sh(A)
L dXx 0 0 i

We then get, by expanding the determinant

5f(B) 5g(C) Sh(A)

_ 13
J(AB,C) =23+ 55z Bx

Then we have three cases to consides: 3k, n=3k+ 1, andn = 3k+ 2. The
points of the cycles of order= 3k are described with the following expression:

FX(A) =A
GK(B) =B
Hk(C)=C

where(A,B,C) is a cycle of ordek. The jacobian matrix is given by

— k -
OFX(A) 0 0
o 5G4(B
JP**(A,B,C) = 0 5)(/ ) 0
k
0 o SH©)
L oz i
And the eigenvalues are all real:
SFX(A) 5GK(B) SHX(C))
M= ox ' Az = oy eths = 0z

The cycles of orden = 3k (k > 1) can be nodes or saddles.
For the second case: The points of the cycles of ande3k+ 1 are described

by:
fon(B) =A
{ goHX(C)=B
hoFK(A)=C
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The jacobian matrix related at this case is expressed by

0 3GK(B) S5F[GK(B)] 0
oy oy
J3k+1(A’ B,C) — 0 0 6H|;S(ZC)) . 59["(';;((:)}
SFX(A) Bh[FK(A)
FA . AEA 0 0

The characteristic equation for this kind of cycles is given by :

23, OT[CB)] 3gH (C)] ShIF¥(A)]

oy oz Ox
3GK(B) SHX(C)) SFKA) _ 0
oy oz ox

Therefore we have three solutions: € R andA;,A3 € C. The cycles of order
k = 3k+ 1 are either nodes-focus, or saddles-focus. The last case: ojdeder
n = 3k + 2 verify this type of relation:

{ fogoHX(C)=A

gohoFX(A) =B
ho foGK(B) =C

The jacobian matrix is
J¥+1(AB,C) =

0 0 SGHK(C)] JgHC)] 5HC)
Saln[FX (A SHFK(A)] SFX(A) 0 o7
[33 : ox  oX
0 shif(c (B)] 31(CB)] 364(E) 0
5 ey ey

The equation of the eigenvalues is then:

,\3+5f{g[HK(C)H Sglh[FX(A)]] Sh[fIG*(B)]] 8gH(C)] Sh[F¥(A)]
oz ox oy 0z Ox
Sf[[GX(B)]] SHK(C) OFk(A) 5GX(B)
‘ oy dz  ox oy

Here also we have three eigenvaldgs R andA,, A3 € C. The cycles of order
3k+ 2 are either nodes-focus, or saddles-focus.
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3.3 Critical planes

The mapT, is not-invertible. An important tool used to study non-invertible maps
is that of critical manifold, which has been introduced by Mira [7] and [8] .

A non-invertible map is characterized by the fact that a point in the state spac
can possess different number of rank-one preimages, dependérg wis located
in the state space. In the three-dimensional case, a critical pi@rie the geo-
metrical locus, in the stat§{ X) space of pointX having two coincident primages,
T—1(X), located on a planBC_; . It is recalled that the set of poinTs™"(X) con-
stitutes the ranky preimages of a given poirX.

For the mapT, , The planePC = T,(PC_1). The planePC_; is verifying
|3(X)| = 0, whereJ(X) is the jacobian matrix of, at the pointX which satis-
fies the equation

0 43y (1—2y) 0
I(X) = 0 0 lay(1—22)
4ag(1— 2x) 0 0

J(X) =64.a.a2.83.(1—2x)(1—2y)(1—22)

We can remark thaPC_; is independent of the parameter®C_; is con-
stituted of three planesPC%, PC), PC), where PC® = {(x,y,2)\x = 1},

PCY = {(xy,2)\y= 3}, PC = {(x y.2\z= }}
It follows that the critical planes of rank-1 are:

o PC@ = TZ(PC(C{ ) is the plane defined tw= ag with y < a,.

o PC) — T2(PCEb£ ) is the plane defined by= a; with z < as.

e PC = TZ(PC(? ) is the plane defined by= ag with x < a;.

Critical sets of higher order ii > 1, defined asPCj) = 2i+1(PC,1 ), are
important because generally the absorbing areas and the chaotic beeasro
invertible map are bounded by critical sets.

More general situations and deeper studies of the Ta&an be obtained and
proved if we consider the cas@j = a; = azg = a. The Figure 2 presents a chaotic
attractor in the space with the parameige= a, = ag = a=0.99.
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Fig. 2. Chaotic attractor of the map with the parameter a= 0.99

4 Bifurcation of invariant closed curves

Now we concentrate on presenting the studyTafestricting to only 1-parameter
a € R,. The bifurcation diagram of; in the parameter plane,b) is shown in
Figure 3, which presents information on stability region.

Plen razam

BI=  -4.00%
An=  -a.nnn

i als  sonnn
&=  =3.7€0000 b= 2426657 eyeles 0O

Fig. 3. Bifurcation diagram for Tin the parameter plane (a,b)
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We fix b= 0.50 and we varg; = a, = ag = a € R, so that the map becomes
as follows

Xn+1=4.aYn.(1—Yn) +1/2.%
T3:¢ Yn1=4az.(1—2z,)+1/2.y, (9)
Zni1 =4axn.(1—x,) +1/2.2,

Some algebraic manipulations show that there exists a fixed goinivhose
coordinates are given hy:
o = —1+8a
~ 8a

Let us now study the local stability of this fixed poiit We have to consider
the Jacobian matrix of the mdp, which is given by

(1,1,1)

1/2 4a.(1-2y) 0
J(X,Y,2) = 0 1/2 4a.(1—22)
4.a.(1-2x) 0 1/2

and evaluating the Jacobian matrixdf) we obtain the matrix

1/2 h 0

J(X*) = 0 1/2 h

h 0 1/2

where 1+8a
h=4.-a-(1—- 3 )

We give a sketch on local stability of the fixed poirit £0, we can summarize
this as follows:

Whena belongs to the intervd0.125 0.4128469547]1 this fixed point is sta-
ble.

Whena = 0.41284695471a Neimark-Hopf bifurcation appears and an invari-
ant closed curve (ICC) occurs, Figure 4 shows the invariant closee@CC) for
the value of parameter= 0.4200. And wheraincreases, oscillations in the shape
of invariant closed curve occur, illustrated in Figure 5. Then a new situatie
curs, the curve undergoes a kind of period- dubling. See Figure 6aispecific
bifurcation to the dimension three. In Figure 7, we see two separatedsdouyén
reality it is impossible to have this case.

Figure 8 represents a new situation related to the creation aloop. A daggher s
of this qualitative change from an invariant closed curve in the case ofesitpap,
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shows that the bifurcation mechanism is more complicated, and it is not directly
related to a sudden birth of the weakly chaotic ring.

Fora = 0.529Q we obtain a chaotic attractor which is presented in Figure 9,
which disappears..

Fig. 4. a=0.4200:The invariant closed curve ofFig. 5. a= 0.4946: Oscillation in the shape of
map T3 (Icc)

Fig. 6.a=0.4950: Period- dubling of (ICC) Fig. 7. a=0.5000: Qualitative change from (ICC)

5 Conclusions

We have studied three-dimensional maps depending on parameters.tiom2ec

we have given some properties Bf, we have studied this three-dimensional sys-
tem in the parameter plane and in the state space. We have seen that, more one-
dimension involves the possibility that new bifurcations occur, and an examasle
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Fig. 8.a=0.5250: Creation a loop of (ICC) Fig. 9. a=0.5300: Chaotic attractor in the space

given in Section 3. To complete this work, it would be most interesting to intduc
a more complete analysis of the global dynamic properties of three-dimehisiona
gistic maps.
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