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Reverse Convertor Design for the 4-Moduli Set
{2n−1,2n,2n+1,22n+1−1} Based on the Mixed-Radix

Conversion

Negovan Stamenkovíc and Bojan Jovanovíc

Abstract: The residue number system (RNS) is an integer system capableof support-
ing high speed concurrent arithmetic. One of the most important consideration when
designing RNS system is reverse conversion. The reverse converter for recently pro-
posed for the four-moduli set{2n−1,2n,2n +1,22n+1−1} is based on new Chinese
remainder theorems II (New CRT-II) [6]. This paper presentsan alternative architec-
ture derived by Mixed-Radix conversion for this four-moduli set. Due to the using
simple multiplicative inverses of the proposed moduli set,it can considerably reduce
the complexity of the RNS to binary converter based on the Mixed-Radix conversion.
The hardware architecture for the proposed converter is based on the adders and sub-
tractors, without the needed ROM or multipliers.

Keywords: Computer arithmetic, residue number system, reverse converter, mixed-
radix conversion, four-moduli set.

1 Introduction

It is well known that the Residue Number System (RNS) architectures for the digi-
tal signal processing are typically composed of three major parts: a binaryto RNS
converter for converting the weighted number to residue representations, an arith-
metic unit containing modular adder, subtracter and multiplier, and a RNS to binary
converter for transforming the residues into its equivalent weighted binary repre-
sentation [4, 7]. Among these, residue-to-binary converter is the most complex
part of any RNS architecture which should be efficiently implemented to prevent
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the performance degradation of the overall RNS system. The moduli set choice is
also an important issue since the complexity and the speed of the resulting con-
version structure depends on the chosen moduli set [9]. So, the challenges of the
RNS system design lie in the choice of the moduli set and in the residue to binary
conversion.

The dynamic range of an RNS system is defined in terms of product of the
moduli, and it denotes the interval of integers, which can be uniquely presented in
RNS. The larger dynamic range can be realized by using four moduli set [5] or by
using larger value forn in three power-of-two moduli set [2]. It should be noted
that as the number of moduli in the set increase, the complexity of the RNS will
increase. Thus, the RNS systems based on four moduli set are more complex than
those based on three-moduli set.

An important concern for reverse converter design is the selection of anappro-
priate conversion algorithm. The algorithms of reverse conversion are mainly based
on the Chinese remainder theorem (CRT), mixed-radix conversion (MRC)and the
new Chinese remainder theorems (New CRTs) [10]. Among these, New CRTs has
simple computations which can be efficiently realized in hardware. For these cases
Molahoessini et al. [6] recently proposed reverse converter basedon the new CRT
for the four moduli set{2n−1,2n,2n+1,22n+1−1} which has a sufficient dynamic
range (5n).

In this paper, we propose the residue to binary converter for four moduli set,
proposed in [6], based on the mixed-radix conversion. First, we proposed simple
values for multiplicative inverse which leads to simpler hardware. Second, we
reduced hardware by using borrow-save-subtractor instead of carry-save-adder with
end-around-carry, and by using proposed new modular subtractor which avoids
double presentation of zero.

The paper is organized as follows: in Section 2, we introduce the necessary
background; the proposed improvements are presented in Section 3. Section 4 pro-
vides hardware implementation and simulation, and the last section is Conclusion.

2 Background

A residue number system (RNS) is defined in terms of a relatively-prime moduli
set{m1,m2, . . . ,mk} that is gcd(mi ,mj) = 1 for i 6= j [1, 8]. The greatest common
divisor (gcd) for a pair of numbers (a,b), can be calculated by the well known
Euclidian algorithm. A binary numberX can be represented in the defined residue
number system as a set ofn smaller integersX = (x1,x2, . . . ,xk), where

xi = 〈X〉mi , 0≤ xi < mi (1)
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and〈X〉mi denotes the residue ofX modulomi . This representation is unique for
any integerX in the range[0,M−1], whereM = m1m2 · · ·mk is the dynamic range
of the moduli set{m1,m2, . . . ,mk}. Modulo (2n−1) of a negative number is ac-
complished by subtracting this number from(2n−1). This is equivalent to taking
one’s complement of the number.

A large number can thus be represented by several smaller numbers, thereby
facilitating big word-length operations to be realized as several small word-length
operations. The addition, subtraction, and multiplication operations can thus be
performed quite efficiently. The division, sign detection, and magnitude compari-
son are time consuming in RNSs.

The Chinese Remainder Theorem (CRT) and mixed-radix conversion (MRC)
are generally used to perform the residue to binary conversion, that is toconvert the
residue number(x1,x2, . . . ,xk) into the binary numberX,

The binary numberX is computed by

X =
〈 k

∑
i=1

〈xiNi〉mi M1

〉

M
(2)

whereMi = M/mi andNi = 〈M−1
i 〉mi is the multiplicative inverse ofMi modulomi .

The main drawback of this approach is that it requires multiplication by theMi ’s
and moduloM operations (which M is large number).

The numberX can be computed by

X = ak

k−1

∏
i=1

Mi + · · ·+a3m1m2 +a2m1 +a1 (3)

whereais are called the mixed-radix digits (MRD) and they can be obtained from
the residues by [8]

ak =
〈
(· · ·((xk−a1)c1,k−a2)c2,k−·· ·

−ak−1)ck−1,k
〉

mk

(4)

whereci, j for 1≤ i ≤ j < 3 is the multiplicative inverse ofmi modulomj , or 〈ci j ×
mi〉mj = 1, for k > 1 anda1 = x1. For MRDsai , 0≤ ai < mi , any positive number
in interval[0,M−1] is uniquely represented. From (3), it is also seen that the digit
ak is the most significant digit. It is shown that the Mixed Radix Conversion is a
strictly sequential process. There is no need for the final modulo reduction.

3 MRD to Binary Conversion

Suppose that we have residue number(x1,x2,x3,x4), 0≤ xi < mi , for the moduli set
of length four{m1,m2,m3,m4} and by substituting Eq. (3) we obtain the following
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expresion:
X =a1 +a2m1 +a3m1m2 +a4m1m2m3 (5)

were[1, m1, m1m2, m1m2m3] is mixed-radix vector of mixed-radix system. In (5),
a1, a2, a3 anda4 are represented as a sequential algorithm

a1 = x1

a2 = 〈(x2−a1)c12〉m2

a3 = 〈((x3−a1)c13−a2)c23〉m3

a4 = 〈(((x4−a1)c14−a2)c24−a3)c34〉m4

(6)

If the mixed-radix digits are given, any number in the interval[0,M − 1] can be
uniquely represented. The well known mixed-radix conversion algorithmfor four
moduli set, according to H. L. Garner [1], is displayed in Figure 1.

Definition 1 Digits in the residue number system have no ordering significance. In
residue addition, subtraction, and multiplication, any particular digit of the resul-
tant depends solely on the corresponding digits of its operands. However, Residue
to Mixed-Radix Conversion depends on the digit ordering as shown in (3). Further,
mixed-radix digits ordering depends on the moduli set ordering. Due to this reason
we define the form of moduli set: the order of modules in the residue number sys-
tem. For example, assuming four moduli2n−1, 2n, 2n +1, 22n+1−1 we define the
first form of moduli set in ascending order, second form2n−1, 2n, 22n+1−1, 2n+1,
and so on. A set of four modules has twentyfour forms. Finally, the twentyfourth
form is a set of modules in descending order. Thus, the modulo at first position is
m1, at second position is m2, at third position is m3, and at fourth position is m4. �

The multiplicative inverse for all twenty-four forms of given moduli set are
shown in Table 1.The nineteenth form of given moduli set provides the best solu-
tion for ci j :

c12 = −1,

c13 = 1,

c14 = 1,

c23 = −1,

c24 = 1,

c34 = 2n−1.

(7)

It can be seen that the twenty-first form of moduli set also provides a good solution.
Using the nineteenth form of given moduli set mixed-radix digits can be repre-

sented as
a1 = x1

a2 = 〈(a1−x2)〉2n

a3 = 〈(a2− (x3−a1))〉2n+1

a4 = 〈(((x4−a1)−a2)−a3)2
n−1〉2n−1

(8)
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Table 1. Multiplicative inverse for moduli set{2n−1,2n,2n +1,22n+1−1}

Forma m1 m2 m3 m4 c12 c13 c14 c23 c24 c34

1 2n−1 2n 2n +1 22n+1−1 −1 2n−1 −2n+1−2 −1 2n+1 −2n+1 +2
2 2n−1 2n 22n+1−1 2n +1 −1 −2n+1−2 2n−1 2n+1 −1 1
3 2n−1 2n +1 2n 22n+1−1 2n−1 −1 −2n+1−2 1 −2n+1 +2 2n+1

4 2n−1 2n +1 22n+1−1 2n 2n−1 −2n+1−2 −1 −2n+1 +2 1 −1
5 2n−1 22n+1−1 2n +1 2n −2n+1−2 2n−1 −1 1 −1 1
6 2n−1 22n+1−1 2n 2n +1 −2n+1−2 −1 2n−1 −1 1 −1

7 2n 2n−1 2n +1 22n+1−1 1 −1 2n+1 2n−1 −2n+1−2 −2n+1 +2
8 2n 2n−1 22n+1−1 2n +1 1 2n+1 −1 −2n+1−2 2n−1 1
9 2n 2n +1 2n−1 22n+1−1 −1 1 2n+1 −2n−1 +1 −2n+1 +2 −2n+1−2

10 2n 2n +1 22n+1−1 2n−1 −1 2n+1 1 −2n+1 +2 −2n−1 +1 1
11 2n 22n+1−1 2n +1 2n−1 2n+1 −1 1 1 1 −2n−1 +1
12 2n 22n+1−1 2n−1 2n +1 2n+1 1 −1 1 1 2n−1

13 2n +1 2n 2n−1 22n+1−1 1 −2n−1 +1 −2n+1 +2 1 2n+1 −2n+1−2
14 2n +1 2n 22n+1−1 2n−1 1 −2n+1 +2 −2n−1 +1 2n+1 1 1
15 2n +1 2n−1 2n 22n+1−1 −2n−1 +1 1 −2n+1 +2 −1 −2n+1−2 2n+1

16 2n +1 2n−1 22n+1−1 2n −2n−1 +1 −2n+1 +2 1 −2n+1−2 −1 −1
17 2n +1 22n+1−1 2n−1 2n −2n+1 +2 −2n−1 +1 1 1 − 1 −1
18 2n +1 22n+1−1 2n 2n−1 −2n+1 +2 1 −2n−1 +1 −1 1 1

19 22n+1−1 2n 2n +1 2n−1 −1 1 1 −1 1 −2n−1 +1
20 22n+1−1 2n 2n−1 2n +1 −1 1 1 1 −1 2n−1

21 22n+1−1 2n +1 2n 2n−1 1 −1 1 1 −2n−1−1 1
22 22n+1−1 2n +1 2n−1 2n 1 1 −1 −2n−1 +1 1 −1
23 22n+1−1 2n−1 2n +1 2n 1 1 −1 2n−1 −1 1
24 22n+1−1 2n−1 2n 2n +1 1 −1 1 −1 2n−1 −1
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x1 x2 x3 x4

m2 m3 m4

m2 m3 m4

m3 m4

m3 m4

Mod Mod Mod

Mod Mod Mod

Mod Mod

Mod Mod

Mod

Mod

Subtr. Subtr. Subtr.

−−− −−− −−−

Mult. Mult. Mult.

c12 c13 c14

m4

Subtr. Subtr.

−−− −−−

m4

Mult. Mult.

c23 c24

Subtr.
c34

Mult.

a4

a3

−−−

a1

a2

Fig. 1. Mixed-radix algorithm to convert the residue code to a weighted code.

Operandsa1, a2, a3 anda4 are(2n+1)-bit, n-bit, (n+1)-bit andn-bit, respec-
tively.

4 Hardware Implementation

4.1 MRD to binari convertor

The proposed architecture of RNS to mixed-radix digits conversion is depicted in
Figure 2. It contains only modulo subtractors, and one modulo(2n−1) multipli-
cation by 2n−1. Modulo(2n−1) multiplication by 2n−1 is equivalent to(n−1) bit
circular shifting. In our implementation circular shifting(n−1) the left is the same
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as one bit right shifting, because mixed-radix digita4 hasn-bits.

Conc. Conc. Conc. Conc.

Sub. Sub.

Add.

X

x1 x2 x3 x4

− − −

− −

−

2n−1

a1 a2

a3

a4

MSB

��� n+1

��� n��� n

��� n+1��� 2n+1 ��� n ��� n

��� 1

��� n

a5 a6 a7 a8− −

a31 a41

a42

a43

Sub. #1 Sub. #2 Sub. #3

Sub. #4 Sub. #5

Sub. #6

Mult.

Fig. 2. Mixed-radix convertor for four moduli set{22n+1−1,2n,2n +1,2n−1}.

Equation 5 can be simplified as follows

X =a1 +a2(2
2n+1−1)+a3(2

2n+1−1)2n +a4(2
2n−1 +1)2n(2n−1)

=a1 +a222n+1 +a423n+1 +a424n+1− (a2 +a42n +a422n)+a323n+1−a32n

(9)
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The hardware realization of (9) can be simplified as follows

X = a5−a6 +a7−a8 (10)

where

a5 =a1 +22n+1a2 +23n+1a4 +24n+1a4

=(a1,2n,a1,2n−1, . . . ,a1,0
︸ ︷︷ ︸

2n+1

)

+(a2,n−1,a2,n−2, . . . ,a2,0
︸ ︷︷ ︸

n

,0,0. . . ,0
︸ ︷︷ ︸

2n+1

)

+(a4,n−1,a4,n−2, . . . ,a4,0
︸ ︷︷ ︸

n

,0,0, . . . ,0
︸ ︷︷ ︸

3n+1

)

+(a4,n−1,a4,n−2, . . . ,a4,0
︸ ︷︷ ︸

n

,0,0, . . . ,0
︸ ︷︷ ︸

4n+1

)

=(a4,n−1, . . . ,a4,0,a4,n−1, . . . ,a4,0,a2,n−1, . . . ,a2,0,a1,2n, . . . ,a1,0
︸ ︷︷ ︸

5n+1

)

(11)

a6 =a2 +a42n +a422n

=(a2,n−1,a2,n−2, . . . ,a2,0
︸ ︷︷ ︸

n

)

+(a4,n−1,a4,n−2, . . . ,a4,0
︸ ︷︷ ︸

n

,0,0. . . ,0
︸ ︷︷ ︸

n

)

+(a4,n−1,a4,n−2, . . . ,a4,0
︸ ︷︷ ︸

n

,0,0. . . ,0
︸ ︷︷ ︸

2n

)

=(0,0, . . . ,0,a4,n−1, . . . ,a4,0,a4,n−1, . . . ,a4,0,a2,n−1, . . . ,a2,0
︸ ︷︷ ︸

5n+1

)

(12)

a7 =a323n+1

= (a3,n,a3,n−1, . . . ,a3,0
︸ ︷︷ ︸

n+1

,0,0. . . ,0
︸ ︷︷ ︸

3n+1

)

= (0,0, . . . ,0,a3,n, . . . ,a3,0,0,0, . . . ,0
︸ ︷︷ ︸

5n+1

)

(13)

a8 =a32n

= (a3,n,a3,n−1, . . . ,a3,0
︸ ︷︷ ︸

n+1

,0,0. . . ,0
︸ ︷︷ ︸

n

)

= (0,0, . . . ,0,a3,n, . . . ,a3,0,0,0, . . . ,0
︸ ︷︷ ︸

5n+1

)

(14)
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The following example will demonstrate in detail the procedure of bit organiza-
tion operandsa5, a6, a7 anda8 for calculating the results of conversion mixed-radix
digits to binary number.

Example 1 Suppose the number X= 2084879is given, which is equal to upper

limit of the dinamic range. The RNS representation for n= 4, then X
(511,16,17,15)

−→
(510,15,16,14). It is shown, Mixed-radix digit ai , i = 1, . . . ,4, have the same digits
as the RNS digits.

a1 510 111111110
a2 15 1111
a3 16 10000
a4 14 1110

By using bit organization(11), (12), (13)and(14)mixed-radix digits a5, a6, a7

and a8 can be evaluated as

a5 111011101111111111110
a6 000000000111011101111
a7 000100000000000000000
a8 000000000000100000000

As show in Fig. 2, in order to calculate the binary number X must be two
subtraction and one addition. First binary subtraction a5−a6 is

a5 111011101111111111110
a6 000000000111011101111

a5−a6 111011101000100001111

Second binary subtraction a7−a8 is

a7 000100000000000000000
a8 000000000000100000000

a7−a8 000011111111100000000

Finally, the binary number Xbin = (a5−a6)+(a7−a8) is calculated as

a5−a6 111011101000100001111
a7−a8 000011111111100000000

Final rezult Xbin 111111101000000001111

The following hold true 1111111010000000011112 = 208487910
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4.2 RNS to MRD conversion

Binary numberx1 is 2n+1-bit word and can be written in the following form

x1 = n222n +n12n +n0 (15)

weren0 andn1 aren-bit words, whilen2 is one bit binary digit.

4.2.1 First subtractor

The value〈x1〉2n can be obtained by remainder of the division ofx1 by 2n, which
can be accomplished by truncating the binary numberx1. Sincex1 is binary number
on 2n+1 bits, then:

〈x1〉2n = n0 (16)

The operations modulo 2n are necessarily “carry-ignore” operations.

4.2.2 Second subtractor

Second subtractor # Sub. 2, shown in Figure 2, contain two parts. First part is
convertor〈x1〉2n+1 and second part is modulo(2n + 1) subtracter, as is shown in
Fig. 3

Since〈2nc〉2n+1 = −c, calculation〈x1〉2n+1 can be performed as a sequence of
subtraction and addition, as described below:

〈x1〉2n+1 = 〈n2−n1 +n0〉2n+1 (17)

the above leads to proposed architecture for the residue of〈x1〉2n+1 calculation that
is presented in Figure 3(a).

Example 2 Consider the moduli system{511,16,17,15} for n = 4 and given
residues X= 2006969= (272,9,0,14). Thus, x1 = 27210 = 1000100002 and fi-
nally in binary form n0 = 0000, n1 = 0001and n2 = 1 .

Subtractor gives the following result:

n0 0000
−n1 0001

s1 11111 s1 = 1111and bout = 1

First adder (Adder #1) gives the following result:

s1 1111
bout 1
n2 1

s2 10001 sn = 1 and s0 = 1; s0∧s1 = 1



Reverse Convertor Design for the 4-Moduli Set{2n−1,2n,2n+1,22n+1−1} ...101

Since s0∧s1 = 1, n-bits1111is added to s2 which yields:

s2 10001
n-bits 1111

〈272〉17 100000 Carry is 1

Carry on n+1 position is omitted and convertor returns〈272〉17 = 0, which is
true. �

n0 n1

n2

Subtractor

Adder #1

Adder #2

s1 = (sn−1, . . . ,s0)

bout

s2 = (sn,sn−1, . . . ,s0)
sn s0

−

〈x1〉2n+1

n-bits

��� n+1

��� n+1

��� n+1��� n+1

��� n

��� n+1

��� n+1

Adder #2

Adder #1

〈x−y〉2n+1

x y

2n

1

1

s= (sn+1,sn, . . . ,s0)snsn+1

0

Mux

(a) (b)

Fig. 3. (a) Convertor〈x1〉2n+1. (b) Modulo(2n +1) subtractor.

The modulo(2n+1) subtracter, we used architecture shown in Figure 3(b) [3].
The subtraction modulo(2n +1) can be expressed as follows:

〈x−y〉2n+1 =

{

2n if x = 2n andy = 0

〈x+y+1+sn〉2n otherwise
(18)

The following example illustrates the modulo(2n +1) subtraction.
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For x ≤ y we havex+ y+ 1 ≤ 2n+1 andsn+1 = 0, sn = 1. Therefore, using
eq. (18)〈x− y〉2n+1 = x+ y+ 1+ 1. For x = 00101 andy = 01111 by applying
Adder #1 we obtain:

x 00101
y 10000

1

s 010110 sn+1 = 0 andsn = 1; sn+1∧sn = 0
The final result, by applying adder #2 for adding lastn-bit of previous sum

0110 withsn = 1, is 0111. The multiplexer forward this input to the output. This
hold true because〈−10〉17 = 7.

4.2.3 Third subtractor

The third subtractor # Sub. 3, shown in Figure 2, contains two parts. The first part
is convertor〈x1〉2n−1 and the second part is modulo(2n−1) subtracter, as is shown
in Fig. 4

Since〈2n〉2n−1 = 1, calculation〈x1〉2n−1 can be performed as a sequence of
additions and subtractions, as described below:

〈x1〉2n+1 = 〈n2 +n1 +n0〉2n− (19)

the above leads to proposed architecture for the residue of〈x1〉2n−1 calculation that
is presented in Figure 4(a).

Example 3 Consider x1 = 39010 = 1100001102. Adder #1 shown on the Fig. 4(a)
perform following result:

n0 1000
n1 0110
n2 1

s1 1111 cout1 = 0

Adder #2 perform following result

s1 1111
cout1 0

1

s2 10000 cout2 = 1

The Subtractor gives the final fresult.



Reverse Convertor Design for the 4-Moduli Set{2n−1,2n,2n+1,22n+1−1} ...103

s2 0000
−cout2 0

〈390〉15 0000

Thus, result〈390〉15 = 0, which is true. �

n0 n1

n2Adder #1

Adder #2

Subtractor

s1 = (sn−1, . . . ,s0)

cout1

s2 = (sn−1, . . . ,s0)

1
cout2

〈x1〉2n−1

−

��� n

��� n

〈x−y〉2n−1

x y

−−−

−−−

Subtractor #1

Subtractor #2

bout

(a) (b)

Fig. 4. (a) Convertor〈x1〉2n−1. (b) Modulo 2n−1 subtractor.

The modulo(2n−1) subtraction can be expressed as follows:

〈x−y〉2n−1 = 〈x−y−bout〉2n (20)

This type of subtractor is shown on the Fig. 4(b), and it is known as the Borrow-
Save Subtractor with End-Around-borrow (BSS with EAB).

4.3 Fourth and fifth subtractor

Subtractor #4, is modulo(2n + 1) subtractor, is shown on the Fig. 3(b), but sub-
tractor #5 is modulo(2n−1) subtractor (BSS with EAB Fig. 4(b)).
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4.3.1 Sixth subtractor

The sixth subtractor # Sub. 6, shown in Figure 2 is very simple as it is shown
in Fig. 5. Minuend isn-bit binary number, but subtrahend is(n+ 1)-bit binary
number. MSB bit of subtrahend is put on the borrow input of subtractor #1. The
second subtractor subtracts borrow back tos1. That is〈x−y〉2n−1 = s1−bout; end-
around-borrow.

〈x−y〉2n−1

y

x

−−−

−−−

Subtractor #1

Subtractor #2

bout
bin

s1 = (sn−1, . . . ,s0)

��� MSB

��� n
���

n+1

��� n

Fig. 5. Oduzimǎc po modulu 2n−1

5 Conclusion

This paper presents a mixed-radix reverse converter for the recently proposed
residue number system moduli set{2n−1,2n,2n +1,22n+1−1}. The implementa-
tion consists of two levels. The first level is the algorithm to convert RNS number
to mixed-radix digits. The algorithm is improved by using optimal choice of form
of moduli set. The second level is a hardware architecture. Carry-Save-Adder
with End-Around-Carry is replaced with Borrow-Save-Subtractor thatavoids two
complement operations, and End-Around-Carry adder. Further, the binary subtrac-
tion is optimized by using Borrow-Propagate-Subtractor with End-Around-Borrow
which avoids one complement operation and multiplexer. The proposed converter
architecture is memoryless and it can be efficiently implemented.
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[3] A. A. Ghouwayel, Y. Loüet, and J. Palicot, “A reconfigurable butterfly architecture
for fourier and fermat transforms,” in4th Karlsruhe Workshop on Software
Radios, Karsruhe, Geramany, Mar. 2006. [Online]. Available: http://hal.archives-
ouvertes.fr/hal-00083992/en/

[4] W. K. Jenkins and B. Leon, “The use of residue number systems in the design of finite
impulse response digital filters,”IEEE Trans. on Circuits and Systems, vol. CAS-24,
no. 4, pp. 191–201, Apr. 1977.

[5] P. V. A. Mohan and A. B. Premkumar, “RNS-to-binary converters for two four-
moduli sets{2n − 1,2n,2n + 1,2n+1 − 1} and{2n − 1,2n,2n + 1,2n+1 − 1},” IEEE
trans. on Circuits and System-I:Regular Papers, vol. 54, pp. 1245–1254, Jun. 2007.

[6] A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi, “Efficient
reverse converter designs for the new 4-moduli sets{2n−1,2n,2n+1,22n+1−1} and
{2n−1,2n+1,22n,22n+1} based on new CRTs,”IEEE Transactions on Circuits and
SystemsI: Regular Papers,, vol. 57, no. 4, pp. 823–835, Apr. 2010.

[7] S. Pontarelliyz, G. Cardarilliy, M. Rey, and A. Salsanoy, “Totally fault tolerant
rns based FIR filters,” in14th IEEE International On-Line Testing Symposium,
IOLTS’08., Jul. 7–9, 2008, pp. 192–194.

[8] N. Szabo and R. I. Tanaka,Residue Arithmetic and its Application to Computer Tech-
nology. New York: McGraw-Hill, 1967.

[9] W. Wang, M. Swamy, M. Ahmad, and Y. Wang, “A study of residue to binary con-
verters for the three-moduli sets,”IEEE Trans. on Circuits and Syst-Fundamental
Theory and Applications, vol. 50, no. 2, pp. 235–245, 2003.

[10] Y. Wang, “Residue-to-binary converters based on new chinese remainder theorems,”
IEEE Trans. on Circuits and Syst-II, Analog and Digital Signal Processing, vol. 47,
no. 3.


