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One Approach in Evaluating the Overflow Probability
Using the Infinite Fluid-Flow Queue

Branimir Trenki ć and Mihajlo Stefanović

Abstract: If it is going to have practical significance, the evaluationof overflow prob-
abilities must be (1) precise, (2) computationaly stable and (3) real time compatible.
The existing approximation expressions are gotten by usingthe traditional fluid-flow
analytic techniques, which are mostly based on spectral analysis. The limitation of
this approach comes from numerical difficulties caries by the spectral approach.

In this paper, we suggested a fluid-flow approach in evaluating the overflow prob-
ability, which fully satisfies the above stated criteria, and removes the numerical dif-
ficulties of existing methods. The authors approach is basedon the renewal argument
and exploiting the similarity between fluid queues and Quasi-Birth-and-Death (QBD)
processes.

Keywords: Fluid queues, Quasi-birth-and-death processes, Approximating method,
ON/OFF model.

1 Introduction

In this paper, the description of the procedure for getting the approximate formula
is given, with which we can execute a precise evaluation of overflow probabil-
ity in infinite buffer fluid queue driven by a Markovian environment. Generally,
the asymptotic approximation of overflow probability is based on the asymptotic
decay rate of the buffer content (r.v.X) tail probabilities, and has the following
exponential form:

G(x) = P(X > x) ∼ β−ηx, as x→ ∞ (1)
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whereη is a positive constant calledthe asymptotic decay rate, β is a positive
constant calledthe asymptotic constant, and f (x) ∼ g(x) as x → ∞ means that
f (x)/g(x) → 1 whenx→ ∞; see [1].

From the above stated, the sequence of activities in the procedure of getting the
asymptotic approximation of overflow probabilities is naturally imposed. The first
step is the finding of a suitable expression for the exact calculation of the buffer
content tail probabilitiesG(x). After that, we examine the behavior ofG(x), the
probability of overflow beyondx, for large values ofx. The explained procedure,
using the traditional fluid-flow analytic techniques (spectral analysis) is given in [2].
In general, when the input rate is characterized by an N-state Markov chain, the
distribution of the buffer content probabilities is of the form:

F(x) = P(X ≤ x) =
N

∑
i=1

aiΦie
zix (2)

where thezi andΦi are, respectively, generalized eigenvalues and eigenvectors as-
sociated with the solution of the differential equation satisfied by the steady state
probabilities of the system, and theai ’s are coefficients determined from bound-
ary conditions. The next step is consisted in the asymptotic analysis of overflow
probability given from expression (2), (G(x) = 1−F(x)). The key result of this
analysis is that this quantity can be further approximated by only consideringthe
contribution of the term corresponding to the largest negative, or dominant eigen-
value in (2). Under such assumptions, the buffer overflow probability,G(x), is
known [2], [3] to be of the form

G(x) ∼ βez0x (3)

where thez0 is the largest negative eigenvalue. As for the asymptotic constantβ , the
case is not as simple. Namely, getting the expression which precisely approximates
the value of constantβ demands the determination of all real eigenvalues (see [2]).

The limitation of this approach comes from the fact that such eigenvalues are
of both signs, and therefore numerical errors may lead to solutions that are unstable
(computed probabilities become negative).

To exceed the aroused problems we often resort to one-parameter approxima-
tion (approximateβ by 1). Logically as we shall see this approximation weaken
the precision of the evaluation of overflow probabilities.

The noticed numerical difficulties carried by the spectral approach, urged the
authors of this paper to the idea to use analytic techniques, that are much more
computationaly stable, in the finding of an approximation formula for the over-
flow probability. The natural choice of the authors is the matrix-geometric analytic
techniques.
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The results originated from the idea of exploiting the similarity between fluid
queues and QBD processes, and which are published in multiple papers [4], [5], [6]
allow the usage of this technique.

The organization of the paper is as follows. In Section 2, we give the precise
definition of a fluid queue and we summarize some basic results from the liter-
ature [4] and [6], among else, the expression for the stationary density vector of
fluid buffer content using Markov-renewal approach. That is the starting point of
our work, which is in detail explained in Section 3. Section 4 through a numericex-
ample gives graphical result, comparing our expression with the exact results from
the ‘standard’ formula of Anick, Mitra and Sondhi, [2]. These show thatour new
formula provides excellent accuracy for the load values at which queuing becomes
important.

2 The renewal approach to fluid queues

Markov-modulated fluid queues{(X(t),ϕ(t)) : t ∈R+} are two-dimensional Markov
processes of which the first componentX(t) is called thelevelat timet and the sec-
ond componentϕ(t) is called thephase. The level represents the content of a buffer
containing fluid; the phase is the state of an irreducible Markov process ona finite
state space, evolving in the background. In the simplest case, the contentof the
buffer varies linearly in time, according to the state of{ϕ(t)}: in the intervals of
time during which the phase remains equal toi ∈ S , say, the level varies linearly at
the rater i . We assume that the ratesr i take any real value, except zero because this
assumption is not restrictive (see [6]). We decompose the set of phasesS into two
disjoint subsetsS+ andS− , whereS+ = {i ∈ S|r i > 0} andS− = {i ∈ S|r i < 0}; its
infinitesimal transition generator is denoted byQ and is decomposed in a confor-
mant manner:

Q =

(

Q++ Q+−

Q−+ Q−−

)

(4)

We denote byξ the steady state probability vector corresponding to the generator
Q; it is the unique solution of the systemξQ= 0,ξ1= 1. Throughout the paper, we
use0 and1 respectively for vectors of zeros and ones, of the appropriate dimension.
Also, parts of vectors and matrixes that arise in the decomposition as in (4), we shall
note in the same way.

The stationary mean drift of the fluid queue(X,ϕ) is defined byµ = ξ+r+ +
ξ−r−, wherer = {rj : j ∈ S} .

Define the matrixT = C−1Q (whereC = diag(|r i | : i ∈ S)), actually is the gen-
erator of a fluid queue with net rates equal to +1 or−1, obtained from(X,ϕ) by
changing the time scale ant the input rates but the fluid level changing by the same
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amount overall.
Denote byp = (0, p−) the steady state probability mass vector of the empty

buffer (as the fluid queue instantaneously leaves the level zero if the phase is inS+,
p+ = 0).

The densityπ(x) and the probability vectorp− are expressed in terms of a
matrix, denoted asΨ and defined as follows: fori in S+ and j in S−, Ψi j is the
probability that, starting from(0, i) at time 0, the fluid queue returns to the level
zero in a finite amount of time and does so in phasej. The results that we will
further use in our paper, we can sum up in form of one theorem (Theorem 2.1
in [5])

Theorem1. If µ < 0, then the stationary density of the buffer content of the
process(X,ϕ) is given by

π(x) = p−Q−+eKx[C−1
+ ,ΨC−1

− ] (5)

for x > 0, where
K = T++ +T−+ (6)

The vectorp− is the unique solution of the system

p−(Q−− +Q−+Ψ) = 0

p−(1−Q−+K−1[C−1
+ ,ΨC−1

− ]e) = 1,

The matrixΨ is the minimal non-negative solution of the equation

T+− +T++Ψ+ΨT−− +ΨT−+Ψ = 0. (7)

Very efficient algorithms exist to solve; see [4] and [6].

3 Proposed method

The theory presented in the previous Section, and summed up in Theorem 1,does
not give an explicate expression for the queue-length tail probabilities which is
suitable for asymptotic analysis. The first step will be the acquiring of such an ex-
pression. By applying the result of the presented theorem and with simple analytic
manipulations, we can get an expression for the exact calculation of the queue-
length tail probabilities,G(x) = P[X > x] (i.e. overflow probabilities). From (5) by
definition we have that,

G(x) =
∫ ∞

x
π(t)dt =

∫ ∞

x
p−T−+eKt [C−1

+ ,ΨC−1
− ]1dt =

= p−T−+(−K)−1eKx[C−1
+ ,ΨC−1

− ]1.
(8)
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Equation (8) is the starting point of our evaluation of overflow probabilities which
is based on the asymptotic decay rate.

Matrix K has the key role in asymptotic analysis of (8). The definition and
the detailed properties of this matrix are given in the papers [5] and [6]. Here we
will mention only one property which is important for our future work - all the
eigenvalues of this matrix have strictly negative real parts and among them there is
one, denote byζ , which is real and has the geometrical and algebraic multiplicities
equal to one. It is maximal in the sense that every other eigenvalue of matrixK
has a real part which is strictly less thanζ . Furthermore, there exist real, strictly
positive, left and right eigenvectors ofK for the eigenvalueζ , which we will denote
by w andz respectively, and which are normalized byw ·1 = w ·z= 1. Using this
feature of the matrixK and result given in [5], that the same is valid for matrixeKx

(for some levelx ), we may write

eKx ∼ eζxzw, as x→ ∞ (9)

On the basis of (8) and (9) a natural conclusion imposes about the asymptomic
decay rate of tail probabilitiesG(x). Namely, the value of the asymptomic decay
rate parameter from the equation (1) determines identified eigenvalue of the matrix
K, i.e. η = −ζ . On substituting in (8) the expression in (9), the general form of
that expression will be,

G(x) = P[X > x] ∼ βeζx (10)

Here we will give only one remark that is concerned with the comparison of the
result gotten by using the traditional approach and the explained (our) approach,
which concern the asymptomic decay rate. Although the results are identical (with
opposite signs), the computationally effort is significantly reduced by the suggested
method because matrixK (defined on states ofS+) is by definition surely smaller
dimension thatN. The traditional approach, let’s remind our selves, is based on the
calculation of the dominant eigenvalue of matrix which dimension isN×N.

We are left with finding the asymptotic constantβ in (1), for which there is
and undivided opinion that it is a very complex operation. The start point of our
evaluation of the asymptotic constant is the expression (10).

We shall, in this paper, show that with simple mathematical operations, using
the results gotten in this Section, we can get an expression that enables the evalua-
tion of the asymptotic constant in (1). From (10) follows directly,

e−ζxG(x) ∼ β (x→ ∞) (11)



6 B. Trenkíc and M. Stefanović:

And now in (11) if we include the results from (8) and (9), whenx→ ∞,

G(x) = P[X > x] ∼ βeζx

e−ζxG(x) ∼ β
β ∼ p−T−+(−K)−1zw[C−1

+ ,ΨC−1
− ]1

(12)

Furthermore, from (9) follows the identity− 1
ζ = w(−K)−1z. Using that identity

by simple algebraic manipulations from (12) we get,

β ∼−ζ p−T−+(−K)−2[C−1
+ ,ΨC−1

− ]1 (13)

And as a part of the gotten expression on the right side
(p−T−+(−K)−2[C−1

+ ,ΨC−1
− ]1), it stands for in fact a formula for the calculation

of mean queue-length (see [6]), asymptotic constantβ we can approximate with
−ζE[X], i.e. the final expression for the asymptotic approximation of overflow
probabilities is given by

G(x) = P[X > x] ∼−ζE[X]eζx (x→ ∞) (14)

So the parameters of asymptotic approximation (1) are given withβ ∼ −ζE[X]
andη = −ζ . The quality of the gotten asymptotic approximation, we shall show
through a numerical example.

4 Numerical examples

With the explained numerical example we make possible the direct comparison our
expression with the exact results given by ’standard’ formula of Anick,Mitra and
Sondhi, [2]. We take the well-known example of ON/OFF sources feeding data
to the buffer of a common communication channel (see Fig. 1). The durations

Fig. 1. Fluid-flow model for a switching node (buffer lengthx) under ON/OFF
traffic sources.
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of the ON and the OFF-periods are exponentially distributed, respectivelywith
ratesα andλ . Assume that the output channel capacity isB and that each source
continuously feeds in data at the rateR during its ON-periods. Then, ifi is the
number of ON-sources, the net input rate to the buffer isr i = i ·R−B, negative for
small values ofi, positive for large values.

We can also see that the traffic intensityρ of the system can be represented by

ρ =
NRλ

B(α +λ )
(15)

For exponentially distributed ON- and OFF- periods, the source is furthermore
completely characterized by three parameters,α , λ andR. The added parameter
which we shall use in calculations is the ratio of the output channel capacity toan
ON source’s transmission rate,B/R (equation (13)).

The lead parameters of the system are sufficient for the exact calculationof
values of overflow probabilities ( [2]), so to get the approximated results of the same
probabilities, by using our expression for the calculation of asymptotic parameters.

For the numerical examples, we fixed the parameters asα = 1 andλ = 0.4 so
we can get comparable results more simply.

Fig. 2 displays the exact tail probabilitiesG(x) and the approximation (1),
using our expressions forη and β , for three different values of traffic intensity
(ρ = 0.78, 0.85, 0.94). The gotten results show the significant precision of ap-
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Fig. 2. Probability of overflow vs. buffer size, exact and asymptotic approxima-
tion. ForN = 55,N = 50 andN = 46.

proximated values with the asymptotic parameters gotten by the expressions pro-
posed in this paper. We can also notice that with the lowering of traffic intensity
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the precision of the suggested asymptotic approximation is weakened. As we al-
ready remarked, this does not lower the practical meaning of the suggested method
of asymptotic approximation because the regions of high load those load values at
which queuing becomes important.

Fig. 3. shows that the usage of one-parameter approximation(β = 1), although
it is often in literature that it is suggested as a accepted solution because of it’s
simplicity (see [1] and [3]), it is not always a good solution. Namely, it is given that
one comparison of one-parameter approximation and two-parameter asymptotic
approximation with the exact calculation of overflow probabilities. The valuesof
the parameters in two-parameter approximations are gotten by using our methodof
evaluation. The gotten results confirm the importance of an adequate estimationof
asymptotic constant in asymptotic approximation of the overflow probability.
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Fig. 3. Probability of overflow vs. buffer size, exact, proposed asymptotic ap-
proximation and asymptotic approximation withβ = 1 (Ref. [3]). ForN = 100
(ρ = 0.85).

5 Conclusions

The contribution of this paper can be viewed from two aspects. Firstly, the claim
that the asymptotic constant, if fed with the asymptomic decay rate, can simply be
approximated with the multipliacation of that decay rate and the mean of queue-
length - is not new (in some form taken in [1]). In this paper we, in a mathematicaly
corect way, have showen, that in a fluid-flow enviroment, the presentedclaim is
correct.

Secondly, the proposed method of approximation of overflow probability fully
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satisfies the criteria set in the begining of this paper. The procedure is precise
and computationaly very simple. It gives a simple way to approximate both of
the asimptomic parameters(β ,η). Even the calculation of asymptotic decay rate
parameter is less computationaly demanding than the traditional way - Reason: the
dimension of the matrixK, as mentioned earlier. We specially underline that the
equation for getting the aproximational value of the asimptomic constant can be
directly mathematicaly derived from queue-length distribution.
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