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One Approach in Evaluating the Overflow Probability
Using the Infinite Fluid-Flow Queue

Branimir Trenki ¢ and Mihajlo Stefanovit

Abstract: If it is going to have practical significance, the evaluatidioverflow prob-
abilities must be (1) precise, (2) computationaly stable @) real time compatible.
The existing approximation expressions are gotten by usiadraditional fluid-flow
analytic techniques, which are mostly based on spectrdysiea The limitation of
this approach comes from numerical difficulties caries leyspectral approach.

In this paper, we suggested a fluid-flow approach in evalgakia overflow prob-
ability, which fully satisfies the above stated criteriagaamoves the numerical dif-
ficulties of existing methods. The authors approach is basdtie renewal argument
and exploiting the similarity between fluid queues and Qi&th-and-Death (QBD)
processes.

Keywords: Fluid queues, Quasi-birth-and-death processes, Appuaiiig method,
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1 Introduction

In this paper, the description of the procedure for getting the approxiroateufa

is given, with which we can execute a precise evaluation of overflowatitb

ity in infinite buffer fluid queue driven by a Markovian environment. Geaiigr

the asymptotic approximation of overflow probability is based on the asymptotic
decay rate of the buffer content (r.X) tail probabilities, and has the following
exponential form:

G(X) =P(X > x) ~ BT as X— o (1)
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wheren is a positive constant calletthe asymptotic decay ratg8 is a positive
constant calledhe asymptotic constanaind f(x) ~ g(x) asx — o means that
f(x)/g(x) — 1 whenx — oo; see [1].

From the above stated, the sequence of activities in the procedure ofdgkdin
asymptotic approximation of overflow probabilities is naturally imposed. Thie firs
step is the finding of a suitable expression for the exact calculation of fifer bu
content tail probabilitiess(x). After that, we examine the behavior G{x), the
probability of overflow beyond, for large values ok. The explained procedure,
using the traditional fluid-flow analytic techniques (spectral analysisy&ngn [2].

In general, when the input rate is characterized by an N-state Markan,cne
distribution of the buffer content probabilities is of the form:

F(x)=P(X <x) = _iaiq:’ieax ()

where thez and®; are, respectively, generalized eigenvalues and eigenvectors as-
sociated with the solution of the differential equation satisfied by the steatdy sta
probabilities of the system, and tlags are coefficients determined from bound-
ary conditions. The next step is consisted in the asymptotic analysis ofaverfl
probability given from expression (2)3(x) = 1— F(x)). The key result of this
analysis is that this quantity can be further approximated by only considirng
contribution of the term corresponding to the largest negative, or domnéigen-
value in (2). Under such assumptions, the buffer overflow probabfliy), is
known [2], [3] to be of the form

G(X) ~ BeP* 3)

where they is the largest negative eigenvalue. As for the asymptotic congtdné
case is not as simple. Namely, getting the expression which precisely appteg
the value of constar@ demands the determination of all real eigenvalues (see [2]).

The limitation of this approach comes from the fact that such eigenvalues are
of both signs, and therefore numerical errors may lead to solutions thahatable
(computed probabilities become negative).

To exceed the aroused problems we often resort to one-parametexiamgr
tion (approximatg3 by 1). Logically as we shall see this approximation weaken
the precision of the evaluation of overflow probabilities.

The noticed numerical difficulties carried by the spectral approacledutfye
authors of this paper to the idea to use analytic techniques, that are much more
computationaly stable, in the finding of an approximation formula for the over-
flow probability. The natural choice of the authors is the matrix-geometriyamna
techniques.
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The results originated from the idea of exploiting the similarity between fluid
gueues and QBD processes, and which are published in multiple pah¢53, [5]
allow the usage of this technique.

The organization of the paper is as follows. In Section 2, we give thdsgrec
definition of a fluid queue and we summarize some basic results from the liter-
ature [4] and [6], among else, the expression for the stationary deresitprvof
fluid buffer content using Markov-renewal approach. That is theistapoint of
our work, which is in detail explained in Section 3. Section 4 through a nurarfic
ample gives graphical result, comparing our expression with the exadtgéom
the ‘standard’ formula of Anick, Mitra and Sondhi, [2]. These show thatnew
formula provides excellent accuracy for the load values at which ggéagnomes
important.

2 The renewal approach to fluid queues

Markov-modulated fluid queug$X(t), ¢ (t)): t € R} are two-dimensional Markov
processes of which the first componit) is called thdevelat timet and the sec-
ond componenf (t) is called thephase The level represents the content of a buffer
containing fluid; the phase is the state of an irreducible Markov proceadinite
state space, evolving in the background. In the simplest case, the cohtast
buffer varies linearly in time, according to the state{¢f(t)}: in the intervals of
time during which the phase remains equal 40S, say, the level varies linearly at
the rater;j. We assume that the ratgdake any real value, except zero because this
assumption is not restrictive (see [6]). We decompose the set of pEasestwo
disjoint subset$; andS_ , whereS, = {i € §r; > 0} andS_ = {i € Sr; < 0}; its
infinitesimal transition generator is denoted @yand is decomposed in a confor-

mant manner:
_ [ Q++ Q4
-( g &) @

We denote by the steady state probability vector corresponding to the generator
Q; itis the unique solution of the systefiQ = 0, &1 = 1. Throughout the paper, we
use0 and1 respectively for vectors of zeros and ones, of the appropriate diorens
Also, parts of vectors and matrixes that arise in the decomposition as ing4jail
note in the same way.

The stationary mean drift of the fluid que(¥, ¢) is defined byu = &, r, +
& r_,wherer ={rj:jeS}.

Define the matrixi = C~1Q (whereC = diag(|ri|: i € S)), actually is the gen-
erator of a fluid queue with net rates equal to +1-dr, obtained fromX, ¢) by
changing the time scale ant the input rates but the fluid level changing bauthe s
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amount overall.

Denote byp = (0, p_) the steady state probability mass vector of the empty
buffer (as the fluid queue instantaneously leaves the level zero if thse phaS, ,
p+ =0).

The densityri(x) and the probability vectop_ are expressed in terms of a
matrix, denoted a¥ and defined as follows: farin S, andj in S_, W;j; is the
probability that, starting fron{0,i) at time 0, the fluid queue returns to the level
zero in a finite amount of time and does so in phas&he results that we will
further use in our paper, we can sum up in form of one theorem (€he@:1
in [5])

Theoreml. If u < 0O, then the stationary density of the buffer content of the
procesg X, §) is given by

m(x) = p-Q_ €[t we ] (5)

for x> 0, where
K=Tip+T 4 (6)

The vectorp_ is the unique solution of the system

p-(Q-+Q¥)=0
p-(1- QK '[Ci,WwC e = 1,

The matrixW is the minimal non-negative solution of the equation
T+7 + T++LIJ + l'PTff + LPT7+LIJ — 0 (7)

Very efficient algorithms exist to solve; see [4] and [6].

3 Proposed method

The theory presented in the previous Section, and summed up in Theodermasl,
not give an explicate expression for the queue-length tail probabilitieshwh
suitable for asymptotic analysis. The first step will be the acquiring of snaxa
pression. By applying the result of the presented theorem and with simgdigian
manipulations, we can get an expression for the exact calculation of #heequ
length tail probabilities(x) = P[X > X] (i.e. overflow probabilities). From (5) by
definition we have that,

G(x) = /X " n(t)dt = /X T pT . eMC L we Y1dt = ©
= p_T_, (—-K) ¥ cit wer .
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Equation (8) is the starting point of our evaluation of overflow probabilitibgciv
is based on the asymptotic decay rate.

Matrix K has the key role in asymptotic analysis of (8). The definition and
the detailed properties of this matrix are given in the papers [5] and [Gle e
will mention only one property which is important for our future work - all the
eigenvalues of this matrix have strictly negative real parts and among thegrighe
one, denote by, which is real and has the geometrical and algebraic multiplicities
equal to one. It is maximal in the sense that every other eigenvalue of rKatrix
has a real part which is strictly less thdn Furthermore, there exist real, strictly
positive, left and right eigenvectors Kffor the eigenvalu€, which we will denote
by w andz respectively, and which are normalizedwyl = w-z= 1. Using this
feature of the matriX and result given in [5], that the same is valid for matffX
(for some levek ), we may write

X ezw as x— (9)

On the basis of (8) and (9) a natural conclusion imposes about the asyiopto

decay rate of tail probabilitie§(x). Namely, the value of the asymptomic decay

rate parameter from the equation (1) determines identified eigenvalue of ttie ma

K, i.e. n = —{. On substituting in (8) the expression in (9), the general form of
that expression will be,

G(x) = P[X > x| ~ B (10)

Here we will give only one remark that is concerned with the comparisoneof th
result gotten by using the traditional approach and the explained (oprypagh,
which concern the asymptomic decay rate. Although the results are idemtittal (
opposite signs), the computationally effort is significantly reduced by thgesied
method because matrik (defined on states @&, ) is by definition surely smaller
dimension thalN. The traditional approach, let's remind our selves, is based on the
calculation of the dominant eigenvalue of matrix which dimensias isN.

We are left with finding the asymptotic constghtin (1), for which there is
and undivided opinion that it is a very complex operation. The start pdiatio
evaluation of the asymptotic constant is the expression (10).

We shall, in this paper, show that with simple mathematical operations, using
the results gotten in this Section, we can get an expression that enablgaltree e
tion of the asymptotic constant in (1). From (10) follows directly,

e G ~B  (x—w) (11)
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And now in (11) if we include the results from (8) and (9), whens oo,

G(x) = P[X > x| ~ B’
e G(x) ~ B (12)
B~p T  (—K)lzwC L, wc Y1

Furthermore, from (9) follows the identity% = w(—K)~!z Using that identity
by simple algebraic manipulations from (12) we get,

B~—Cp-T_(—K)?[C;*,wC1 (13)

And as a part of the gotten expression on the right side

(p_T_, (—K)~?[c:,wcZY1), it stands for in fact a formula for the calculation
of mean queue-length (see [6]), asymptotic consfamie can approximate with
—{EJX], i.e. the final expression for the asymptotic approximation of overflow
probabilities is given by

G(x) =P[X >x ~ —{E[X]e*  (x— o) (14)

So the parameters of asymptotic approximation (1) are given @ith —{E[X]
andn = —({. The quality of the gotten asymptotic approximation, we shall show
through a numerical example.

4 Numerical examples

With the explained numerical example we make possible the direct comparison ou
expression with the exact results given by 'standard’ formula of Aritikra and
Sondhi, [2]. We take the well-known example of ON/OFF sources feeditg d

to the buffer of a common communication channel (see Fig. 1). The durations

. D

CC‘,D\‘

=300

Lie

Fig. 1. Fluid-flow model for a switching node (buffer lengthunder ON/OFF
traffic sources.
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of the ON and the OFF-periods are exponentially distributed, respectigty
ratesa andA. Assume that the output channel capacitidiand that each source
continuously feeds in data at the r&eduring its ON-periods. Then, ifis the
number of ON-sources, the net input rate to the bufferisi- R— B, negative for
small values of, positive for large values.

We can also see that the traffic intengityf the system can be represented by

p= NRA_ (15)

C Bla+A)

For exponentially distributed ON- and OFF- periods, the source is fumibrer
completely characterized by three parametars) andR. The added parameter
which we shall use in calculations is the ratio of the output channel capaaty to
ON source’s transmission rat®/R (equation (13)).

The lead parameters of the system are sufficient for the exact calcuddtion
values of overflow probabilities ([2]), so to get the approximated restileesame
probabilities, by using our expression for the calculation of asymptoticeters.

For the numerical examples, we fixed the parameters-asl andA = 0.4 so
we can get comparable results more simply.

Fig. 2 displays the exact tail probabiliti€3(x) and the approximation (1),
using our expressions fayr and 3, for three different values of traffic intensity
(p =0.78, 0.85, 0.94). The gotten results show the significant precision of ap-

lambda=0.4, alpha=1, B/R=16.666

T T T T
—— Exact calculation (Ref. [2])
— - Proposed ic approximation

tho=0.94

overflow

Log Probability of

1070

I I I I I I N I I
0 10 20 30 40 50 60 70 80 90 100
Buffer size (in packets)

Fig. 2. Probability of overflow vs. buffer size, exact and asymptotfmraxima-
tion. ForN = 55,N = 50 andN = 46.

proximated values with the asymptotic parameters gotten by the expressiens pro
posed in this paper. We can also notice that with the lowering of traffic intensity
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the precision of the suggested asymptotic approximation is weakened. Als we a
ready remarked, this does not lower the practical meaning of the sudgeastkod
of asymptotic approximation because the regions of high load those loac elue
which queuing becomes important.

Fig. 3. shows that the usage of one-parameter approximglienl), although
it is often in literature that it is suggested as a accepted solution becausg of it’
simplicity (see [1] and [3]), it is not always a good solution. Namely, it iggithat
one comparison of one-parameter approximation and two-parameter afgmpto
approximation with the exact calculation of overflow probabilities. The vatiies
the parameters in two-parameter approximations are gotten by using our roéthod
evaluation. The gotten results confirm the importance of an adequate estiwfation
asymptotic constant in asymptotic approximation of the overflow probability.

lambda=0.4, alpha=1, B/R=33.333
10
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Fig. 3. Probability of overflow vs. buffer size, exact, proposed gswptic ap-
proximation and asymptotic approximation with= 1 (Ref. [3]). ForN = 100
(p=0.85).

5 Conclusions

The contribution of this paper can be viewed from two aspects. Firstly,l&im c
that the asymptotic constant, if fed with the asymptomic decay rate, can simply be
approximated with the multipliacation of that decay rate and the mean of queue-
length - is not new (in some form taken in [1]). In this paper we, in a mathenhatica
corect way, have showen, that in a fluid-flow enviroment, the presetdad is
correct.

Secondly, the proposed method of approximation of overflow probability fu
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satisfies the criteria set in the begining of this paper. The procedure ésre
and computationaly very simple. It gives a simple way to approximate both of
the asimptomic paramete(g,n). Even the calculation of asymptotic decay rate
parameter is less computationaly demanding than the traditional way - Reason: th
dimension of the matriX, as mentioned earlier. We specially underline that the
equation for getting the aproximational value of the asimptomic constant can be
directly mathematicaly derived from queue-length distribution.
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