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Design of Narrow Stopband Recursive Digital Filter

Goran Stancic and Sa&a Nikolic

Abstract: The procedure for design of narrow stopband recursivedigiter real-
ized through parallel connections of two allpass sub-§ilterdescribed in this paper.
This solution also allows realization of complementarefiltusing only one addi-
tional adder, and exhibit low sensitivity on coefficientsaqgtization. The method is
based on phase approximation of allpass sub-filter. Theegtoe is very efficient
and solution can be obtained within only a few iterationsnefez large filter orden.
Every stopband provides two more equations, one at notgdrecy and the other at
passband boundary. It is not possible to control attennatidooth passband bound-
aries, but described procedure provides that achieveduatiens are less or equal
to prescribed values. Using this algorithm full control @fspband edges is obtained
comparing with existing methods where it is not possible.

Keywords: Allpass filters, parallel connection, notch filter, piecegvconstant phase
characteristic.

1 Introduction

Recursive digital filters realized through parallel connections of two sdlpeet-
works have low sensitivity of amplitude characteristic in the passband. Uhsng
approach it is possible to obtain resulting filter to have linear phase chastcte
in both, passband and stopband, at the same time. Linear phase in thendtispba
not so important characteristic by itself, but ensures that complementarafiite
has linear phase in the passband. Existing of these features and afaloethum-
ber of bits used for representation of coefficients of digital filter trarfsfection
depends on the sensitivity of the amplitude characteristics is a reason ffieasec
interest for these filters in the last decade.
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Realization of recursive digital filters through parallel connection of tiygaas
networks has been described in papers [1], [2] and [3]. The alffissdesign for
phase approximation and equalization in Chebyshev sense and sometegpica
are presented in [4] and [5].

The algorithm for synthesis of notch filters using bilinear transformatiom fro
analogue domain has been presented in [6]. In this method the first stegige dé
analogue filter. Notch frequency and stopband width are given. Theuatien is
less than 3dB in the passband. The lack of this approach is a fact thatofitthi
stopband is controlled, but at the same time stopband edgesdws, remain un-
known. For both, analogue prototype and digital filter, notch frequenagt at the
center of the stopband and this disagreement is more visible when notakrfiasg
is closer tod = 0 or 8 = 1. Using design directly iz domain one gets opportunity
to have full control of passband edges for every notch frequénisypossible also
to determine transfer function with arbitrary number of notch frequencies) we-
sign directly inz domain. In this case input parameters are stopband edges with
corresponding attenuations and location of the notch frequenciesltiRgsilter
will have prescribed or better characteristic comparing with filter obtainedyus
method described in [6].

For these filters the amplitude characteristic directly depends on allpass net-
works phase difference and it is clear that the design can be achiestatjough
allpass filters phase approximation. Discontinuity of phase appears dioemgl-
culation of digital filters phase which involves certain problems into the dekign.
this paper complete designing procedure will be described and resultewlllis
trated on few examples of notch filters design. The proposed proctatudesign
of narrow stopband filters is very efficient and solution is obtained aftlgrafew
iterations. Using this method it is possible completely to control the width of the
stopband.

2 Approximation method

Transfer function of recursive digital filter realized using parallelr@stion of two
allpass filters, presented in Figure 1, can be written in the next form

() :% Au(2)+Po(2) (1)

whereA;(z) and Ay(z) are allpass filter functions which can be displayed in the
following form

CREY sheaz
M@ =2 p o =T ad

, =1 (2
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Fig. 1. Realization of IIR selective digital filter using a parallel connectibvo allpass filters.

On the unit circle z= el?, functionsA; (z) andA,(z) are

A(z) =el®® (3)

and the transfer function (1) can be rewritten in the next form
F(el®) = ‘F(eif’)‘eil#(@) 4)

where the module of the amplitude characteristic is

®u(6) ~02(6) -

‘F(eje)) = ‘cos ! 5
and the phase is

w(e) = 2O 220 ©

The basic idea for this structure is to achieve that in the passband signats in tw
parallel branches to be in phase. Clearly, the passband and the stopitidme
either at frequencies where signals are in phase or contra phgsegtresly. It is
controlled by the sign of adder inputs. From equation (6) it is obvious Hagiesof
resulting filter phase is directly defined by allpass filter phase. In ordestie\se
linear phase it is necessary that both allpass phases are linear.

Taking into account the fact that every pair of conjugate-complex paids a
corresponding zeros contribute to phase withrad, value of allpass phaserais
—n1t, wheren represents allpass filter order. Lowpass or highpass filter could be
realized with allpass filtery(z) and A;(z) of ordern andn—+ 1 respectively, in
order to achieve phase differencerofad which defines the stopband. The easiest
way to obtain linear phase is to choose one allpass fikgfz{) to be pure delay
of ordern. With allpass filterA; () of ordern+ m, resulting filter hasn+ 1 bands
(passbands and stopbands in total) with resulting phase slape of
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Fig. 2. One realization of notch digital filter.

There is one more way to realize passband (stopband) filter using patalke!
ture. In this solution both allpass filters are of the same andeith phase approx-
imating ideal linear phase with slope- 1. The stopband is defined by frequencies
where phase of allpass filters possesad jump. This solution is general in the
sense that it is possible to achieve arbitrary phase shape, not only dnedrand
edges are defined by location of allpass phasad jumps.

Using above explained logic it is possible to realize narrow stopband filters.
For this purpose and linear phase case, allpass flt€® andA;(z) should be of
ordern andn—+ 2, respectively, with resulting phase of slopeln one passband
phase difference approximates zero and in the otierad. From Figure 3 one
can easy conclude that required phase jumprofdl in narrow phase transition
band is possible to achieve only using double poles. In that region ateiney
where phase difference is exactly equaitttad, notch frequency is positioned. So,
to realize filter withm notch frequencies corresponding allpass filters would be of
ordern andn+ 2m.

In the case when one does not insist on linear phase of resulting filter it is
possible to use the simplest structure from Figure 2. The correspondimgfer
functionA;(z) can be obtained using very simple procedure. Let

Ax2)=1 (7)

as given in Figure 2, when the equation (5) can be rewritten as

®1(6) ‘

Feje‘:‘cos
o] =[eos™,

(8)

W(6) = (©)
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Fig. 3. Phase characteristic of the second order allpass filter foratiffeole locations.

where allpass filter phase is

-
D1(6,a) :n9—2arctanw. (10)

Sitoaicogif)
Allpass filter coefficients; can be obtained easily from poles of transfer func-
tion. For the second order section it stands

ap = —2pcog¢), ay = p? (11)

wherep is the module and is phase angle of pole of the second order allpass
section. The equation 8 is amplitude characteristic of the narrow stopbamdf filte
phase®; (0, &) fulfils next conditions

Piig=—-1T ,0=0yn (12)
—2m ,Bp<B<m

where8p; and 6y, are cutoff frequencies anl; is notch frequency, i.e. it is fre-
guency where amplitude characteristic of resulting filter has value exactb/ &m
zero. These conditions can be fulfilled using allpass filter of the secaled/Ay(z),

in order to realize one notch frequency. Phase characteristic of toedserder all-
pass filter is presented in the Figure 3 and it is approximatively symmetrical (in
narrow region) around = ¢. Dependance of frequendp;, where phase of the
second order allpass filter reachsrrad, from pole’s phase anggeis displayed in
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Fig. 5. Frequency;,; dependance of pole’s phase angléor different values of pole module=0.75
(a),p =0.85 (b) andgp =0.95 (c).

Figure 5. The phas®(0,a) approximates ideal phag&;iq(0), given by equation
(12), if the next conditions are satisfied

®1(6p1,8) = —&1 for Op1 < g (13a)
®y(6p,a) = —2mt e for B> ’—ZT (13b)
®1(Og1,8) =11 (14)

where parametes; is a phase deviation at frequengy; .

It is obvious from Figure 5 that either equation (13a) should be used in the
case where notch frequenéy; is less therrr/2 or equation (13b) if notch fre-
quencyfy is greater thert/2. It can be better understood from Figure 6 where
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Fig. 6. Attenuation of the second order notch filter with notch frequenéy at 0.2 a), 6; = 0.51
b) and8y = 0.87T ¢) with maximal attenuation in the passhafghx= 0.1dB.

attenuations of the second order notch filter for different values ohrfotquency
6y, are presented.
The cutoff frequencydy, is approximatively equal t@p, ~ 26y — Bp1. Sub-

stituting of equation (10) in equation (13) the following system of equations is
obtained

A-x=bh. (15)

For the second order filter case, where notch frequégcy: 11/2, above equation
can be rewritten in the next form
0®1(0p1,8) IP1(0p1, &)

o Jday AT} _ —&1— (Dl(epl»ai*) (16)
0P1(6g1,8) IP1(6y1, &) Aay —1T— @1 (61, &)
(98.1 daz

Solving this system of equations incremefty andAa, can be determined.
Initial solutions in every iterative step are marked wath New values of coeffi-
cientsa; are obtained using expressian= a’ +Aa;, fori =1,2.

Iterative procedure is ending when the condition is fulfilled that the biggest

increment is less than arbitrary small valdechosen in advanced(= 101 in
given examples)

|max(Ag)| < d. (17)
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Figure 4 gives dependance of frequertzy where the phase of the second
order allpass filter reachs value eft rad, on modulo and phase angle of transfer
function pole. From Figure 5itis easy to conclude that better match existebetw
frequencyBd;; and pole phase angliefor poles with higheQ factor. Based on this
fact one can conclude that as good initial solution poles with modtile 0.9 and
phase anglé* = ;4 could be chosen.

Described simple procedure with small modifications can be used for realiza-
tion of digital filters with more then one notch frequency. Every new noteh fr
guency demands order of filter to rise for two, adding new two equationsysto
tem described by (15). In the case of selective digital filter widtopbands final
values for filter coefficients are determined by solving linear system cétexqu
(15), where elements of matrix become

0D, (6pi, & .
A(2i—1,j)zw j=12....n
> (18)
0P1(6yi, &) .
Agiy= ————- i=12,...,n/2
(2,]) 03
and vectotb elements are
bioi_1) = (1—1)21— & — P1(6pi, &) (19)
b(Zi):(1—2i)n—si—¢1(99i,a1-*), i:1,2,...,n/2.
Now the length of increment vectaris n
X=[Da; Aay ... Aay'. (20)

3 Algorithm

The procedure for determining of coefficients of transfer functionllpfas filter
A1 (2) can be described with the next algorithm.

1. nstopband central frequenci€g and appropriate stopband widfp; are
given. Also, permitted maximal attenuatioAsay (in dB) at passbands are
specified. If notch frequendfy; < 11/2 thanBp; = Bgi + Bstopi/ 2 and if notch
frequencyBy > 11/2 thanBp = By — Bstopi/2. Maximal phase error will be
determined as

& = 2arcco§l 0~ Amar/20], (21)
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Fig. 7. Phase, group delay and attenuation of the second order notch filte

As initial solution will be adopted next values for modp= 0.9 and phase
angle ¢ = 6y. Poles position chosen by this way allow determining of
starting allpass transfer function coefficieafs

2. Solving system of equations (15) increment of coefficields are deter-
mined, and using it, new value of filter coefficiemfan be obtained.

3. Go to step2. until condition given by expression (17) is fulfilled , using
results from previous iteration as starting valugs= &;).

4 Examples

The proposed approximation procedure will be illustrated by determiningferan
function of bandstop filter with notch frequenéy = 0.3, passband border at
Bp1 = 0.2511 with maximal attenuatiodnax= 0.01dB (corresponding phase error
has values; = 0.0959rad). Transfer function coefficients of allpass fiketz) are
determined by described algorithm and listed in table 1. Phase and groyp dela
characteristics are given in Figure 7(a) and attenuation in Figure 7(b).

Table 1. Coefficients of the second order allpass transfer funétj¢r), for
&1 = 0.0959 rad and\mnax= 0.01 dB.

2 \ a \ a
1.00000000000000 —1.1851727623828 1.01633633671555
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Fig. 8. Phase, group delay and attenuation of the fourth order notch filter

The second example is design of fourth order filter with central stopband f

quencieswy = 0.2m and wy = 0.41T and cut-off frequencies of passbaag =
0.18mr and wp, = 0.3811 where maximal attenuation Bynax = Amae = 0.2dB. It
corresponds to phase deviation= &, = 0.4275rad. Coefficients of transfer func-

tion

of allpass network\; (z) are listed in table 2.

Table 2. Coefficients of the fourth and the eighth order allpass transfetiénA; (z).

n=4 n==8
&1 = & = 0.42754802731875 rad &1 = &, = &3 = €4 = 0.94140049063259 rad
Amax= 0.2 dB Amax=1dB

ap 1.00000000000000 1.00000000000000
a1 —2.20582606683247 —3.32468650151872
a 2.91584992277717 7.19441846153906
ag —2.14086635951238 —10.39446001061895
a 0.94389994851812 11.63693484350757
ag —9.63721614585666

6.19806616685759
ay —2.66461470182447
ag 0.75554978488909

Amplitude characteristic of resulting filter is displayed in figure 8(b) and@has

characteristic and group delay characteristic are presented in figaje 8(

The last example is design of the eighth order filter with central frequen€ies

stopbanduy = 0.271, wye = 0.311, wyz = 0.4mandwys = 0.5 and cutoff frequen-
cies of passbanay; = 0.1811, wp2 = 0.2811, wpsz = 0.38mandwps = 0.48mwhere
maximal attenuations amnaxx = Amaxe = Anas = Amaxe = 1 dB. It corresponds
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Fig. 9. Phase, group delay and attenuation of the eight order notch filter.

to phase deviationg; = & = €3 = €4 = 0.9414 rad. Coefficients of the transfer
function of allpass filteA;(z) are listed in table 2.

Amplitude characteristic of resulting filter is displayed in figure 9(b) and@has
characteristic and group delay characteristic are presented in figaje 9(

5 Conclusion

The method for design of narrow stopband digital filter realized througallph
connection of two allpas filters is presented in this paper. This procedueryis
efficient and final solution can be obtained after only a few iterationsallear
connections enables realization of complementary filter with only one additional
adder and this solution has low sensitivity on coefficients quantization.

The procedure is based on phase approximation of allpass sub-filteis. |
possible to realize filter with prescribed number of stopbands, wherg eesr
stopband increase for two number of equations in system which must kedsolv
The maximal attenuation in each passband can be chosen independentbtemo
in given examples this attenuation is the same in all passbands.
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