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Dynamics of Three Dimensional Maps

Asma Djerrai and Ilhem Djellit

Abstract: Smooth 3D maps have been a focus of study in a wide range of re-
search fields. Their Properties are investigated qualitatively and numerically. These
maps show qualitatively interesting types of bifurcationsthan those exhibited by
generic smooth planar maps. We present a theoretical framework for analyzing three-
dimensional smooth coupling maps by finding the stability criteria for periodic orbits
and characterizing the system behaviors with the tools of nonlinear dynamics relative
to bifurcation in the parameter plane, invariant manifolds, critical manifolds,chaotic
attractors. We also show by numerical simulation bifurcations that can occur in
such maps. By an analytical and numerical exploration we give some properties and
characteristics, since this class of three-dimensional dynamics is associated with the
properties of one-dimensional maps. There is an interesting passage from the one-
dimensional endomorphisms to the three-dimensional endomorphisms.

Keywords: Three-dimensional maps, bifurcations, invariant closed curve.

1 Introduction

Three parameters bifurcation problem is not frequently used for analyzing nonlin-
ear dynamical systems. Somes pecular dynamical properties have been evidenced
and observed in iterated maps ofIR2. There has been an explosion of research
activity concerned with chaotic behavior and then many books on dynamicalsys-
tems to reflet the recent interest, but relatively few of the books to offer alarge
account of the area of three-dimensional maps. The essence of scientific efforts
is shifted to further elaboration of conceptual framework of bifurcation analysis, to
standardization of the new important domains of applications for the description the
qualitative properties of orbits. The basic element of this analysis is the geometri-
cal and numerical modification and application of the classical formalism, whichis
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giving the description of the behavior of the iteration processes near the boundaries
of the stability domains of equilibria. Our present work attempts towards finding
suitable stability criteria of periodic orbits in three-dimensional smooth systems
with respect to certain parameters in the map, which is derived on the parts on
the parameter-scannings. Different bifurcation scenarios and existence of chaotic
attractors are also shown by computer simulation.

2 Presentation

The starting point for us, was two-dimensional smooth maps of the form:

T0 : R
2→ R

2

T0 :

{

Xn+1 = 4.a1.yn.(1−yn)+(1−b).xn

Yn+1 = 4.a2.xn.(1−xn)+(1−b).yn

Where a1,a2,b are real parameters. Classic bifurcations were put in evidence
for these maps related to critical curves , to chaotic attractors and basins. These
bifurcations are the following.

a. Connected Basin←→Multiply connected basin

b. Non connected Basin←→ connected basin

c. Contact bifurcation and disparition of an attractor

d. Fractalization of the basin boundary

e. Invariant Closed Curve (ICC)←→ Attractor Weakly Chaotic (AWC) : trans-
formation of an invariant closed curve in weakly chaotic attractor.

f. Contact bifurcations of chaotic areas.

Developing and exploring non linear maps in 3-dimension extended fromT0 is
a natural research topic. We consider the extended formT1 as follows:

T1 : R
3→ R

3

T1 :







xn+1 = 4.a1.yn.(1−yn)+(1−b).xn

yn+1 = 4.a2.zn.(1−zn)+(1−b).yn

zn+1 = 4.a3.xn.(1−xn)+(1−b).zn

(1)

wherea1,a2,a3,b are real parameters andx,y,zrepresent the space. We must notice
that the different choices of parameters give a wide variety of dynamicalbehaviors.
The dynamics involves various transitions by bifurcations.
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Our new 3D mapT1illustrates important routes to chaos related to Neimark-
Hoph bifurcation, to doubling bifurcation. This has provided the principalmoti-
vation for the present work . Indeed, analogous phenomena concerning k-cycles
produce invariant closed curves.

This paper intends to give such a study, and to consider different maps.It is
structured as follows. First; Section 2, gives some general properties and bifurca-
tions are proved. Since the three-dimensional dynamics ofT2 are associated with
the properties of a one-dimensional map, there is an interesting passage from the
one-dimensional endomorphism to the three-dimensional endomorphism, andthen
some properties are automatically deduced. Next; in Section3, we introduce the
notation used in [1, 2] to analyze these maps for a new kind of bifurcation, which
is also a new route to chaos, and we note basic definitions and facts about this kind
of maps. Conclusions are given in section 4.

3 Study of the case b=1

In this section, in our study of three-dimensional maps we investigate our singular-
ities using some techniques and numerical simulations. Due to the theoretical and
practical difficulties involved in the study, computers will presumably play a role
in such efforts. We study now the systemT2 with b = 1, a1,a2,a3 ∈ R. We start by
the simple case and we develop this work

T2 :







xn+1 = 4.a1.yn.(1−yn)
yn+1 = 4.a2.zn.(1−zn)
zn+1 = 4.a3.xn.(1−xn)

(2)

wherea1,a2,a3 are real parameters.

First, we present the diagram of bifurcations in the parameter plane(a1,a3),
and we describe the dynamic behavior ofT2. With this scanning, a meaningful
characterization occurs and consists in the identification of its singularities, and
its dynamical behavior as the parameters vary. The numerical procedureof the
description of such phenomena includes the bifurcation diagrams in which thebi-
furcation parameter is the equilibrium itself. On the other hand, we obtain informa-
tions on stability region for the fixed point (blue domain), and the existence region
for attracting cycles of order k exists (k≤ 14). The black regions (k = 15) corre-
sponds to the existence of bounded iterated sequences. Parameters lyingin different
regions give rise to different kind of bifurcations depending on the stability of the
existingk-cycle.
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Fig. 1. Bifurcation diagram forT2 in the parameter plane (a1, a3)

3.1 Simple generalization

The mapT2 can be written in the following form:

T∗2 (x,y,z) :







xn+1 = f (yn)
yn+1 = g(zn)
zn+1 = h(xn)

(3)

where f : Y→ X , g : Z→Y andh : X→ Z are continuous maps. With the initial
condition (x0,y0,z0) ∈ X×Y×Z and a trajectory{xt ,yt ,zt}, t ≥ 0, whereT∗t2 is
the tthiterate of the mapT∗2 . We shall construct the analytical representation of
the general procedure of linear bifurcation analysis which describes the changes in
the qualitative properties of the orbits on non-linear discrete dynamics under the
changes of the parameters of these dynamics. A more generalized study oftheT∗2
system has been done on basis of the classical oligopoly model [3] and ofthe two
-dimensional case(xn+1 = f (yn),yn+1 = g(xn)), see in [4] , [5] and [6]. Consider
global dynamics. Let us then define three functionsF,G,H such that we can assume
that :

F = f ◦g◦h, G = g◦h◦ f and H= h◦ f ◦g (4)
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where the setsX,Y and Z are assumed such that the mapsF,G and H are well
defined. Let’s announce some properties of such maps. Very briefly wehave the
following:

Property 1: For any initial condition(x0,y0,z0), these assumptions hold

T∗3k
2 (x0,y0,z0)→ (x3k = Fk(x0),y3k = Gk(y0),z3k = Gk(z0) (5)

T∗3k+1
2 (x0,y0,z0)→ (x3k+1 = f ◦Gk(y0),

y3k+1 = g◦Hk(z0),

z3k+1 = h◦Fk(x0).

(6)

T∗3k+2
2 (x0,y0,z0)→ (x3k+2 = f ◦g◦Hk(z0),

y3k+2 = g◦h◦Fk(x0),

z3k+1 = h◦ f ◦Gk(y0).

(7)

wherek = 1,2, ..,Fk,Gk,Hk are thek iterate ofF , G, H.

Property 2 : For eachk≥ 1 the mapsF , G and H satisfy:

f ◦Gk = f ◦g◦h◦ f ◦ ...◦g◦h◦ f = Fk ◦ f

g◦Hk = g◦h◦ f ◦g◦ ...◦h◦ f ◦g = Gk ◦g

h◦Fk = h◦ f ◦g◦h◦ ...◦ f ◦g◦h = Hk ◦h

Property 3 : For eachk≥ 1 the mapsF , G andH satisfy:

f ◦g◦Hk = f ◦g◦h◦ f ◦g◦ ...◦h◦ f ◦g = Fk ◦ f ◦g

g◦h◦Fk = g◦h◦ f ◦g◦h◦ ...◦ f ◦g◦h◦= Gk ◦g◦h

h◦ f ◦Gk = h◦ f ◦g◦h◦ f ◦ ...◦g◦h◦ f = Hk ◦h◦ f

Property 4 :

If {x1,x2,...,xk} is ak−cycle ofF then{z1,z2,...,zk}= {h(x1),h(x2), ...,h(xk)}
is ak− cycle ofH.

If {y1,y2,...,yk} is ak−cycle ofG then{x1,x2,...,xk}= { f (y1), f (y2), ..., f (yk)}
is ak−cycle ofF .

If {z1,z2,...,zk} is ak−cycle ofH then{y1,y2,...,yk}= {g(z1),g(z2), ...,g(zk)}
is ak−cycle ofG
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3.2 Study of fixed points and cycles

Proposition 3.1. A fixed point(A0,B0,C0) of T∗2 is constructed from a fixed point
A0 of F, a fixed point B0 of G and a fixed point C0 of H.

Proof. (A0,B0,C0) is a fixed point ofT∗2 ⇒ A0 a fixed point ofF ,B0 andC0 are
fixed points ofG andH respectively.

T∗3 (A0,B0,C0) = (A0,B0,C0)⇒ T∗2





A0

B0

C0



 =





A0

B0

C0





⇒





f (B0)
g(C0)
h(A0)



 =





A0

B0

C0



⇒





f (g(C0))
g(h(A0))
h( f (B0))



 =





A0

B0

C0





⇒





f (g(h(A0)))
g(h( f (B0)))
h( f (g(C0)))



 =





A0

B0

C0



⇒





F(A0)
G(B0)
H(C0)



 =





A0

B0

C0





T∗2 (A0,B0,C0) = (A0,B0,C0)⇒ T∗2





A0

B0

C0



 =





A0

B0

C0





⇒





f (B0)
g(C0)
h(A0)



 =





A0

B0

C0



⇒





f (g(C0))
g(h(A0))
h( f (B0))



 =





A0

B0

C0





⇒





f (g(h(A0)))
g(h( f (B0)))
h( f (g(C0)))



 =





A0

B0

C0



⇒





F(A0)
G(B0)
H(C0)



 =





A0

B0

C0





Let A0 be a fixed point ofF , B0 a fixed point ofG andC0 a fixed point of T∗2 ,
then(A0,B0,C0) is a fixed point ofT∗2 :




F(A0)
G(B0)
H(C0)



 =





A0

B0

C0



⇒





f (g(h(A0)))
g(h( f (B0)))
h( f (g(C0)))



 =





A0

B0

C0



 ⇒





f [g(h(A0)]
g[h( f (B0))]
h[ f (g(C0))]



 =





A0

B0

C0





we put




g(h(A0) = B0

h( f (B0)) = C0

f (g(C0)) = A0



⇒





c f(B0)
g(C0)
h(A0)



 =





cA0

B0

C0



⇒ T∗2





cA0

B0

C0



 =





cA0

B0

C0



 (8)
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The stability of these points is naturally of fundamental importance. By lin-
earizing of the fixed pointP(A,B,C) of T∗2 . The Jacobian matrixT∗2 atP is

J(A,B,C) =















0
δ f (B)

δy
0

0 0
δg(C)

δz
δh(A)

δx
0 0















We then get, by expanding the determinant

J(A,B,C) = λ 3 +
δ f (B)

δy
.
δg(C)

δz
.
δh(A)

δx

Then we have three cases to consider:n = 3k, n = 3k+1, andn = 3k+2. The
points of the cycles of ordern = 3k are described with the following expression:







Fk(A) = A
Gk(B) = B
Hk(C) = C

where(A,B,C) is a cycle of orderk. The jacobian matrix is given by

J3k(A,B,C) =















δFk(A)

δx
0 0

0
δGk(B)

δy
0

0 0
δHk(C))

δz















And the eigenvalues are all real:

λ1 =
δFk(A)

δx
, λ2 =

δGk(B)

δy
et λ3 =

δHk(C))

δz

The cycles of ordern = 3k (k≥ 1) can be nodes or saddles.

For the second case: The points of the cycles of ordern = 3k+1 are described
by:







f ◦Gk(B) = A
g◦Hk(C) = B
h◦Fk(A) = C
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The jacobian matrix related at this case is expressed by

J3k+1(A,B,C) =









0 δGk(B)
δy · δ f [Gk(B)]

δy 0

0 0 δHk(C))
δz · δg[Hk(C)]

δz
δFk(A)

δx · δh[Fk(A)]
δx 0 0









The characteristic equation for this kind of cycles is given by :

λ 3+
δ f [Gk(B)]

δy
·

δg[Hk(C)]

δz
·

δh[Fk(A)]

δx

·
δGk(B)

δy
·

δHk(C))

δz
·

δFk(A)

δx
= 0

Therefore we have three solutions:λ1 ∈ R andλ2,λ3 ∈C. The cycles of order
k = 3k+1 are either nodes-focus, or saddles-focus. The last case: cyclesof order
n = 3k+2 verify this type of relation:







f ◦g◦Hk(C) = A
g◦h◦Fk(A) = B
h◦ f ◦Gk(B) = C

The jacobian matrix is

J3k+1(A,B,C) =







0 0 δ f [g[HK(C)]]
δz .

δg[Hk(C)]
δz .

δHk(C)
δz

δg[h[FK(A)]]
δx .

δh[Fk(A)]
δx .

δFk(A)
δx 0 0

0 δh[ f [GK(B)]]
δy .

δ f [[Gk(B)]]
δy .

δGk(B)
δy 0







The equation of the eigenvalues is then:

λ 3+
δ f [g[HK(C)]]

δz
·

δg[h[FK(A)]]

δx
·

δh[ f [GK(B)]]

δy
·

δg[Hk(C)]

δz
·

δh[Fk(A)]

δx

·
δ f [[Gk(B)]]

δy
·

δHk(C)

δz
·

δFk(A)

δx
·

δGk(B)

δy

Here also we have three eigenvaluesλ1 ∈R andλ2,λ3 ∈C. The cycles of order
3k+2 are either nodes-focus, or saddles-focus.
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3.3 Critical planes

The mapT2 is not-invertible. An important tool used to study non-invertible maps
is that of critical manifold, which has been introduced by Mira [7] and [8] .

A non-invertible map is characterized by the fact that a point in the state space
can possess different number of rank-one preimages, depending where it is located
in the state space. In the three-dimensional case, a critical planePC is the geo-
metrical locus, in the stateJ(X) space of pointsX having two coincident primages,
T−1(X), located on a planePC−1 . It is recalled that the set of pointsT−n(X) con-
stitutes the rank-n preimages of a given pointX.

For the mapT2 , The planePC = T2(PC−1). The planePC−1 is verifying
|J(X)| = 0, whereJ(X) is the jacobian matrix ofT2 at the pointX which satis-
fies the equation

J(X) =





0 4a1(1−2y) 0
0 0 4a2(1−2z)

4a3(1−2x) 0 0





J(X) = 64.a1.a2.a3.(1−2x)(1−2y)(1−2z)

We can remark thatPC−1 is independent of the parameters.PC−1 is con-
stituted of three planes:PC(a)

−1, PC(b)
−1, PC(c)

−1, wherePC(a)
−1 = {(x,y,z)\x = 1

2},

PC(b)
−1 = {(x,y,z)\y = 1

2}, PC(c)
−1 = {(x,y,z)\z= 1

2}

It follows that the critical planes of rank-1 are:

• PC(a) = T2(PC(c)
−1 ) is the plane defined byz= a3 with y≤ a2.

• PC(b) = T2(PC(b)
−1 ) is the plane defined byx = a1 with z≤ a3.

• PC(c) = T2(PC(c)
−1 ) is the plane defined byy = a3 with x≤ a1.

Critical sets of higher order i,i > 1, defined asPC(i) = T i+1
2 (PC−1 ), are

important because generally the absorbing areas and the chaotic areas of a non-
invertible map are bounded by critical sets.

More general situations and deeper studies of the mapT2 can be obtained and
proved if we consider the case :a1 = a2 = a3 = a. The Figure 2 presents a chaotic
attractor in the space with the parametera1 = a2 = a3 = a = 0.99.
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Fig. 2. Chaotic attractor of the mapT2 with the parameter a= 0.99

4 Bifurcation of invariant closed curves

Now we concentrate on presenting the study ofT1restricting to only 1-parameter
a ∈ R+. The bifurcation diagram ofT1 in the parameter plane (a,b) is shown in
Figure 3, which presents information on stability region.

Fig. 3. Bifurcation diagram for T1in the parameter plane (a,b)
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We fix b = 0.50 and we varya1 = a2 = a3 = a∈ R+, so that the map becomes
as follows

T3 :







xn+1 = 4.a.yn.(1−yn)+1/2.xn

yn+1 = 4.a.zn.(1−zn)+1/2.yn

zn+1 = 4.a.xn.(1−xn)+1/2.zn

(9)

Some algebraic manipulations show that there exists a fixed pointx∗ , whose
coordinates are given by:

x∗ =
−1+8a

8a
(1,1,1)

Let us now study the local stability of this fixed pointx∗. We have to consider
the Jacobian matrix of the mapT3, which is given by

J(x,y,z) =





1/2 4.a.(1−2y) 0
0 1/2 4a.(1−2z)

4.a.(1−2x) 0 1/2





and evaluating the Jacobian matrix inx∗, we obtain the matrix

J(x∗) =





1/2 h 0
0 1/2 h
h 0 1/2





where

h = 4·a· (1−
−1+8a

4a
)

We give a sketch on local stability of the fixed point x∗. So, we can summarize
this as follows:

Whena belongs to the interval[0.125, 0.41284695471], this fixed point is sta-
ble.

Whena = 0.41284695471, a Neimark-Hopf bifurcation appears and an invari-
ant closed curve (ICC) occurs, Figure 4 shows the invariant closed curve(ICC) for
the value of parametera = 0.4200. And whena increases, oscillations in the shape
of invariant closed curve occur, illustrated in Figure 5. Then a new situation oc-
curs, the curve undergoes a kind of period- dubling. See Figure 6, it isa specific
bifurcation to the dimension three. In Figure 7, we see two separated curves but in
reality it is impossible to have this case.

Figure 8 represents a new situation related to the creation a loop. A deeper study
of this qualitative change from an invariant closed curve in the case of simplest map,
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shows that the bifurcation mechanism is more complicated, and it is not directly
related to a sudden birth of the weakly chaotic ring.

For a = 0.5290, we obtain a chaotic attractor which is presented in Figure 9,
which disappears..
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Fig. 4. a=0.4200:The invariant closed curve of
map T3

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

z

y
x

Fig. 5. a= 0.4946: Oscillation in the shape of
(ICC)
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Fig. 6. a=0.4950: Period- dubling of (ICC)
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Fig. 7. a=0.5000: Qualitative change from (ICC)

5 Conclusions

We have studied three-dimensional maps depending on parameters. In Section 2,
we have given some properties ofT3, we have studied this three-dimensional sys-
tem in the parameter plane and in the state space. We have seen that, more one-
dimension involves the possibility that new bifurcations occur, and an examplewas
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Fig. 8. a=0.5250: Creation a loop of (ICC)
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Fig. 9. a=0.5300: Chaotic attractor in the space

given in Section 3. To complete this work, it would be most interesting to introduce
a more complete analysis of the global dynamic properties of three-dimensional lo-
gistic maps.

References

[1] F. Argoul and A. Arneodo, “From quasiperiodicity to chaos: an unstable scenario via
period-doubling bifurcations tori,”J. Mécanique Th́eor.Appl., no. sṕecial, pp. 241–288,
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