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Synthesis of quantum circuitsin Linear Nearest Neighbor

1

model using Positive Davio L attices

Marek Perkowski, Martin Lukac, Dipal Shah,
and Michitaka Kameyama

Abstract: We present a logic synthesis method based on lattices thizeauan-
tum arrays in One-Dimensional lon Trap technology. This msethat all gates are
built from 2x2 quantum primitives that are located only otigh&or qubits in a one-
dimensional space (called also vector of qubits or Lineaarbigt Neighbor (LNN)
architecture). The Logic circuits designed by the propasethod are realized only
with 3*3 Toffoli, Feynman and NOT quantum gates and the usdgbe commonly
used multi-input Toffoli gates is avoided. This realizatimethod of quantum cir-
cuits is different from most of reversible circuits syntisasethods from the literature
that use only high level quantum cost based on the numberaftgm gates. Our
synthesis approach applies to both standard and LNN quactstmodels. It leads
to entirely new CAD algorithms for circuit synthesis and staimtially decreases the
guantum cost for LNN quantum circuits. The drawback of sgstring circuits in the
presented LNN architecture is the addition of ancilla gaibit

Keywords: Reversible logic synthesis, lattice, leinear nearesthimigmodel.

Introduction: Standard versus Linear Nearest Neighbor quantum
cost models

Most papers in the literature about automated synthesis of quantum amdliloés
(permutative) circuits are not related to any particular quantum realizatotn te
nology [1, 2, 3, 4, 5, 6]. Their models assume that a gate can be realizadyo
subset of qubits. The model used in most of the previous permutativeugoan
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circuit synthesis papers assumes that there can exist a gate locatedrbatwe
two qubits, even if these qubits are located far away in physical spacediory
one from another. This (very approximate) assumption may be sufficies#lto
culate quantum costs for very small circuits. This assumption was accepéed in
theoretical framework but from a practical point of view and with respepartic-

ular technologies (such as lon trap in this case) creating gates on arijtraits

is not only extremely difficult but also cost ineffective; each gate hastprbp-
erly converted and realized in an LNN architecture. Thus, in genechltacture
independent synthesis models are sufficient to approximate the reaifcosall
circuits. For larger quantum circuits realized in the future as well as foently
realizable circuits with about 12 qubits architecture dependent cost nantkss/n-
thesis methods are required. For instance in quantum optics [7, 8] saiiteatural
models require more development to take into account more complex constraints
such as time propagation and physical size.

There exists no single technology for which this model is valid. In contrast, f
various realization technologies there exist different neighborhobdsituts [9,
10]. For instance, in the One-Dimensional lon Trap technology [11] th®#ts)
create a linear, one-dimensional (1D) vector, the Linear Nearest bi@ighNN)
model (architecture). In quantum optics, qubits also interact by proximihgus
optical wires or crystals [12, 13, 7]. Therefore, it is safe to assuntetiea NN
cost model is currently one of the most appropriate models for currdmadagies.
Circuits realized in LNN use quantum gates defined only on neighbor quizts a
the gates are built from 1 x 1 and 2x2 quantum primitives. We believe that LNN
model should be used for lon Trap and similar technologies and new ouaokst
models should be developed for other specific technologies.

With respect to general quantum circuits the LNN Model was introduced by
Fowler et al [14] for designing a Quantum Fourier transform circuiteill twork
was improved in [15]. Paper [10] considers theoretical aspects ofitpods for
translating quantum circuits between various architectures. The first péput
permutative quantum circuits design with the LNN model was written by Cuccaro
et al [16] and they designed a ripple-carry addition circuit. Automatethsgis
of general quantum circuits with LNN model was first introduced brieflylifi] [
but no specific method was presented and results analyzed. ChakazigaBur-
Kolay [18, 19] presented analysis of costs of single-output FPRMdbes/ersible
circuits. Methods for general quantum circuit for the LNN model werewised
by Hirata et al [20] and other authors [21, 22, 23, 24] created varinathods
to synthesize reversible quantum circuits in the LNN model. These methods are
called "nearest neighbor quantum synthesis”. For instance, Hiratalsoch§¢20]
starts from an arbitrary quantum array and modifies it to the LNN Architediyr
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inserting SWAP gates and minimizing their number. The advantage of this method
is that it can be applied to an arbitrary quantum circuit. The number of aglated

is however excessive and the properties of permutative circuits beirgptual

case of quantum circuits are not taken into account. Thus developingaittan
specifically designed for the LNN architecture can significantly improve ¢t c

of circuits realized in the LNN model because the circuits are specificalftedra

to match the architecture rather than designing a reversible circuits with aybitra
gates and then modifying it to match the architecture.

Moreover, most of the methods whether using the LNN model or not do not
evaluate and compare the differences between the used cost and thenhdNl
This means that despite claiming minimal results while using multi-controlled Tof-
foli (MCT) gates the same results can be shown to be non optimal when using th
LNN model.

We present here a new approach based on lattices, which applies toeonly p
mutative (reversible quantum) circuits. The method does not only exploit taé lo
minimization of SWAP gates as in the previous works such as [20, 24] buyrby s
thesizing circuits as a lattice the method uses the lattice structure to design circuits
that are less costly when designed for the LNN model. We start from éinaayb
(non-reversible) Boolean function and realize it as a reversible goecitauit; the
method presented here converts a non-reversible function to a réeenisduit by
adding ancilla qubits. The proposed approach presents for the first thmevar-
sion of an arbitrary Boolean function to a circuit with a quantum cost modl th
takes technology-related considerations into account in the logic syntigsis
rithm.

It uses two quantum cost functions; standard quantum cost and Liesar
est Neighbor model (LNN). The LNN model assumes that circuit is dedigne
modified in such a way that it is composed of only 1*1 gates and 2*2 gates on
neighboring qubits. To evaluate our approach we compare the two costsdaeth
as well as we compare the obtained costs with various previous algorithms.

The main contributions of the proposed algorithm is in the fact that it allows
to generate reversible logic circuits in the LNN model with a practically achieved
minimum of SWAP gates. This is verified with other algorithms the generate cir-
cuits with higher number of not only SWAP gates but a higher number of gates
general.

The paper is organized as follows. Section 2 explains the standard aNd LN
models of calculating quantum costs. Section 3 presents how one type atthe p
viously introduced Lattice Diagrams, the Positive Davio Lattices, can betedlap
to regular realizations of quantum circuits for the standard and LNN modét mo
els. Section 4 presents our experimental results with both cost models end Se
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tion 5 concludes the paper. The paper assumes that the reader is familinagith
guantum gates and reversible logic concepts and with previous workdtime la
algorithms.

2 Motivation for the LNN model for quantum arraysrealized in lon
Trap

A gate between any two qubits would mean an immediate direct interaction be-
tween any two ions in the lon Trap, which is physically impossible in this technol-
ogy due to space separation [11, 25]. In the simplest (but practichPfd d) case,

all ions in lon Trap are placed linearly (as a One-Dimensional vectorgrygen
(qubit) can interact with at most one neighbor above and one neighlmov. BeEhis
physical constraint of "2-neighbor” quantum layout of the substraterhuch in-
fluence on practical designs. As an example of problems with LNN circuieod
consider the very simple 4x4 Toffoli gate shown as a unit in Fig. 1(a). iGthe
thors [26, 27, 28, 29, 30, 31, 32] calculate the quantum cost of theagatéunction

of number of inputs regardless of what is the distance of the qubits usad gate.
This is not accurate when the circuit is realized in linear lon Trap techgohgr

is it good for quantum optics or NMR technology that is currently in use.e&d-r

ize this circuit in the LNN model, one ancilla bit should be added as in Fig. 1(b).
Next, each of the 3x3 (standard) Toffoli gates from Fig. 1(b) are crgenerated

to the Barenco’s realization of this gate [33], thus creating the quantuay arr
Fig. 1(c). This would be fine if every two qubits can interact directly: bayttan-

not. So transformations from Fig. 1(d) to create 2-neighbor-only typerofits

are required. The final circuit for the gate from Fig. 1(a) is then shioviAig. 1(e).

It has 27 2x2 gates in 2-neighbors-only topology after the minimization ¢dicer
gates. There are other ways to realize this gate in layout, even without dtilla
They are however even more expensive when realized in linear Ign Thee num-

ber would be even higher if the gate would be realized on five qubits thatcdre
neighbors.

Based on the above example, the quantum circuits in the LNN architecture
should have short connections inside gates. As discussed in [346BSh@rt
connections require regular structures such as Lattices [34, 379B8teated by
adaptation and generalization of Akers Arrays [40]. The method peaplosre uses
Positive Davio Lattices (PDL) [41, 42]. The reason for using PDL cofras the
fact that after we analyzed the mapping of Lattice diagrams to LNN archigectur
circuits, we found that the internal connections of the Lattice can be mapgiéd
i.e. with small distances. There is however a big trouble with connecting déliTof
gates to input variables: this involves very many SWAP gates. This is illustrated
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Fig. 1. This example illustrates the nature of a problem with linear lon Trafx4AToffoli gate that

looks a cheap gate which is however quite expensive when mapped terigigaborhood quantum
array. (a) symbol of a gate as used by other authors, (b) deceahJosfoli gate, (c) the final circuit
with 2-qubit quantum primitives, but not-realizable in linear neighborte®id has wires going over
gates, (d) steps to realize the gate with a wire going over it, (e) the finaltdéirdimear neighborhood
lon Trap.

in Fig. 4 and Fig. 5. Fig. 4 shows standard quantum array with ancilla bit for
function FX2 realized on a PLA-like structure using only two-controlleditpub
Toffoli gates and Feynman Gates. Fig. 3 shows the same function rewrittem to
1D neighborhood model by adding SWAP gates. This example illustrates the big
cost of SWAP gates when they are added to calculate a realistic quanttiforcos
LNN model of qubits required in lon Trap. The same property can be stuww
any published circuit for well-known benchmarks.

Finally, one can observe that the number of the SWAP gates required for a
arbitrary reversible circuit be mapped to the LNN model can be approxinaated
Iytically.

Lemma2.1. An arbitrary multi-controlled Toffoli (MCT) gate with k-1 control bits
and 1 target bit (together having k bits) that is defined over p wires kpincluding
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skipped wires) requires at maximum:%and realized in using the CNOIC\ZV
gates requires at minimum

§=2x(p—Kk)x(k—1)+(p—1)*2 (1)

with 2 (p—K) x (k— 1) representing the number of swap gates required to bring
the control bits to the LNN proximity of the target bit and tfe— 1) = 2 term
represents the number of SWAP gates required to bring the qubits insitie of
Toffoli gate itself to the LNN neighborhood. This means that for a reversiteit
realized by only Toffoli gates a maximunéajates will make the circuit into a LNN
compatible circuit. Note that equation 1 does only specify how many SWA® gate
are required to group the controls in a LNN model.

Proof. Consider the Toffoli gate shown in Figure 2(a). The gate is defined®ver
gubits and has 2 control bits and one target. In this particular case, thecdisif
the control qubits and of the target is maximal and thus using formula frofnvee.
obtain the correct result 12 SWAP gates for outside of the MCT gate @ig(b))
and 14 as the total number of SWAP gates(Figure 2(c)).

2% (p—k)*(k—1)

1
N ES
U U
(a) (b)
FH ]
(c) 2 (p—k)s(k—1)+(p—i)s2

Fig. 2. MCT gate defined over 6 qubits. (a) realized as standard MEiedbzed in the LNN model,
(c) realized in the LNN model also within the gate itself.

Because the gate in Figure 2(a) has maximal distance between the codtrol an
the target qubits, any other configuration of the same gate will requirelesgial
to 14 SWAP gates. O

Now let’s look at a more complex example with two MCT gates. The circuit
in Figure 3(a) shows two MCT gates connected in series. Observe tleat thh
circuit is built using standard methods of synthesis (Figures 3(b)) - bgibg the
circuit from MCT gates and then converting it to the LNN model - the cost ef th
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SWAP gates is much higher than when the circuit is built using synthesis methods
for the LNN architecture (Figure 3(c)). This is because in the algorithirbihi&ds
circuits for the LNN model one can directly predict which lines should be'metli

to their initial position right after being used and which not.
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Fan Fan
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Fig. 3. Two MCT gates defined over 6 qubits. (a) realized as standaif @Lrealized as two MCT
gates transformed to the LNN model, (c) realized as two MCT designetiddrNN model.

Finally, we believe that LNN cost model should replace the standard caktlmo
for lon Trap technology. New cost models should be also created alesg times
also for other quantum technologies, rather than using a "generalintosh has
no relation to any technology that we are aware of. Even for small circusts cal-
culated with the LNN model differ much from standard quantum costs angrdiff
ent types of quantum synthesis method show better cost minimization abilities. Our
new CAD tool for standard and LNN models of quantum costs is called QUDAS
(QUantum LAttices SYNthesizer).

a
b
c
d
0 é d garbage
1 C) 1®a garbage
1 C) 1®ad garbage
1 - 1®ad®db garbage
0 C) C C b®adddbd garbage
1 D M 1®bd® ad® abd ® bd D ac ® cd @ bed
% % .
function

Fig. 4. Circuit for functionFX2(a,b,c,d) = 1@ bd® ad® abd® bcd ac®d cd@ bed created with
our method for traditional quantum cost function calculation that doetaketlon Trap technology
constraints into account.
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3 Lattice Diagrams with various types of expansion gates and their
mapping to LNN model

As already introduced, in this paper we adapt Positive Davio Lattice Dizgra
to quantum circuits [36]. Unlike in the standard Shannon Lattice Diagrams that
uses multiplexers we restrict ourselves to build quantum lattice equivalemslfo
Positive Davio Lattices, using only 3*3 Toffoli, Feynman and NOT gates.

e e g & gm an g

Fig. 5. Circuit from Figure 4 modified with adding SWAP gates for new ¢osttion calculation
that does take lon Trap technology constraints into account, with 36 SV&fd2 gdded. It has 36
SWAP gates added to realize LNN model quantum cost, obviously inctease

As an example, consider the classical Positive Davio Lattice for functi@&{&X,c,d)
illustrated by a diagram shown in Fig. 6. It is designed using softwarepted
in [37, 36]. The algorithm for the lattice starts from a logic Exclusive-Sdm-o
Products (ESOP) equation describing the desired function. Initially ablaria
selected and both thg, fxand fy & fxis calculated. This is repeated for every
variable until all available variables are constant. During the proces déttice
construction redundant nodes are removed, merged with the goal of mirgmizin
the size of the lattice. Such lattice then can be further explored using fonaesta
sifting or variable repetition to obtain the most desirable lattice.

The Positive Davio Lattice is next transformed to a standard form of atgoin
array. For instance, to help the reader, the lattice from function F3(asbprie-
sented in Fig. 7(a) in a form that is intermediate between a Lattice Diagram and
a Quantum Array. This intermediary form is transformed as in Fig. 7(bgrevh
every intersection of wires from Fig. 7(a) is replaced by a SWAP gate in'Hig).
This way, a new type of regular structure realized in quantum array wighlae
connections is obtained and the long connections typical for standéiali Taftes
are avoided. Figure 7 illustrates the essence of our transformation metmd f
lattice diagrams to quantum arrays of permutative circuits. It explains algo wh
we use non-standard notation for intermediate stages. The whole trick weaistto
the diagram and replace intersections of lines with SWAP gates. This gaaphic
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[ 1@ ad ® bd @ abd © ac ® be @ cd © bed ]

1 c

[léBadebdeabd] [a,&Dh%BdEBbd]

Fig. 6. Example of Positive Davio Lattice from [37]. Positive Davio Exgian is applied in each
node. Variable d is repeated.

method explains also our SWAP insertion algorithm.. The humber of SWAP gates
in our method is however smaller because of regularity of the new structure f
Fig. 7(a). We do not present here the detailed algorithms to create P&@iwe
Lattices as they are discussed in full detail in previous papers [37,635bGt we
provide a high level description for the sake of reader’s understgndin

As can be seen the proposed method generates additional qubits. Thernumb
of the garbage qubits is the same as in standard quantum array howeeearéhe
additional SWAP gates required to realize the LNN model. This results in circuits
where there are no Toffoli gates realized on non-neighbor qubitscdsteof added
SWAP gates is relatively low as each such gate can be realized with 3 Feynman
gates [9], or 11 EM pulses [43] after optimization.

Fig. 8 presents the transformation of standard Positive Davio Lattice from
Fig. 7(a) drawn in another way to a regular quantum array with additioM&Fs
gates. Fig. 8 shows the transformation from the macro-level to the CNOT&®% g
as well as the transformation to the closest-neighbor model applicablerforalp
technology. These Controlled-Square-Root-of-Not (CV) gates aidhbrmitians
are explained in detail in [9]. They are a good approximation of the quantsi
in the Electromagnetic (EM) pulses.

Using the transformations to pulses as shown in Fig. 9, the final circuit cost
can be calculated as follows. Each of the blocks of gates shown in Figs thea
cost shown in Fig. 9(c). The cost is 20x1 + 8x2 = 36. Because in bettee
blocks some of the gates can be combined, it can be shown that when thig circ
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garbage garbage

b a

c garbage
X | b

'_>< garbage

c

garbage
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Fig. 7. Transformation of function F3(a,b,c) from classical posiidavio Lattice to a Quantum
Array with Toffoli and SWAP gates. Each SWAP gate is next replaced wieyman gates. (a)
intermediate form, (b) final Quantum Array.

Fig. 8. Transformation of the circuit realized in Fig. 7 using Toffoli gaiach Toffoli and SWAP
gates are replaced by quantum CNOT and CVI@Mantum gates and rearranged to satisfy the
neighborhood requirements of lon trap.
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from Fig. 8 is built in EM pulses its total cost is 36x6 - 3 = 213. This way, we ca
use the regularity of quantum array on the lowest implementation level (quantu
rotations level [9]) to further reduce the number of EM pulses. We useth#thod
from[43] to reduce the number of EM pulses.

J x R_l J x Rl J L
S o €3 {2 oy
L | ()
|77z |7iz |7ix 7=
(2 R1 (2 R_l (2 R((%) (4 R%.(%)
(c)
_ |Re(%)J(% SR IO 0 TS A I |&(5)R3(E)J(%J &
S P XS CNC S CNC D I R S X2 I
Belptrat ] R mipRaE] B Rl RiE]
N B A
7(5 iz Tz K& l7rx
Rl o e 9 [ Yr | k) “rap
I N r3—
Bes [ lRats] b [ TRets] [ [ el
NOTC =) Rl ==
pon g F16- mesmen B VG il
i) ) (D) & (2 €

Fig. 9. The transformations of blocks of quantum gates to the pulses level.

The circuits in this paper are designed using a CAD tool QULASYN (QUantum
LAttices SYNthesizer) that uses both the standard and LNN models of dahcula
guantum cost functions. More details on the implementation of the QULASYN, on
the variable ordering and repetition as well as on synthesis with new gatdseca
found in [36, 44]. The algorithm uses various optimization techniques ecelex-
ations in order to perform an efficient KFDD such as preorder seavzdpping of
Davio nodes, sifting or exploitation of the symmetry of the KFDD. Howeverghes
techniques are not described in this paper as they are not proper té-bie &p-
plied to reversible synthesis. The particularity of the proposed appisdlh fact
of using only Toffoli, CNOT and the Not gate.
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4 Experimental results

Experimental results for calculating Quantum arrays with traditional quactsts

done by our QULASYN tool are given in Table 1. We compare our Lattice
tool with MMD and Agrawal/Jha software. MMD stands for Miller, Maslov and
Dueck’s algorithm and AJ stands for Agrawal and Jha algorithm. This &hioes
advantage of applying lattice based quantum synthesis even for traditosial
functions with gates in standard quantum array. The best quantum cedisld,

italic and underlined. The same costs for more than one method are bold and italic
Our tool created the best result in 9 cases and in 8 cases the samesatistwere
found. Dashes are for results that we have no access to.

Table 1. The transformations of blocks of quantum gates to the pulsés leve

Benchmark |#Real#Garbage#Gares Cost|CPU time#Gates Cost|#GatesCost

inputs| inputsﬁattice Lattice| Latticel DMM |DMM AJ| AJ
2to5 3 4 31 107 0.12 15| 107 20| 10
rd32 5 1 4 8| <001 4 8 4/ 8
rd53 5 5 11 39| <o0.01 16 75 13| 16
rds84 8 7 20 68| <0.01 28 98 --l --
Sbitadder 10 5 29 55| <0.01 29 55 -l -
8bitadder 16 8| 122| 322 0.10] 122| 322 --l -
3.17 3 1 10 21| <0.01 6 12 6| 14
6sym 11 4 19 75 0.37] 20 62| NA| NA
9sym 15 5 25| 101 0.40 28 94| NA| NA
5mod5 5 1 14 58| <0.01 10 90 11| 91
4mod5 4 1 6 18| <0.01 5 13 5/ 13
ham3 3 0 3 7 <001 5 7 5 9
ham7 7 4 21 61| <0.01 25| 49 23| 81
ham15 7 15 9 47 0.10] 191 205 .-l -
xor5 5 0 4 4/ <001 4 4 4] 4
xor20 20 0 19 20| <o0.01 19 19 19| 19
xnor5 5 1 5 5| <001 -- -- -l --
dcod24 4 2 10 30| <o0.01 -- -- 11| 31
cycleQ2 12 6| 180 860 29.7 19| 1198 -l -
cycle73 20 10| 920, 4160 40.10 48| 6057 -l --
graycode6 5 5 5 5| <001 5 5 5| 5
graycodel0 10 9 9 9] <001 9 9 9] 9
graycode20 10 19 19 19| <0.01 19 19 19| 19
nth.prime3.inc 3 4 4 6| <001 4 6 -- .-
nth.prime4inc 4 5 16 48| <0.01 12 58 -- --
nth_prime5.inc 5 5 29 91 0.22 26 78 -- -
nth_prime&.inc 6 6| 148 586 0.36) 55| 667 .-l --
Alu 5 2 5 17| <0.01 -- -- 18| 114
4.49 4 4 16 52 0.04 16 58 13| 51
hwb4 4 4 12 28| <0.01 17 63 15| 35
hwb5 5 5 24 96 1.20 24| 104 .-l --
hwb6 6 6 32| 128 2.00 42| 140 .-l --
hwb7 7 6 49| 185 0.10 35| 203 --l --
pprml 4 4 9 33| <0.01 -- -- -- --
pprm2 10 6 55| 235 0.50 -- -- -l -
pprm3 15 12 29| 540 0.50, -- -- - --
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Table 2. The transformations of blocks of quantum gates to the pulsés leve

Benchmark |#Gates Cost#Gates with Cost with|#Gates Costl#Gates with  Cost with
Lattice| Lattice SWAP|SWAP gates DMM | DMM SWAP|SWAP gates
insertion for Lattice insertion  for MMD
for Lattice for MMD
2to5 31| 107 61 197 15| 107 31 155
rd32 4 8 8 20 4 8 6 14
rd53 11 39 44 138 16 75 72 273
rdg4 20 68 52 164 28 98 241 311
5bitadder 29 55 68 94 29 55 68 94
8bitadder 122| 322 497 697 122| 322 497 697
3.17 10 21 14 33 6 12 8 18
6sym 19 75 39 135 20 62 78 236
9sym 25| 101 55 191 28 94 98 304
5mod5 14 58 17 67 10 20 48 204
4mod5 6 18 10 30 5 13 11 31
ham3 3 7 3 7 5 7 7 13
ham7 21 61 49 145 25 49 79 249
ham15 47| 191 87 311] 109 206 189 446
Xor5 4 4 4 4 4 4 4 4
Xor20 19 19 19 19 19 19 19 19
Xnor5 5 5 5 5 5 5 5 5
decod24 10 30 14 42 -- -- -- --
CyclelQ2 180/ 860 306 1238] 19| 1198 199 1738
Cyclel73 920 4160 -- -- 48| 6057 -- --
Graycode6 5 5 5 5 5 5 5 5
Graycodel0 9 9 9 9 9 9 9
Graycode20 19 19 19 19 19 19 19 19
Nth_prime3in ¢ 4 6 5 9 4 6 6 12
Nth_prime4in ¢ 16 48 20 60 12 58 18 76
Nth_prime5in ¢ 29 91 39 121 26 78 128 384
Nth_prime6ing 148/ 586 -- -- 55| 667 -- --
Alu 5 17 7 23 -- -- -- --
4.49 16 52 41 127 16 58 40 130
hwb4 12 28 15 40 17 63 39 129
hwb5 24 96 44 156 24| 104 64 224
hwb6 32| 128 72 248 42| 140 144 446
hwb7 49| 185 129 425 35| 203 -- --
pprm1 9 33 27 87 -- -- -- --
pprm2 55| 235 90 370 -- -- -- --
pprm3 29| 540 73 669 -- -- -- --

Table 2 compares QULASYN with other methods for the LNN Model. Column
1 is the name of benchmark, column 2 is the number of gates calculated for the
standard model, and column 3 is the quantum cost for the standard modehrColu
4 is the number of gates after insertion of SWAP gates to the lattice circuit. Column
5 is the respective quantum cost with SWAP gates inserted to lattice. Columns 6 to
9 give respective results for MMD. The results for MMD method weraladated
by inserting the necessary SWAP gates (algorithms to insert SWAP gatgiseme
in [20, 18] and other papers). To compare thus quantum costs of Lattitede
with MMD one has to compare columns 5 and 9. Bold italic numbers should help
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the comparison.The new method is better in 14 cases, and worse in 3 cases. |
4 cases the quantum costs are the same. In some functions like Ham7,nd53, a
hwb6 the improvements of our method for LNN model cost are dramatic. The
reason that modified MMD is better in some instances is perhaps causedfactthe
that our tool is not finding the optimal order of variables in lattice, but thisigho

be an area of further research.

5 Conclusions

We presented a new synthesis method of permutative quantum circuits with two
guantum cost functions: standard and LNN model. Tables 1 and 2 delenstr
strong improvements that are brought by our method in both variants. utcshe
however remembered that our method increases the number of ancilla galtits,
same criticism can apply to it as to other algorithms that introduce ancilla qubits.
The numbers of these ancilla qubits can be found in Table 1. We do not claim in
this paper to replace the standard quantum costs with the LNN model, weadglvoc
only to create CAD tools that will use several technology-related quantists.c

One of the most interesting aspects of the presented approach is thé catura
sequence of reducing the number of SWAP gates by simply mapping thsildeer
circuit on a lattice. This means that simply representing the reversible cirabi¢ in
lattice has for consequence of mapping the circuit in the physical spacehnas
manner that optimizes the reversible layout with respect to the LNN model. This
approach will be more explored in the future extensions of this work witheats
to the presented lattice as well as with respect to other structures.
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